
A fixed-parameter tractable algorithm for
combinatorial filter reduction

Yulin Zhang1 and Dylan A. Shell2

1 Amazon Robotics, North Reading, MA, USA. zhangyl@amazon.com
2 Texas A&M University, College Station, TX, USA. dshell@tamu.edu

Abstract. What is the minimal information that a robot must retain to
achieve its task? To design economical robots, the literature dealing with
reduction of combinatorial filters approaches this problem algorithmi-
cally. As lossless state compression is NP-hard, prior work has examined,
along with minimization algorithms, a variety of special cases in which
specific properties enable efficient solution. Complementing those find-
ings, this paper refines the present understanding from the perspective
of parameterized complexity. We give a fixed-parameter tractable algo-
rithm for the general reduction problem by exploiting a transformation
into minimal clique covering. The transformation introduces new con-
straints that arise from sequential dependencies encoded within the in-
put filter — some of these constraints can be repaired, others are treated
through enumeration. Through this approach, we identify parameters
affecting filter reduction that are based upon inter-constraint couplings
(expressed as a notion of their height and width), which add to the
structural parameters present in the unconstrained problem of minimal
clique covering. Compared with existing work, we precisely identify and
quantitatively characterize those features that contribute to the prob-
lem’s hardness: given a problem instance, the combinatorial core may be
a fraction of the instance’s full size, with a small subset of constraints
needing to be considered, and even those may have directly identifiable
couplings that collapse degrees of freedom in the enumeration.

1 Introduction

The design of robots that are simple is important not only because small re-
source footprints often translate into money saved, but also because parsimony
can be enlightening. In fact, the pursuit of minimalism has a long history in
robotics (cf. [1,2,4]). But the elegance in that prior work was obtained, mostly,
through human nous rather than computational tools—our work pursues the
latter avenue.

Combinatorial filters are a general and abstract model of stateful devices that
take a stream of sensor readings as input and, processing sequentially, produce a
stream of outputs. They have found direct application in describing estimators
(e.g., tracking agents in an environment [14]) and also as representations for

This work was done prior to Y. Zhang joining Amazon Robotics.

2 Yulin Zhang and Dylan A. Shell

(a) (c)

Fourgon

(e)

(b) (d) (f)

Fig. 1: Diverse examples of combinatorial filters. Sakcak et al. [12] consider a circular
environment like that shown in (a) with two types of break-beam sensors that trigger
when crossed by an agent. They derive the 4-state filter, depicted in (b), that outputs
grey when it detects that strictly clockwise/anticlockwise motion has been violated.
Scenario (c) is re-drawn from [8], where the robot observes only the cyclic ordering
of 4 landmarks. Their 3-state filter, depicted in (d), determines definitively whether
the robot’s current location is within the cyan region. In (e), the task of orienting a
polygon with a squeeze-gripper, based upon [13], is expressed as feedback plan (f), with
green encoding the action of rotating the gripper by 65◦, and purple the squeeze action
(reproduced from [18]).

sensor-based plans (e.g., for navigation, or manipulation for part orientating [6]).
Figure 1 provides specific concrete examples from the literature showing different
scenarios and the associated filters. In the context of the present paper, what is
interesting about combinatorial filters is that (unlike, say, Bayesian estimators)
they are objects which themselves can be modified by algorithms. In our view,
the fundamental information processing task faced by a robot can oftentimes
be abstractly represented via a combinatorial filter, so specific obstructions to
tractability have significance beyond mere applications; for instance, they speak
to the challenge of niche fit as optimization under resource constraints.

1.1 Related Work

The idea of determining fundamental limits, such as necessary information and
performance bounds, is a topic receiving renewed attention (for instance, see
[3,12]), especially when such analysis can be conducted via automated means. A
key problem is that of taking a combinatorial filter and compressing it to form
an equivalent filter, but with the fewest states. Regrettably, this is NP-hard [6]. A
direction of work has sought to identify special cases [10,19], to employ ILP and
SAT techniques [7,16], and to focus on special types of reductions which may
give inexact solutions [8,11]. (The state-of-the-art practical method for exact
combinatorial filter minimization, at the time of writing, appears in [16].)

A fixed-parameter tractable algorithm for combinatorial filter reduction 3

1.2 Contributions

The present paper gives the first fixed-parameter tractable (FPT) algorithm for
the filter reduction problem. Such algorithms are so named because they in-
volve the identification of specific parameters as dimensions that characterize
problem instances as inputs to the algorithm. These algorithms have attractive
(polynomial) performance when the instances are scaled up but with the param-
eters held constant. As a formal tool, they provide more fine-grained treatment
than merely showing the problem is NP-hard [5]. The primary significance of
the algorithm we introduce is that it highlights specific structural aspects of
instances that make minimization difficult. Put another way: when the param-
eters identified are bounded, that which remains is a characterization of easy
(i.e. polynomial time) filter minimization instances. For instance, easy filters to
minimize are those where the number of zipper constraints (see Definition 4) is
small. Or, when the set of zipper constraints might be large, minimization can
be easy if the vast majority satisfy the repairability property we describe (see
Definition 6), while being disconnected from those which do not. Also, when non-
repairable constraints, owing to constraint inter-dependencies, form long chains,
or—even better—cycles, the problem is simplified. Each of these help reduce the
(worst-case) cost of solution.

The perspective we emphasize, thus, is that the algorithm provides a new
complexity-theoretic insight by teasing apart specific structural factors affecting
the hardness of filter reduction; though we do not put the algorithm to practical
use, there is no basis to presume that it is impractical, either.

2 Preliminaries

Definition 1 (filter [9]). A deterministic filter, or just filter, is a 6-tuple F =
(V, v0, Y, τ, C, c), with V a non-empty finite set of states, v0 an initial state, Y
the set of observations, τ : V ×Y ↪→ V the partial function describing transitions,
C the set of outputs, and c : V → C being the output function.

One traces a finite observation sequence y0y1 . . . yk on a filter by starting at
state v0, and repeatedly following the edge labeled by yi to arrive at vi+1 =
τ(vi, yi). The filter’s output is c(vk) ∈ C obtained from the last state visited.

Problem: Filter Minimization (FM(F))

Input: A deterministic filter F .
Output: A deterministic filter F ⋆ with fewest states, such that:

1. any sequence which can be traced on F can also be traced on F ⋆;
2. the outputs they produce on any of those sequences are identical.

Solving this problem requires some minimally-sized filter F ⋆ that is func-
tionally equivalent to F , where the notion of equivalence—called output simu-
lation— needs only criteria 1. and 2. to be met. For a formal definition of output
simulation, see [17, Definition 5, pg. 93].

4 Yulin Zhang and Dylan A. Shell

Lemma 2 ([6]). The problem FM is NP-hard.
Recently, in giving a minimization algorithm [17], FM was shown to be equiv-

alent to vertex covering when the valid coverings satisfy a set of auxiliary con-
straints. These constraints, denoted Z, are termed zipper constraints as they
may cause long chains of vertices to be ‘pulled together’ incrementally. Next, we
will describe this abstract covering problem; thereafter, we will connect it back
to filters through the notion of compatibility and a filter’s compatibility graph.

Problem: Minimum Zipped Clique Cover (MZCC(G,Z))
Input: A graph G = (V,E) and a collection of ordered pairs of G’s edges

Z = {(U1;V1), (U2;V2), . . . , (Um;Vm)}, where Ui, Vi ∈ E.
Output: Minimum cardinality clique cover K such that:

1.
⋃

Ki∈K Ki = V, with each Ki forming a clique on G;

2. ∀Ki ∈ K, if there is some ℓ such that Uℓ ⊆ Ki, then some Kj ∈ K
must have Kj ⊇ Vℓ.

(This is a special case of MZCC in [17] but will suffice, see discussion in footnote 3.)

In bridging filters and covers, the key idea is that certain sets of states in a
filter can be identified as candidates to merge together, and such ‘mergability’
can be expressed as a graph. The process of forming covers of this graph identifies
states to consolidate and, accordingly, minimal covers yield small filters. The first
technical detail concerns this graph and states that are candidates to be merged:

Definition 3 (extensions and compatibility). For a state v of filter F , use
LF (v) to denote the set of observation sequences, or extensions, that can be
traced starting from v. States v and w are compatible if their outputs agree on
LF (v)∩LF (w), their common extensions. In such cases, we write v ∼c w. The
compatibility graph GF possesses edges between states iff they are compatible.

But simply building a minimal cover on GF is not enough because covers may
merge some elements which, when transformed into a filter, produce nondeter-
minism. The core obstruction is when a fork is created, as when two compatible
states are merged, both of which have outgoing edges bearing identical labels,
but whose destinations differ. To enforce determinism, we use constraints to
forbid forking and require mergers to flow downwards. See the following:

Definition 4 (determinism-enforcing zipper constraints). Given a pair of com-
patible states U = {u1, u2} in F and their y-children, V = {τ(u1, y), τ(u2, y)},
then the ordered pair (U ;V) is a determinism-enforcing zipper constraint of F .

A zipper constraint (U ;V) is satisfied by a clique cover if U is not covered
in a clique, or both U and V are covered in cliques. (This is criterion 2. for
MZCC.) For filters, in other words, if the states in U are to be merged (or
consolidated) then the downstream states, in V , must be as well. The collection
of all determinism-enforcing zipper constraints for a filter F is denoted ZF .
3 After examining filters like those here, the later sections of that paper go further

by studying a generalization in which function c may be a relation. Complications
arising from that generalization will not be discussed herein.

A fixed-parameter tractable algorithm for combinatorial filter reduction 5

Fig. 2: An illustration show-
ing (partially) a filter F (left
inset) leading to a compatibil-
ity graph GF (right). The Z2

set is also shown.

In summary: for filter F , the collection of zipper constraints ZF that en-
sures the desired result will be a deterministic filter can be constructed directly
as follows. For u ∼c v, a pair of compatible states in F , use τ(·, y) to trace for-
ward under observation y; if the y-children thus obtained are distinct, we form
zipper constraint ({u, v}, {τ(u, y), τ(v, y)}) to ensure that if u and v are merged
(by occupying some set in the cover together), their y-children will be as well.
Construct ZF by collecting all such constraints for all compatible pairs, using
every observation. A cartoon illustrating the result of this procedure is shown in
Figure 2: a snippet of the filter F appears at left; its undirected compatibility
graph, GF , appears at right; zipper constraints are shown as the directed edges
on the undirected compatibility edges. Both GF and ZF are clearly polynomial
in the size of F . Then, a minimizer of F can be obtained from the solution to
the minimum zipped vertex cover problem, MZCC(GF ,ZF):

Lemma 5 ([17]). Any FM(F) can be converted to an MZCC(GF ,ZF) in poly-
nomial time; hence MZCC is NP-hard.

Though we skip the details, the proof in [17] of the preceding lemma also gives
an efficient way to construct a deterministic filter from the minimum cardinality
clique cover.

As a final point on the connection of these two problems, combinatorial filters
generate ‘most’ graphs. Specifically, [19] proves that some filter F realizes G as
its constraint graph GF if and only if either: (1) the graph G has at least two
connected components, or (2) G is a complete graph.

6 Yulin Zhang and Dylan A. Shell

In any graph G = (V,E), we refer to the neighbors of a vertex v ∈ V by set
NG(v) := {w ∈ V | (w, v) ∈ E} ∪ {v}. Note that we explicitly include v in its
own neighborhood.

Definition 6 (comparable neighborhoods4). A pair of vertices {v, w} in some
graph G = (V,E) have comparable neighborhoods if and only if either NG(v) ⊆
NG(w) or NG(v) ⊇ NG(w).

We will use the following recent result of Ullah:

Lemma 7 (From [15]). Given a graph G with n vertices, let β be the size of the
largest clique in G, and let the number of cliques in the minimum clique cover
be m, then there is an algorithm that computes the minimum clique cover in
2βm logm nO(1).

3 Zippers and prescriptions

For a zipper constraint collection Z = {(U1;V1), (U2;V2), . . . , (Um;Vm)}, let
Z2 = {U1, U2, . . . , Um, V1, V2, . . . , Vm}, i.e., the unordered pairs of vertices (or
edges) appearing within collection Z. We will write P ≺Q if and only if there
exists a zipper constraint (P ;Q) ∈ Z. We define Z2

src ⊆ Z2 to be the set
Z2

src := {P ⊆ V (F) | ∃Q ∈ Z2, P ≺Q}, i.e., the unordered pairs appearing
as sources in the zipper constraint collection Z. Similarly, let Z2

tgt ⊆ Z2 be
those pairs appearing as potential targets for enforced merging within the zip-
per constraints, i.e., Z2

tgt := {Q ⊆ V (F) | ∃P ∈ Z2, P ≺Q}. By construction
Z2 = Z2

src ∪ Z2
tgt, and, in general, Z2

src ∩ Z2
tgt ̸= ∅.

Definition 8. Given Z, the pair Pb ∈ Z2 is downstream from pair Pa ∈ Z2,
written Pa

∗≺Pb, if Pa ≺Pb, or if Pa ≺Pc for some Pc ∈ Z2 with Pc
∗≺Pb.

3.1 Prescriptions

To tackle the MZCC problem, we search for covers subject to a rule stating that
some specific pairs must be merged, while others must never be. The idea is to
make and fix choices for a subset of the pairs involved in the zipper constraint
collection so that this prescription respects the zipper constraints for elements
in the collection. We will denote the collection via set D, defined next.

Definition 9. With zipper constraint collection Z given some set of pairs D ⊆
Z2, a prescription on D is a subset of pairs SON

D ⊆ D. Prescription SON
D on D is

termed downstream enabled if and only if (Pa ∈ SON
D) ∧ (Pa

∗≺Pb) =⇒ (Pb ∈
SON
D) ∨ (Pb ̸∈ D).

The elements in SON
D are called the on pairs; those in D\SON

D are the off pairs,
which we write as SOFF

D . A prescription is silent about elements outside D (the
mnemonic for D being ‘domain’ — elements within the domain are prescribed as
4 This generalizes a concept first introduced in [19, Definition 25].

A fixed-parameter tractable algorithm for combinatorial filter reduction 7

either being on or off; elements outside the domain have no prescription). See
Figure 3. (Note that since D ⊆ Z2, both the on pairs and off pairs are from
the set of zipper constraints, hence are edges within the graph in the MZCC
problem.) If SON

D = {P1, P2, . . . , Pm} is a prescription, then it will be used to
require that the on pairs be merged, while the off pairs are prohibited from
being merged. The idea is to ensure that a cover is produced that respects the
prescription:

Definition 10 (Faithfulness). Let graph G and the collection of zipper con-
straints Z be given. For some domain D ⊆ Z2, a cover K = {K1,K2, . . . ,Km}
of G is faithful to prescription SON

D = {P1, P2, . . . , Pn} if and only if:

1. For every Pi ∈ SON
D there exists some clique Kℓ ∈ K where Pi ⊆ Kℓ;

2. For every Pj ∈ SOFF
D there is no clique Kℓ ∈ K such that Pj ⊆ Kℓ.

We will achieve this via modification of a compatibility graph that will make
on and off sets enforce and prohibit mergers. The modification of the graph is
given through a series of set constructions next, before showing (in Lemma 17)
that this can be used as desired.

3.2 Enumerating downstream enabled prescriptions

A pair graph is a directed graph whose vertices are pairs from D. We will write
G, where vertices V(G) ⊆ D and edges E(G) ⊆ V(G)×V(G). Let G− [R] denote
the subgraph G′ with vertices R removed, i.e., vertices V(G′) = V(G) \ R, and
also edges E(G′) = (V(G′)× V(G′))∩E(G). Next, we define the collection of up
and downstream pairs within a given pair graph: UG(P)={Pu ∈ V(G) |Pu

∗≺P};
DG(P)={Pd ∈ V(G) |P ∗≺Pd}.

To generate all downstream enabled prescriptions, we invoke EnumDS(G(D))
in Algorithm 1, where G(D) is the pair graph having vertices D, and an edge
from pair Ps to Pd if and only if Ps ≺Pd. In the return statement in line 4, the
first set corresponds to prescriptions where P is being turned off, while the
second set has P being turned on. Note that because cycles are possible be-
tween zipper constraints, UG(P)∩DG(P) ̸= ∅, in general. The presence of cycles
reduces the number of prescriptions to enumerate. When P appears within a
cycle, if P is off, then all pairs in the cycle have to be off too; if P in on, then
they are all also on as well.

Fig. 3: An example downstream-
enabled prescription for the pairs
in D = Z2 corresponding to the
instance in Figure 2. Dashed red
and solid green outlines repre-
sent states in F to be split and
merged, respectively.

8 Yulin Zhang and Dylan A. Shell

Algorithm 1 EnumDS(G)
Input: Pair graph G
Output: All prescriptions that are downstream enabled

1: if V(G) = ∅ then
2: return ∅
3: Let P ∈ V(G) be an arbitrary pair where ∀Q ∈ V(G), |DG(P)| ≥ |DG(Q)|
4: return EnumDS

(
G−[UG(P)]

)⋃{
{P}∪DG(P)∪S

∣∣S ∈ EnumDS
(
G−[DG(P)]

)}

Fig. 4: Partial order of ∗≺ . Here, height ℓ = 4 and width ω = 8.

To dispatch with cycles, define a relation on pairs in D: let P ≡ Q if and
only if P = Q or P ∗≺Q ∗≺P . Further, ≡ is an equivalence relation and the set
of equivalence classes D/≡ can be partially ordered by lifting the ∗≺ relation.
Then the total number of downstream enabled prescriptions, |EnumDS(G)|, is
bounded by ((ℓ+1)+1)ω = 2ω lg(2+ℓ) with ℓ being the height (i.e., the length of
the longest chain) and ω width (i.e., size of the largest anti-chain) of (D/≡, ∗≺)
respectively. See Figure 4 above.

As the enumeration is of downstream-enabled prescriptions from Z2, it is
worth noting, firstly, that Z2 will often be much smaller than the size of the input
filter (|Z2| ≤ |V (F)|). Second, D may be a proper subset of Z2 (see Section 6,
where |D| ≤ |Z2|). Third, the number of downstream-enabled prescriptions for D
will often be much smaller than 2|D|, i.e., ω ≪ |D|, owing to both the reduction
obtained from cycles (|D/≡| ≤ |D|), and ordering structure inherited from the
sequential zipping that arises from the filter (e.g., as ℓ increases, worst-case ω
decreases).

4 Graph Augmentation

Downstream-enabled prescriptions are effective at encoding choices that are im-
perative to satisfaction of the zipper constraints, without specifying a full clique
cover. Given such a prescription, first we augment the compatibility graph by in-
corporating the prescription. Thereafter, as the zipper constraints are no longer
a concern, we can focus on the remaining minimum clique cover problem on the
augmented graph. Finally we transport the solution from the augmented graph
back to the original compatibility graph.

A fixed-parameter tractable algorithm for combinatorial filter reduction 9

4.1 Augmenting the constraint graph

Construction 11 (Augmented Graph G+). If G = (V,E), then construct
G+(SON

D) = (V +(SON
D), E+(SON

D)) with V +(SON
D) := Vprior ∪ Vnew(SON

D) where

Vprior :=
{
v
{u}
new

∣∣ u ∈ V
}
,

Vnew(SON
D) :=

{
v
{u,w}
new

∣∣ {u,w} ∈ SON
D

}
,

E+(SON
D) :=

{
{vAnew, v

B
new} ∈ V +(SON

D)× V +(SON
D)

∣∣∣ A ∪B form a clique in

graph G′ = (V,E \ SOFF
D)

}
.

The vertices in Vprior are simply re-named copies of those in V . The set Vnew
introduces new vertices for those pairs in D which have been turned on. The
definition of the edge set adds edges to ensure that the new vertices will be
seen as mutually compatible when there is no obstruction to compatibility from
within the original graph.

Property 12. Let vertices vAnew, v
B
new ∈ V +(SON

D), vAnew ̸= vBnew then

{vAnew, v
B
new} ∈ E+(SON

D) ⇐⇒ ∀u ∈ A,∀w ∈ B, u ̸= w, {v{u}new, v
{w}
new} ∈ E+(SON

D).

4.2 Relating graphs and their augmentations

Next, we consider two operations which connect vertices in the original graph
with those in its augmented graph.

Definition 13 (Distillation). Suppose a graph G = (V,E) and its augmentation
G+(SON

D) based on prescription SON
D ⊆ D is given. The set of vertices of the aug-

mented graph, S+ = {vA1
new, v

A2
new, . . . , v

An
new} ⊆ V +(SON

D), may be distilled to obtain
a set of vertices in the original graph: S := A1 ∪A2 ∪ · · · ∪An.

In the preceding, when S is obtained from S+ in this way, we will also refer
to it as S+’s distillate. Further, we will also talk of the distillate of a collection
of sets {S+

1 , S+
2 , . . . , S+

n }, as the collection obtained by applying Definition 13 to
each S+

i , each yielding their respective Si. In the particular uses of this concept
which follow we will be interested in distilling collections that are covers. The
next property shows that distillation preserves cliqueness, while transporting a
structure from graph G+ back to G.

Property 14. For a graph G = (V,E) and its augmentation G+(SON
D) based on

prescription SON
D ⊆ D, suppose S+ ⊆ V +(SON

D) produces S ⊆ V when distilled.
Then S+ is a clique in G+(SON

D) if and only if S is a clique in G′ = (V,E\(SOFF
D)).

The concept in the following definition is a sort of counterpoint to that of
Definition 13.

10 Yulin Zhang and Dylan A. Shell

Definition 15 (Expansion). Suppose a graph G = (V,E) and its augmentation
G+(SON

D) based on prescription SON
D ⊆ D is given. A set of vertices S ⊆ V can be

expanded to give elements of V +(SON
D), i.e., vertices in G+(SON

D):

expand(S) := {vAnew ∈ V +(SON
D) | A ⊆ S}. (1)

(Notice the subtlety that binding elements to within V +(SON
D) ensures A will

be singletons or pairs.) Observe that if S+ = expand(S), i.e. S expands to S+,
then the distillation of S+ is S — this is proved as the first part of the next
property.

Property 16. Given a graph G = (V,E) and its augmentation G+(SON
D) based

on prescription SON
D ⊆ D. If K = {K1, . . . ,Km} is a clique cover of G faithful

to SON
D then, collecting the expanded sets in K+ = {expand(K) | K ∈ K}, the

collection K+ is a clique cover on G+(SON
D).

5 Connecting covers, prescriptions, and constraints

We now have the machinery in place to present a useful lemma. This will show
that the augmented graph, recalling Definition 10 for faithfulness, will yield
covers that adhere to the prescription.

Lemma 17 (Faithful constraint satisfaction). Given a graph G and an associ-
ated Z2 from zipper constraint collection Z, let D ⊆ Z2. Then, suppose we have
some downstream-enabled prescription SON

D = {P1, P2, . . . , Pn}. If K+ is a cover
of G+(SON

D), then there is a cover K of G, the distillation of K+, with |K| ≤ |K+|,
such that:
– Cover K is faithful to SON

D .
– Also, K is a cover of G which satisfies all those zipper constraints strictly

interior to D, namely those
{
(U1;W1), (U2;W2), . . . , (Ut;Wt)

}
⊆ Z where

U1,W1, U2,W2, . . . , Ut,Wt ∈ D.

Further, when cover K+ is minimal, then the preceding result can be strength-
ened, as we show next.

Lemma 18 (Optimal faithful constraint satisfaction). Given the elements in
Lemma 17, if K+ is a minimal clique cover of G+(SON

D), then, in addition to the
properties in the previous lemma, cover K of G has:
– |K| = |K+|.
– There exists no clique cover K◦ of G, faithful to SON

D , with |K◦| < |K|.
Combining Algorithm 1 with the preceding results, and picking D = Z2, we

already have an FPT-algorithm for MZCC. For each prescription Si ∈ EnumDS(G),
one constructs G+

F (Si), then uses an FPT-algorithm to solve that classical min-
imum clique cover. As per Lemma 18, one distills that cover into a zipper-
constraint–satisfying cover for G; the smallest such cover—across all Sis— will
be a solution to the problem. (This claim requires proof, but becomes a special
case of a later result, by taking D = Z2 in Theorem 23.) Next, an improved
algorithm, which takes more care to pick a (potentially) smaller D will be pre-
sented.

A fixed-parameter tractable algorithm for combinatorial filter reduction 11

6 Repairable constraints

We may be able to pick D as a strict subset of Z2 if there are zipper constraints
which, though they may be violated during the covering process, can be resolved
thereafter. The next lemma, making use of Definition 6, will show this:

Lemma 19. Given a graph G and an associated Z2 from zipper constraint
collection Z, let R ⊆ Z2 be a set of pairs such that for every pair {u,w} in R,
u and w have comparable neighborhoods. If R ⊆ R then let SR := {(Ui;Wi) ∈
ZF | Ui ∈ R} and DR := {(Uj ;Wj) ∈ ZF | Wj ∈ R}. If K is a cover for G, then
there is a cover K̃, no larger than K, such that:

1. K̃ is a clique cover of G that satisfies the specific zipper constraints SR∩DR.
2. If K satisfies the zipper constraints C ⊆ Z, and K̃ satisfies the zipper con-

straints C̃ ⊆ Z, and then C \ C̃ ⊆ SR \ DR.

The intuition is that we can repair K, without increasing its size, to ensure
that those zipper constraints wholly in R will hold (item 1). This process can
have an unfortunate side-effect of breaking some zipper constraints which held
formerly: but those are only the zipper constraints that ‘depart’ R, i.e., SR \DR

(item 2).
The preceding shows that zipper constraints with both ends in a set R ⊆ R

which possesses comparable neighborhoods, need not cause any trouble. Our
prior discussion, using downstream-enabled prescriptions, allows one to deal
with constraints entirely outside of R. However, a remaining difficulty is that
some constraints may straddle the two sets. We put R aside briefly, returning
to it again in Lemma 22 and subsequent theorems, as we now introduce extra
machinery for the liminal constraints.

Broadly speaking, the preceding shows that rather than taking D = Z2 we
can avoid having to include the comparable neighborhoods pairs in the enumer-
ation. This idea is close to being correct, but we need to ensure D will handle
the liminal constraints correctly as well. To do this, the idea will be to expand
the domain D to embrace some additional pairs. (The additional pairs are those,
when interpreted back in the filter, whose merger or non-merger is entailed from
the choices made in a given prescription on D.)

Construction 20 (Prescription Boundary Inclusion). Given a prescription SON
D ,

we modify it by increasing SON
D and SOFF

D . This is achieved, firstly, modifying its
domain and then, secondly, selecting some additional elements, which transforms
it into a new prescription. To do so, define sets:

1. Upstream vertex pairs of the off pairs should be treated as if they were
turned off too, i.e., prohibited from being in a clique together (the constraint
cannot be satisfied otherwise); let Foff

D (SON
D) = {Pa ∈ Z2 \ D | ∃Pb ∈ D \

SON
D , Pa

∗≺Pb}.
2. Downstream vertex pairs of the on pairs should be turned on as well, i.e.

must be in some clique together; let Fon
D (SON

D) = {Pc ∈ Z2 \ D | ∃Pd ∈
SON
D , Pd

∗≺Pc}.

12 Yulin Zhang and Dylan A. Shell

Construct a derived prescription by expanding the domain and on pairs as

D := D ∪ Foff
D (SON

D) ∪ Fon
D (SON

D), and SON

D
:= SON

D ∪ Fon
D (SON

D),

where the on pairs have grown to include those in Fon
D . And, as before, the

off pairs are those in D \ SON

D
; and the prescription is silent about the elements

outside D.

Caution: in SON

D
we have lightened the notation by eliding the dependence of

D on SON
D . Care is warranted because D cannot be constructed from D alone—

different prescriptions will give different Ds.

Property 21. If prescription SON
D is downstream enabled then SON

D
is downstream

enabled.

Proof. We prove a slightly stronger statement, which is that (Pa ∈ SON

D
) ∧

(Pa
∗≺Pb) =⇒ (Pb ∈ SON

D
). Given that antecedent, we have Pa ∈ SON

D or
Pa ∈ Fon

D (SON
D), since SON

D
= SON

D ∪ Fon
D (SON

D). Then we need to show

1. (Pa ∈ SON
D) ∧ (Pa

∗≺Pb) =⇒ (Pb ∈ SON

D
) and

2. (Pa ∈ Fon
D (SON

D)) ∧ (Pa
∗≺Pb) =⇒ (Pb ∈ SON

D
).

For the first, Pb is certainly in SON

D
: When Pb ̸∈ D then Construction 20 ensures

Pb ∈ Fon
D (SON

D); alternatively, when Pb ∈ D then Pb ∈ SON
D ⊆ SON

D
due to the

original prescription being downstream enabled.
For the second, the definition of Fon

D (SON
D) means there is some pair Pd

∗≺Pa

with Pd ∈ SON
D . Transitivity and Pa

∗≺Pb means Pd
∗≺Pb. Again, Pb is certainly in

SON

D
, using the argument above but with Pd fulfilling the role of Pa before.

(Note, as per the discussion at the end of Section 5, when D = Z2, then
D = D = Z2, and we have SON

D
= SON

D = SON
Z2 so long as SON

D was downstream
enabled.)

7 Main result: FPT algorithm

The paper’s key algorithm just assembles all the pieces presented up to this
point; it appears in Algorithm 2. The following lemma and theorem provide its
correctness, while the final corollary gives the parameterized running-time.

Figure 5 helps to illustrate the relationships between the subsets of Z2 ap-
pearing in the algorithm: D and R partition Z2, and so too do D and R. Two
additional points are worth noting. Though the domains are taken as D when G+

is constructed, and D is usually larger than D, it is only the downstream enabled
prescriptions on D that are enumerated. Secondly, line 6 constructs a minimal
clique cover on G+, which is unconstrained. This sub-problem, though NP-hard,
is fixed-parameter tractable, and we use the method mentioned in Lemma 7 on
the analysis below.

A fixed-parameter tractable algorithm for combinatorial filter reduction 13

Algorithm 2 Solve MZCC(G,Z)

Input: Compatibility graph G, zipper constraints Z
Output: Clique cover Kbest with minimum cardinality

1: Take D = Z2 \R
2: Initialize Kbest ←

{
{v} | v ∈ V (G)

}
3: for SON

D ∈ EnumDS(G(D)) do
4: Form D and SON

D
from SON

D (via Construction 20)
5: Build graph G+(SON

D
) (via Construction 11)

6: K+ ← Find-min-clique-cover(G+(SON

D
))

7: Distill K+ to K (via Definition 13)
8: Repair K with R = R \D to give K† (Lemma 19)
9: Kbest ← K† when |K†| < |Kbest|

10: return Kbest

Lemma 22 (Constraint satisfaction). Given G and an associated Z2 from zipper
constraint collection Z, let R ⊆ Z2 be a set of pairs such that every pair in R has
comparable neighborhoods. With D ⊇ Z2 \ R, let SON

D be a downstream-enabled
prescription on domain D. If K+ is a cover of G+(SON

D
) that is faithful to SON

D
,

then K+ can be distilled and repaired so that every constraint in Z is satisfied.

Proof. The repair process on the cover chooses R = R\D. First, the collection of
zipper constraints are of four types, depending on whether the zipper constraints
have both source and target in D or not: (1). zipper constraints with both source
and target in D, (2). zipper constraints with neither source nor target in D,
(3). zipper constraints with only target in D, (4). zipper constraints with only
source in D. Next, we will show that all zipper constraints in the above types
are satisfied. The derived SON

D
is downstream-enabled (according to Property 21)

and, then, Lemma 17 applied on that prescription means that K (the distillation
of K+) satisfies all zipper constraints internal to D. Hence type (1) are not
violated. The repair procedure ensures that type-(2) constraints hold (as type-(2)
constraints fall entirely within R.) As per Lemma 19), the repair procedure may
have the side-effect of altering some constraints so they no longer hold. Those are
constraints with source in that region of R outside of D and destinations in D,
i.e., constraints of type (3). This is not a concern as the source must be on, and
the destination must be off. The destination is downstream from the source.
Either the destination is itself in D or it is in D \ D, but in this latter case,
there must be a downstream off-pair in D which caused it to be created. But
then Construction 20 would have placed the source into D, which contradicts
the criterion for being of type (3). The argument for type (4) is symmetric: a
violation involves an upstream on-pair either in D or D \ D, where the latter
case only arises from some further upstream pair in D that is on. But then, as
the destination of the type-(4) element is a downstream of an on pair, it must
be on (through Construction 20), contradicting the criterion for being type (4).

Therefore, all zipper constraints in Z are satisfied.

14 Yulin Zhang and Dylan A. Shell

Fig. 5: Subsets of the set of Z2 appearing in Algorithm 2. First (on the left), Z2 is
partitioned into D and R. Then (on the right), with some particular prescription given,
D is grown to form D by including those pairs which are upstream of off elements
and those pairs downstream of on ones. And R is reduced by this same difference so
that D ∪R = Z2.

Theorem 23 (Correctness). Suppose K⋆ is a solution to MZCC(G,Z), i.e., it
is a minimum cardinality clique cover of G and satisfies Z. Then, there is a K†,
the repair of a distilled cover of a graph G+(SON

D
), constructed from SON

D
, itself be-

ing obtained as the boundary inclusion of some downstream-enabled prescription
from SON

D for a domain D chosen with D ⊇ Z2 \R, such that |K†| = |K⋆|.

Proof. Having chosen some domain D ⊇ Z2 \ R, we use K⋆ to construct a
downstream-enabled selection. For any pair {v, w} ∈ D, if there is a clique in
K⋆ that contains both v and w, then add {v, w} to SON

D . (This ‘turns’ them on;
otherwise, as the pair is in D, they’ll be off.) This process, having followed
Definition 10, means that K⋆ is faithful to SON

D . Next, perform the operations in
lines 4–8 of Algorithm 2. As distillation and repair operations do not increase
the cover size, thus |K+| ≥ |K| ≥ |K†|.

Using Lemma 18, there is no clique cover on G that is faithful to SON
D and

is smaller than |K|. Therefore, we have |K⋆| ≥ |K|. But K† satisfies all the
zipper constraints (via Lemma 22), and with K⋆ being the smallest such cover,
|K⋆| ≤ |K†|. Combining: |K†| ≤ |K| ≤ |K⋆| ≤ |K†|.

Corollary 24. Algorithm 2 is fixed-parameter tractable, having complexity:

f(β,m, ℓ, ω, d)nO(1)

with f(β,m, ℓ, ω, d) = (2+ℓ)ω2(β+d)(m+d) log(m+d), where n is the size of the input
graph G, β is the size of the largest clique in G, m is the number of cliques in
the minimum clique cover of G, ℓ and ω are the height and width of (Z2/≡, ∗≺),
respectively, and d = |D|+ |{P ∈ Z2 \D | ∃Q ∈ D,P ∗≺Q or Q ∗≺P}|.

Proof. Take D to be the entire Z2. Following Algorithm 1, there are (2 + ℓ)ω

downstream-enabled prescriptions. For each prescription, we can construct an
augmented graph. Compared to the original graph G, the augmented graph
creates at most d additional states and keeps the copies of incompatible states
incompatible. In the worst case, the copies of the vertices in the largest clique
of G still remains fully connected in the augmented graph. Hence, the size of
the largest clique in the augmented graph is at most m + d, where there are
additionally d new states to be covered by the largest clique. For each state pair

A fixed-parameter tractable algorithm for combinatorial filter reduction 15

{v, w} in Z2, if it is off, then it requires at most one additional clique since you
can no longer put these two states in the same clique. If it is on, then it also
requires at most one additional clique to cover the additional new states v

{v, w}
new ,

as the copies of both v and w are already covered by the clique cover of size β.
Therefore, the size of the minimum clique cover for the augmented graph is at
most β + d. Hence, the computational complexity to find the minimum clique
cover for each augmented graph is 2(β+d)(m+d) log(m+d)O(n) following Lemma 7.
Together, the complexity for Algorithm 2 is (2+ℓ)ω2(β+d)(m+d) log(m+d)O(n).

Notice that the approach does not depend upon any particular details of the
FPT-algorithm employed to find the traditional clique cover. For Corollary 24’s
precise expression of f , we use Lemma 7 as a specific example, and modifications
for the G+ graphs add only d terms to upper bound the parameters. In a sense,
we can see the compositionality of the FPT theory: in order to account for the
enumeration, the zipper constraints themselves contribute to the complexity via
the (2 + ℓ)ω = 2ω lg(2+ℓ) factor.

8 Conclusion and outlook

It is unclear whether the algorithm we have presented is of particular practical
value. Given past successes with ILP- and SAT-based formulations, and the
vast body of active work on improving solvers of those sorts, they may well
outperform direct treatment via clique covers on graphs. Nevertheless, what the
present algorithm does provide is some deeper understanding of the fact that
the constraints to enforce determinism play a role in making the problem hard.
To gain further insight, one might look at regularity which affects the down-
/upstream relationship between zipper constraints, and examine its impact on
the chains and anti-chains that result. Under the usual interpretation of FPT,
such regularity leads one to identify classes of tractable instances with complexity
characterized by constant parameters. These instances are efficient to solve when
scaling the problem while keeping those parameters fixed. Finally, the notion
of repairability in [19] has definitely been sharpened within the present paper,
though, unlike that work, our emphasis has not been on the direct structural
aspects of the compatibility graph.

Acknowledgements: We thank the anonymous referees for their close reading
of the manuscript, and acknowledge the support of the Office of Naval Research
under Award #N00014-22-1-2476.

References

1. Jonathan H. Connell. Minimalist Mobile Robotics. A Colony-Style Architecture for
an Artificial Creature, volume 5 of Perspectives in AI. Academic Press, Inc., 1990.

2. Ken Goldberg. Minimalism in Robot Manipulation, April 1996. https://goldberg.

berkeley.edu/minimalism/, Accessed 2024–02–02.

https://goldberg.berkeley.edu/minimalism/
https://goldberg.berkeley.edu/minimalism/

16 Yulin Zhang and Dylan A. Shell

3. Anirudha Majumdar and Vincent Pacelli. Fundamental Performance Limits for
Sensor-Based Robot Control and Policy Learning. In Robotics: Science and Sys-
tems, New York City, NY, USA, June 2022.

4. Matthew T. Mason. Kicking the Sensing Habit. AI Magazine, 14(1):58–59, 1993.
5. Rolf Niedermeier. Invitation to fixed-parameter algorithms. Oxford University

Press, 2006.
6. Jason M. O’Kane and Dylan A. Shell. Concise planning and filtering: Hard-

ness and algorithms. IEEE Transactions on Automation Science and Engineering,
14(4):1666–1681, 2017.

7. Hazhar Rahmani and Jason M. O’Kane. Integer linear programming formulations
of the filter partitioning minimization problem. Journal of Combinatorial Opti-
mization, 40(2):431–453, 2020.

8. Hazhar Rahmani and Jason M. O’Kane. Equivalence notions for state-space mini-
mization of combinatorial filters. IEEE Transactions on Robotics, 37(6):2117–2136,
2021.

9. Fatemeh Zahra Saberifar, Shervin Ghasemlou, Jason M. O’Kane, and Dylan A.
Shell. Set-labelled filters and sensor transformations. In Robotics: Science and
Systems, Ann Arbor, Michigan, 2016.

10. Fatemeh Zahra Saberifar, Ali Mohades, Mohammadreza Razzazi, and Jason M.
O’Kane. Combinatorial Filter Reduction: Special Cases, Approximation, and
Fixed-Parameter Tractability. Journal of Computer and System Sciences, 85:74–
92, May 2017.

11. Fatemeh Zahra Saberifar, Ali Mohades, Mohammadreza Razzazi, and Jason M.
O’Kane. Improper Filter Reduction. Journal of Algorithms and Computation,
50(1):69–99, June 2018.

12. Basak Sakcak, Kalle G Timperi, Vadim Weinstein, and Steven M LaValle. A
mathematical characterization of minimally sufficient robot brains, 2024. Accepted
to appear in The International Journal of Robotics Research, https://doi.org/10.

1177/02783649231198898.
13. Russell H. Taylor, M. T. Mason, and Ken Goldberg. Sensor-based manipulation

planning as a game with nature. In Proceedings of International Symposium of
Robotics Research, pages 421–429, 1988.

14. Benjamin Tovar, Fred Cohen, Leonardo Bobadilla, Justin Czarnowski, and
Steven M. Lavalle. Combinatorial filters: Sensor beams, obstacles, and possible
paths. ACM Transactions on Sensor Networks, 10(3):1–32, 2014.

15. Ahammed Ullah. Computing clique cover with structural parameterization. arXiv
preprint arXiv:2208.12438, 2022.

16. Yulin Zhang, Hazhar Rahmani, Dylan A. Shell, and Jason M. O’Kane. Acceler-
ating combinatorial filter reduction through constraints. In Proceedings of IEEE
International Conference on Robotics and Automation, pages 9703–9709, 2021.

17. Yulin Zhang and Dylan A. Shell. Cover combinatorial filters and their minimization
problem. In Algorithmic Foundations of Robotics XIV, pages 90–106. Springer,
2021.

18. Yulin Zhang and Dylan A. Shell. Nondeterminism subject to output commitment
in combinatorial filters. In Algorithmic Foundations of Robotics XV, pages 205–
222. Springer, 2022.

19. Yulin Zhang and Dylan A. Shell. A general class of combinatorial filters that
can be minimized efficiently. In Proceedings of IEEE International Conference on
Robotics and Automation, pages 1645–1651, 2023.

https://doi.org/10.1177/02783649231198898
https://doi.org/10.1177/02783649231198898

Supplementary Material: A fixed-parameter
tractable algorithm for combinatorial filter

reduction
Yulin Zhang1 and Dylan A. Shell2

1 Amazon Robotics, North Reading, MA, USA.
2 Texas A&M University, College Station, TX, USA

Lemma 7 (From [15]). Given a graph G with n vertices, let β be the size of the
largest clique in G, and let the number of cliques in the minimum clique cover
be m, then there is an algorithm that computes the minimum clique cover in
2βm logm nO(1).

Proof. This follows from Theorem 1.8 of [15, pg. 4], and the algorithms therein:
in his notation, we solve a VCC problem, which is possible via the LRCC problem
with its three parameters set to G, k = m, E∗ = ∅.

Property 12 Let vertices vAnew, v
B
new ∈ V +(SON

D), vAnew ̸= vBnew then

{vAnew, v
B
new} ∈ E+(SON

D) ⇐⇒ ∀u ∈ A,∀w ∈ B, u ̸= w, {v{u}new, v
{w}
new} ∈ E+(SON

D).

Proof. When A and B are singletons, i.e., vAnew, v
B
new ∈ V prior, the two sides of the

if and only if are identical statements.

⇐= The given antecedents and fact that vAnew, v
B
new ∈ V +(SON

D) are exactly the
conditions in the construction of E+(SON

D), hence {vAnew, v
B
new} ∈ E+(SON

D).
=⇒ Suppose {vAnew, v

B
new} ∈ E+(SON

D) but there is some u ∈ A and w ∈ B with
{v{u}new, v

{w}
new} ̸∈ E+(SON

D). Since u ̸= w, hence {u,w} ̸∈ E or {u,w} ∈ SOFF
D ;

both contradict the supposition that {vAnew, v
B
new} ∈ E+(SON

D).

Property 14 For a graph G = (V,E) and its augmentation G+(SON
D) based on

prescription SON
D ⊆ D, suppose S+ ⊆ V +(SON

D) produces S ⊆ V when distilled.
Then S+ is a clique in G+(SON

D) if and only if S is a clique in G′ = (V,E \ (SOFF
D)).

Proof. ⇐= : Let S+ = {vA1
new, v

A2
new, . . . , v

An
new}. According to Construction 11, for

every vAi
new and v

Aj
new, with i ̸= j, we know that Ai ∪ Aj form a clique in G′. But

Ai ∪Aj ⊆ S; since S is a clique, Ai ∪Aj is a clique, and hence there is an edge
in E+(SON

D) connecting vAi
new and v

Aj
new.

=⇒ : Suppose S was not a clique, then there are distinct vertices u,w ∈ S
that have no connecting edge in G′. But S being the distillate of S+ means that
there is some vAu

new ∈ S+ with u ∈ Au, and some vAw
new ∈ S+ with w ∈ Aw. If Au =

Aw = {u,w}, then v
{u,w}
new ∈ Vnew(SON

D), but that implies {u,w} ∈ SON
D ⊆ E \ SOFF

D , a
contradiction. Otherwise, Au ̸= Av but this is also a contradiction for we know
S+ is a clique, so there is an edge between vAu

new and vAw
new, but Construction 11,

thus, requires an edge between u and w in G′.

1

Property 16 Given a graph G = (V,E) and its augmentation G+(SON
D) based

on prescription SON
D ⊆ D. If K = {K1, . . . ,Km} is a clique cover of G faithful

to SON
D then, collecting the expanded sets in K+ = {expand(K) | K ∈ K}, the

collection K+ is a clique cover on G+(SON
D).

Proof. To start we establish that the distillate of expand(S) is S. Let S′ be
the distillate of expand(S); we show equality via two subset statements. First,
S ⊆ S′ as if x ∈ S then v

{x}
new ∈ expand(S), and hence is in S′. For the reverse,

S′ ⊆ S: if y ∈ S′ then either v
{y}
new ∈ expand(S), or v

{y, w}
new ∈ expand(S) for some

w; but then {y} ⊆ S or {y, w} ⊆ S, respectively.
Hence, for any K+

i ∈ K+, where K+
i = expand(Ki), we know Ki is the

distillate of K+
i . Then, via Property 14, each K+

i is a clique in G+(SON
D) because

Ki is a clique in G′ = (V,E \(SOFF
D)). (This latter is a consequence of faithfulness:

owing to requirement 2 in Definition 10.)
Furthermore, the collection K+ cannot omit to cover any vAnew ∈ V +(SON

D)

because: (i) each element of v{v}new ∈ Vprior corresponds to a vertex v ∈ V , and v

is covered by K; (ii) elements v
{u,w}
new ∈ Vnew(SON

D) come from {u,w} ∈ SON
D , and

faithfulness of K means, via requirement 1 in Definition 10, that some Ki ∈ K
will cover {u,w}, and hence expand(Ki) covers v

{u,w}
new .

Lemma 17 (Faithful constraint satisfaction). Given a graph G and an associated
Z2 from zipper constraint collection Z, let D ⊆ Z2. Then, suppose we have
some downstream-enabled prescription SON

D = {P1, P2, . . . , Pn}. If K+ is a cover
of G+(SON

D), then there is a cover K of G, the distillation of K+, with |K| ≤ |K+|,
such that:

– Cover K is faithful to SON
D .

– Also, K is a cover of G which satisfies all those zipper constraints strictly
interior to D, namely those

{
(U1;W1), (U2;W2), . . . , (Ut;Wt)

}
⊆ Z where

U1,W1, U2,W2, . . . , Ut,Wt ∈ D.

Proof. Let K+ = {K+
1 ,K+

2 , . . . ,K+
m}, where each K+

i ⊆ V +(SON
D). Applying

Definition 13 to distill each K+
i to yield a Ki, we obtain K = {K1,K2, . . . ,Km}.

Via Property 14, each Ki is a clique, and since every vertex in Vprior ⊆ V +(SON
D)

is covered by some K+
i , K is a cover of G. Clearly, |K| ≤ |K+|, and equality only

fails to hold when distinct K+
r and K+

s give rise to Kr = Ks.
First, we show that the faithfulness of K follows from Construction 11 and the

process of distillation. Criterion 1: for any {v1, v2} ∈ SON
D there is a vertex v

{v1, v2}
new

in Vnew(SON
D) and this vertex must be covered by some K+

j ∈ K+, which then will
have v1 and v2 covered by its distillate Kj . Criterion 2: if, instead, {v1, v2} ∈ SOFF

D

then the construction ensures that the distillate K of K+ will never have both v1
and v2 in the same clique: suppose both v1 and v2 appear in clique Kj , then there
must be vAnew, v

B
new ∈ K+

j , where {v1, v2} ∈ A ∪B (including the possibility that
A = B). Further, E+(SON

D) has no edge between v
{v1}
new and v

{v2}
new as SOFF

D eliminates it
from both Ecopy(SON

D) and Enew(SON
D). But these two facts contradict Property 12.

2

Lastly, we show that K satisfies the subset of zipper constraints strictly inte-
rior to D. Suppose that some zipper constraint (Uℓ;Wℓ) ∈ Z with Uℓ,Wℓ ∈ D is
violated in K. This means that the pair of vertices Uℓ must appear within some
clique (i.e., Uℓ ⊆ Ki) while Wℓ does not (i.e., for all Kj ∈ K, Wℓ ̸⊆ Kj). As K is
faithful and Ki ∈ K, we know Uℓ ∈ SON

D . There are two cases for Wℓ ∈ D:

– If Wℓ = {w1, w2} ∈ SON
D , then there must be a corresponding vertex v

{w1, w2}
new ∈

V +(SON
D) from Vnew(SON

D). Since K+ is a cover, the v
{w1, w2}
new is in at least one

K+
j ∈ K+. But then, following the distillation of K+

j into Kj , both w1 and
w2 are within Kj , so Wℓ ∈ Kj , giving a contradiction.

– If Wℓ ∈ SOFF
D then, as Uℓ

∗≺Wℓ, this contradicts the fact that SON
D is down-

stream enabled.

Lemma 18 (Optimal faithful constraint satisfaction). Given the elements in
Lemma 17, if K+ is a minimal clique cover of G+(SON

D), then, in addition to the
properties in the previous lemma, cover K of G has:

– |K| = |K+|.
– There exists no clique cover K◦ of G, faithful to SON

D , with |K◦| < |K|.

Proof. Suppose |K| ⪇ |K+|, but this happens only when some K+
r ,K+

s ∈ K+,
with K+

r ̸= K+
s , distill to Kr = Ks. Were this the case, one may obtain a valid

clique cover for G+(SON
D) by replacing the cliques K+

r and K+
s with the single set

K+
rs = K+

r ∪K+
s .

The union of identical unions (underlying Definition 13) means that K+
rs

distills to Kr as well. Applying Property 14 (in ‘if’ direction from K+
r) means

that Kr is a clique. And applying Property 14 (in the ‘only if’ direction from
Kr) means that K+

rs is a clique. Notice that no vertex will be uncovered in{
K+

rs

}
∪K+ \

{
K+

r ,K+
s

}
, hence we have obtained smaller clique cover than the

minimal one.
For the second claim, suppose some K◦, |K◦| < |K|, is faithful to SON

D . Then
Property 16 indicates that K+

◦ can be found such that it is a clique cover of
G+(SON

D). Moreover, then |K+
◦ | ≤ |K◦| < |K| ≤ |K+|, hence |K+

◦ | < |K+|, which
is a contradiction since K+ is assumed to be a minimal cover of G+(SON

D).

Lemma 19 Given a graph G and an associated Z2 from zipper constraint
collection Z, let R ⊆ Z2 be a set of pairs such that for every pair {u,w} in R,
u and w have comparable neighborhoods. If R ⊆ R then let SR := {(Ui;Wi) ∈
ZF | Ui ∈ R} and DR := {(Uj ;Wj) ∈ ZF | Wj ∈ R}. If K is a cover for G, then
there is a cover K̃, no larger than K, such that:

1. K̃ is a clique cover of G that satisfies the specific zipper constraints SR∩DR.
2. If K satisfies the zipper constraints C ⊆ Z, and K̃ satisfies the zipper con-

straints C̃ ⊆ Z, and then C \ C̃ ⊆ SR \ DR.

3

Proof. Let K = {K1,K2, . . . ,Km}. Collect all the interior pairs I := {Wi ∈
Z2

tgt | (Ui;Wi) ∈ SR ∩ DR}. Starting with cover K(0) = K, we iterate over
collection I and modify the cover incrementally. Form K(i) from K(i−1) by taking
the ith pair {u,w} from I and doing the following: if NG(u) ⊆ NG(w) then, first,
copy those Kℓ ∈ K(i−1) not containing u to K(i); next, gather those Kj ∈ K(i−1)

containing u and place Kj ∪ {w} in K(i). Otherwise, NG(u) ⊇ NG(w), so do the
same two operations but reverse the roles of v and w. Once this iteration has
been completed, take K̃ = K(|I|).

In the construction above, ‘coverness’ must be preserved as the sets in K(i)

only grow with each subsequent i. Because, when w is added to a clique con-
taining v, the former must already be compatible with all those vertices in the
clique —via the comparable neighborhoods property— the set Kj ∪ {w} is a
clique too. Also, every zipper constraint in SR ∩ DR is satisfied because every
destination pair of each such zipper constraint will appear in some clique in K̃.
Further, |K̃| ≤ m.

For the second property, notice that in K̃ the only pairs that have changed
are those in I; they have been altered by including some vertices in a common
clique, where before they had been separated. But this change can only alter
the satisfaction of constraints for which those pairs act as sources, viz. SR. So
C \ C̃ ⊆ SR. But, as just established, those elements in SR ∩ DR are satisfied,
so C \ C̃ cannot include pairs in DR, thus the claim follows.

4

	A fixed-parameter tractable algorithm for combinatorial filter reduction

