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Abstract—This paper presents and studies a recursive informa-
tion consensus filter for decentralized dynamic-state estimation
under circumstances in which the communication network is
unreliable. Local estimators are assumed to have access only to
local information and no structure is assumed about the topology
of the communication network, which need not be connected at all
times. The filter is a hybrid approach: it uses Iterative Covariance
Intersection (ICI) to reach consensus over priors which might
become correlated, while consensus over new information is han-
dled using weights based on a Metropolis Hastings Markov Chain
(MHMC). We establish bounds for estimation performance and
show that this Hybrid method produces unbiased conservative
estimates that are better than CI. The performance of the Hybrid
method is evaluated extensively, including comparisons with
competing algorithms, with a hypothetical ‘full history’ yardstick,
and centralized performance. We conduct an assessment on
a realistic atmospheric dispersion problem, and also on more
carefully crafted settings to help characterize particular aspects
of the performance.

Index Terms—Distributed State Estimation, Covariance Inter-
section, Consensus Estimation.

I. INTRODUCTION

Estimation as a way of fusing information from multiple
sources connected via a network has many applications and,
thus, has been extensively studied in recent years [1], [2]. In
a sensor network, nodes represent sensors that make noisy
observations of the state of an underlying system of interest.
The estimation process is considered centralized if all the
nodes send their raw observations to a central node which
then calculates an estimate based on the collective information
[3]. This is not always possible due to link failures as well as
bandwidth and energy constraints [4]. One viable alternative,
explored in this paper, is Distributed State Estimation (DSE).

In DSE, the processor on each node fuses local information
with the incoming information from neighboring nodes and
redistributes the fused result on the network. The objective is
to design both a protocol for message passing between nodes
and local fusion rules so that the nodes reach a consensus
over their collective information. Although DSE algorithms
are not guaranteed to match the performance of the centralized
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Fig. 1: Comparison of Iterative Covariance Intersection (ICI) and the Hybrid method
studied in this paper. The graphs show average performance under different probabilities
of link failure. Note that methods in [7], [8], [9] are only applicable in the area where the
probability of link failure is less than 0.2. The Hybrid method relaxes the connectivity
requirement and continues to achieve a better performance than ICI under network failure
conditions.

estimator all the time, their scalability, modularity, and robust-
ness to network failure motivates the ongoing research. These
features are important for the envisioned applications of such
algorithms like multi-agent localization [5] and cooperative
target tracking [6].

DSE algorithms can be categorized based on the assumptions
they make. Any DSE method makes assumptions about one or
more of the following aspects: the state (static [10] or dynamic
[5]), state transition model (linear [11] or non-linear [7]), type
of noise (Gaussian [10], [11] or non-Gaussian [12]), topology
of the network (constant or changing [13], [10]), connectivity
of the network (always [7] or intermittent connection [13],
[10]), agents’ knowledge about the network topology (global
or local [13], [10], [7]) and finally the treatment of mutual
information between local estimate (exact solution through
bookkeeping [1] or conservative solutions that avoid double
counting [14], [15], [16]).

The research on DSE for linear systems with Gaussian noise
is extensive (see [11], [17] for reviews). For nonlinear systems
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with Gausssian noise, the distributed versions of Extended
Kalman Filters (EKF), Extended Information Filters (EIF),
Unscented Kalman Filter (UKF), and Unscented Information
Filter (UIF) have been proposed by [9], [18], [7], [19], respec-
tively. For nonlinear systems with non-Gaussian noise, different
flavors of Distributed Particle Filter (DPF) methods were
proposed by [20]. In order to avoid scalability problems and the
need for synchronized random generators, DPF methods make
approximations that result in loss of performance compared to
a centralized PF [12].

For dynamic systems, the connectivity constraint is a
determining factor for choosing the proper DSE method. If the
network remains connected, DSE methods can keep the node
priors the same and perform consensus only on likelihoods [21],
[22]. We refer to this approach as Consensus on Likelihoods
(CL). The advantage of CL is that it can match the centralized
estimator’s performance. However, if the network becomes
disconnected, priors begin to deviate and become different,
and then CL methods fail. For those scenarios, one approach
is to perform Iterative Conservative Fusion (ICF) on node
posteriors [23], [14], [15]. The work in references [24], [18],
[25], [26] also falls into this category. They propose different
optimization criteria to perform Conservative Fusion (CF)
and/or use different iterative CF schemes for distributed state
estimation. ICF methods are inherently sub-optimal as a result
of their conservative fusion rule that avoids double counting at
the expense of down weighting the uncorrelated information.

Recently, researchers have suggested combining ICF and
CL methods to benefit from their complementary features [9],
[7], [13]. CL can reach a consensus over uncorrelated new
information and ICF can handle the correlated prior information.
Such Hybrid methods have been shown to outperform pure
ICF’s performance and remain robust to link failure [13].
Fig. 1 shows how one can benefit from the Hybrid method
for a network with intermittent disconnections. As we discuss
in Section VI, use of the Hybrid method can improve the
performance of the estimation compared to Iterative Covariance
Intersection (ICI) for any possible probability of link failure.

Closest to the work presented here is the research by
Battistelli et al. [7], [8], [9], which develops and establishes
the stability of their ‘Hybrid Consensus on Information and
Consensus on Measurements’ (HCMCI) method for linear and
nonlinear dynamical systems. They assume that the network
remains connected for all time. The motivation for their
algorithm is that CI, though guaranteeing stability for any
number of consensus steps (even a single one), has mean-
square estimation error performance adversely affected if
terminated before consensus is achieved. The reason is that
the fusion rule adopts a conservative point of view, assuming
the correlation between the estimates coming from different
nodes is completely unknown. On the other hand, Consensus
on Measurements (CM) avoids any conservative assumption
on the correlation by fusing only the novel information, but it
does not guarantee stability unless there are sufficiently many
consensus steps. Clearly this can be problematic whenever, for
reduced communication cost and improved energy efficiency,
only few consensus steps can be performed in each sampling
interval.

We believe that the analysis and experiments in this article
gives another reason to perform HCMCI. This paper, in re-
examining that method (which we, for conciseness, dub the
Hybrid method), makes the following contributions:
• Relaxing connectivity assumptions: We relax the con-

stant connectivity requirement, something that happens
more often than not in practical situations, and show that
the Hybrid method remains robust to network failures.

• Proof of convergence and covariance sandwiching
property: We prove the convergence of the iterative
procedure in the Hybrid method and establish the perfor-
mance bounds for covariance of the local estimators.

• Extensive and insightful empirical evaluations: We
evaluate the method through extensive experiments show-
ing that in practice the Hybrid method always outperforms,
by a large margin, ICI on average.

A preliminary version of this research appeared in [13], but
the present paper now includes the fuller theoretical treatment.
To this end, the analysis in Section V, including the proof of
convergence and complexity analysis, is new. We also introduce
more realistic evaluation criteria: we compare the Hybrid
method with the condition where the sensors communicate
their full history (we term this Full History Sharing (FHS),
detailed in Section V-C). Moreover, a more realistic simulation
that assesses the performance of the method, and compares
with FHS, is also presented in Section VI-C.

Motivating Example: Fig. 2 provides an example scenario for
the method described in this section. Consider an atmospheric
dispersion scenario as an example where there are 6 pollutant
sources and 8 sensors distributed in the field, connected to
each other through a time varying graph. At first all sensors
are connected and all the nodes reach a consensus over the
field estimate. Later, for an interval of time, we have two
disconnected groups. The sensors in each group continue
receiving new information and calculate their local estimates on
the basis of their available data. After some time the network
regains full connectivity and the agents in each group acquire
access to the information accumulated in the other group
during the disconnection time. As explained earlier, since the
priors of the two groups are distinct, simple averaging is no
longer applicable, and using Covariance Intersection results
in estimates that are too conservative. The question is how to
handle the consensus over estimates when agents are connected,
during the disconnection time, and after reconnection.

In Section II, the notation used in this article is explained as
well as assumptions and system model. Section III discusses
some preliminaries on distributed estimation, paving the way
for our problem objective and method. The Hybrid method is
presented in Section III along with its theoretical performance
analysis. We extensively evaluate the method’s performance in
Section VI.

II. MODELING

We consider a linear motion and observation model for a
system evolving in discrete time:

x(k + 1) = Ax(k) + Bu(k) + w(k), (1a)
z(k) = H(k)x(k) + v(k), (1b)



3

Fig. 2: A motivating example: This is an atmospheric dispersion scenario where 6 pollutant sources and 8 sensors are distributed in the field. They are connected to each other
through a time varying graph so that at first all sensors are connected and they remain so for a time interval. Thereafter, due to network interference, we have two disconnected
groups. The question is how to handle consensus over estimates after reconnection.

where x(k) ∈ Rn, u(k) ∈ Rm, and z(k) ∈ Rp represent
state, input, and observation vectors respectively; w(k) ∼
N (0,Q(k)) and v(k) ∼ N (0,R(k)) represents additive white
noise used to model unknown perturbations.

The goal of the general recursive estimation problem is to
calculate the posterior probability function P(x(k)|z(k)) for
the system at time k, defined in Eq. 1, given the posterior at
step k − 1, i.e., P(x(k − 1)|z(k − 1)). But this paper studies
a distributed setting in which the system, in general, does
not have access to a monolithic observation vector z(k). For
instance, consider the motivating example depicted in Fig. 2
representing an atmospheric dispersion problem [27]. (As this
scenario will also be used for some of our experiments in
Section VI, complete details of the model for this problem in
the form of Eq. 1 can be found in [28].)

1) Network Topology: Assume that we have N homoge-
neous agents V = {v1, v2, . . . , vN} associated with nodes of
a graph. These agents can communicate with each other under
a time-varying network topology G(k) = 〈V, E(k)〉 where
E(k) are the set of edges, such that if (vi, vj) ∈ E(k), it means
agents i and j can communicate directly at that time. Neighbors
of node vi are defined as the union of the node vi and

Ni(k) = {vi} ∪ {vj ∈ V | (i, j) ∈ E(k)}. (2)

Let |Ni(k)| denote the cardinality of Ni(k).
Each agent has a sensory package and a processor on-board.

Sensors receive observations in ∆t time increments. Every
agent’s processor and their network connection is fast enough
to handle calculations based on message passing every δt units
of time. We assume that δt� ∆t and that the communication
channel is free of delay and error.

2) Observation Model: Each agent’s sensor produces noisy
observations that are functions of the state of the system. As the
decentralized system has N versions of Eq. 1b, the observation
model for the ith agent carries an associated subscript:

zi(k) = Hi(k)x(k) + vi(k),

vi(k) ∼ N (0,Ri(k)).

For the atmospheric dispersion problem, observers are receptors
which measure the mass of contaminant deposited at their
location across time.

3) Observability assumption: We assume that the pair
(A,Hi(k)) is observable. This means that, under complete
network disconnection, individual nodes will produce stable
estimates of the system’s state.

One expects, and indeed it follows, that the uncertainty
in the consensus view of the system’s state will decrease
as connectivity improves. Next we provide the necessary
preliminaries to formalize the notion of this ‘consensus view.’

III. DISTRIBUTED FILTERING PRELIMINARIES

Filtering is the process of recursively computing the posterior
probability of a random dynamic process x(k) conditioned on
a sequence of measurements. The starting point for describing
decentralized filtering approaches is the classical centralized
case.

A. Centralized Kalman Filter
Under the assumption of Gaussian noise, the Kalman Filter

(KF) is the optimal recursive filter for linear state space
systems. We use the following notation: x̂ = E(x) and
P x = E[(x − x̂)(x − x̂)T] are the expected value and the
covariance of the random variable x respectively. Then, we
denote the predicted and estimated mean and covariance at
time k by (x̂−(k),P−x (k)) and (x̂(k),P x(k)).

The KF comprises update and prediction steps, both typically
using a mean and covariance matrix representation. However, an
alternative, the so-called information form of the KF, focuses on
inverses of the covariances of the Gaussian variables involved.
The information form is useful for decentralized filters where
it has an intuitive interpretation [1], so we use the equations
of this alternative formulation:

y(k) = P−1x (k)x(k), (3a)

Y (k) = P−1x (k), (3b)

where y(k) and Y (k) are termed the information vector and
information matrix, respectively. The prediction step of the KF
can then be written as

M(k) = (A−1)TY (k − 1)A−1, (4a)

P x(k) = M(k) + Q−1(k), (4b)

Y −(k) = M(k)−M(k)P−1x (k)M(k), (4c)

y−(k) = Y −(k)AY (k − 1)y(k − 1). (4d)
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If this centralized filter were to be implemented in a situation
where multiple agents make observations (consider, e.g., the
atmospheric dispersion scenario), the agents would transmit
their observations to a centralized aggregator. Assuming no
network disconnection, the aggregator would perform the
steps in Eq. 4. The aggregator’s information vector includes a
contribution from zj(k), the observation of agent j at time k,
equal to δij(k) =HT

j (k)R−1j (k)zj(k). And the information
matrix is updated, reflecting the variance of the agent’s
observation, with a term δIj(k) =HT

j (k)R−1j (k)Hj(k). (In
the preceding, the subscript indicates the matrices associated
to the agent, and should not be read as selecting columns.)
Drawing from all N agents, the aggregate estimate is then:

y(k) = y−(k) +
∑N

j=1 δij(k), (5a)

Y (k) = Y −(k) +
∑N

j=1 δIj(k). (5b)

This standard formulation is called the Centralized Information
Filter (CIF) [29].

However, the assumption of a centralized aggregation process
relies on obtaining access to all the information available at
each time-step. When each agent can only communicate with
its neighbors via transient network links, connectivity may
only be sporadic and more sophisticate methods are needed.
Next, standard extensions of CIF to decentralized filters that
are more suitable for realistic networks are described. These
build on the information filter formulation.

B. Decentralized Estimator Designs

1) Consensus-based Estimator: The information filter re-
quires one to have δi(k) and δI(k). First, we express these
entries in terms of averages across agents:

δi(k) = N · 1
N

∑N
j=1 δij(k), (6a)

δI(k) = N · 1
N

∑N
j=1 δIj(k). (6b)

Now, were all the agents to obtain 1
N

∑N
j=1 δij(k) and

1
N

∑N
j=1 δIj(k), they could use Eq. 5a–Eq. 5b to calculate

an estimate of the system’s state. Both expressions represent
network-wide averages of quantities that the agents possess
locally. Global consensus can be reached over the two factors
by performing distributed averaging, so long as all the agents
start with the same prior information and N is known. If one
could do so, it would yield a state estimate that converges
asymptotically to the centralized estimate.

To add some detail: the distributed averaging method of [10]
makes minimal assumptions about the network topology and
only relies on local information exchange between neighboring
nodes of a graph. The method achieves a consensus value that
is the average of the initial values of the nodes. It employs an
iterative linear consensus filter based on the weights calculated
from a Metropolis–Hastings Markov Chain (MHMC). In the
equations that follow, we elide the k for the ∆t-time-step; the
consensus iterations, denoted with an l superscript, operate at
the δt timescale. Using a message passing protocol over the
communication graph, we can compute xl+1 =

∑|N l|
j=1 γ

l
ijx

l
j

to calculate the average of the values on the graph nodes. The
weights are computed as follows:

γlij =


1

1+max{|N l
i |,|N l

j |}
if (i, j) ∈ E l,

1−
∑

(i,m)∈El
γlim if i = j,

0 otherwise.

(7)

Note that for each node i, the value of γlij depends on the
degrees of their neighbors only. Further, an important and
established fact (see [10]) is that using MHMC weights for the
averaging process will ensure that, after reaching consensus,
the estimates will have converged to the centralized estimate.
Therefore, given the ideal centralized estimate (x̂CTR,P CTR

x ),
we have x̂MH

i = x̂CTR and P MH
xi

= P CTR
x in the limit. (The

superscript was used here, and will be used in the sequel,
to differentiate methods used; the mnemonic is: MH denotes
Metropolis–Hastings, and CTR for centralized.)

In practice the priors will all differ as a result of network
disconnection. In those cases agents have some shared infor-
mation (from the time they were last connected to each other)
but will likely also accumulate new information in periods of
disconnection. Their priors will be distinct but correlated after
reconnection and, thus, consensus must be handled with care.

2) Covariance Intersection-based Estimator: When the
priors differ, distributed averaging alone will not produce
consistent estimates. One way of handling such a scenario
is using Covariance Intersection (CI). An iterative CI method
can be used to reach consensus over the local estimates when
the priors differ, either owing to disconnection or termination
of the consensus process over-early. In iterative CI [14], the
goal is to fuse different estimates of a random variable without
having any knowledge about the cross-covariance between such
estimates. It solves an optimization problem, updating local
estimates iteratively until it reaches consensus. Next, following
the discussion in [14]. we describe that optimization problem.

Iterative CI (ICI): Initialization starts with the local estimate
for each agent, [Y 0

i , y0i ], assigned to be:

Y 0
i , Y i(t0) + δIi(t0), y0i , yi(t0) + δii(t0).

Then, operating at timescale δt, for each iteration, solve for
w∗ such that

ω∗ = argmin
ω

J
(∑

j∈N l
i
ωj [Y l

j ]−1
)
,

s.t.
∑|N l

i |
j=1 ωj = 1, ∀j ωj ≥ 0,

(8)

where the optimization objective function, J (·), is a scalar
measure of uncertainty. In general, it is left open as a choice for
the system designer (we will consider trace(·) and log det(·),
below). Local estimates are then updated for the next iteration
via

[Y l+1
i , y l+1

i ] =
∑

j∈N l
i
ω∗j [Y l

j , y lj ]. (9)

As discussed in [24], CI and ICI generate estimates that
are conservative. Specifically, for the local estimates and the
consensus value, this means that E[x−x̂ICI

i ] = E[x−x̂CTR] = 0
and P ICI

xi
≥ P CTR

x . Another fact, also shown by [24], is that the
ICI method is consistent:

P ICI
xi
≥ E[(x− x̂ICI

i )(x− x̂ICI
i )T ]. (10)
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Consistency implies that the reported covariance matrix,
P ICI

xi
, is an upper bound of the actual error covariance matrix.

The question is: Can we tighten the covariance bound of
our estimator without losing consistency? We show that
indeed this can be achieved, but care must be taken, lest
this seem contradictory. It is known that the ICI method
is the optimal consistent fusion rule for posteriors when
correlation information is unknown. In the information form,
one sees that the correlation has inherent structure. Posteriors
are mixtures of two parts: priors and new observations, the
former contain information shared with other agents, while the
latter, importantly, are uncorrelated.

C. Problem Objective

Our goal is to design a recursive decentralized estimator to
calculate the local estimate in a manner that is agnostic to the
network’s topology. (For reasons which become clear shortly,
we use ‘HYB’ to denote the estimator.) We wish to obtain
local estimates xHYB

i and associated covariances P HYB
xi

such that
following properties hold:

Unbiasedness: E[x− x̂ICI
i ]=E[x− x̂HYB

i ]=E[x− x̂CTR]=0

Estimate Efficiency: J (P CTR
x ) ≤ J (P HYB

xi
) ≤ J (P ICI

xi
)

(11)

Or, in words, we seek an unbiased estimate whose covariance
is an improvement over CI.

IV. HYBRID CI CONSENSUS

We outline a Hybrid approach that uses ICI to reach
consensus over priors and the MHMC-based consensus filter
for distributed averaging of local information updates. The
method is summarized in Algorithm 1. We explain the flow of
the via a simple scenario with a pair of agents. Generalization
to more than two agents is straightforward and follows similar
steps.

Suppose two agents observe a dynamic field with state
vector x; they communicate through a network with time-
varying topology. At time t0, the agents start with priors
[y−1 (t0),Y −1 (t0)] and [y−2 (t0),Y −2 (t0)] respectively.

By later time t1, the field has evolved to a new state
x(t1) and agents calculate their own local prediction (line 1
in the algorithm). Then they make observations z1(t1) and
z2(t1), respectively, and compute the local information updates
[δi1(t1), δI1(t1)] and [δi2(t1), δI2(t1)] (lines 2 and 3).

The agents, were they performing ICI, would find a fused
estimate

Y ICI = wICI(Y −1 + δI1) + (1− wICI)(Y −2 + δI2), (14)

where wICI is obtained from solving the optimization problem
in Eq. 8. In the Hybrid method we do the following:

Y HYB = wHYBY −1 + (1− wHYB)Y −2︸ ︷︷ ︸
ICI to reach

consensus over priors

+ δI1 + δI2︸ ︷︷ ︸
consensus over the

incremental information

.

(15)

Algorithm 1: Hybrid Method
Input : [yj(t0),Y j(t0)]

1 Use Eq. 4c–Eq. 4d to calculate predicted values
[y−j (t1),Y −j (t1)] given [yj(t0),Y j(t0)]

2 Collect local observation zj(t1) and calculate Jacobian
and noise covariance [Hj(t1),Rj(t1)]

3 Calculate the local information update

δij(t1) = HT
j (t1)R−1j (t1)zj(t1)

δIj(t1) = HT
j (t1)R−1j (t1)Hj(t1)

4 Initialize consensus variables (l = 0)
5 Set

[y0j ,Y 0
j ] = [y−j ,Y

−
j ](t1)

[δi
0

j , δI
0

j ] = [δij , δIj ](t1)

6 while NOT CONVERGED do
7 BROADCAST[y lj ,Y l

j , δi
l

j , δI
l

j ]

8 RECEIVE[y lk,Y l
k , δi

l

k, δI
l

k] ∀k ∈ N l

j

9 Collect received data

Clj = {y lk∈N l
j
,Y l

k∈N l
j
} Ml

j = {δilk∈N l
j
, δI

l

k∈N l
j
}

10 Do one iteration of CI on consensus variables for
local prior information Clj

[y l+1
j ,Y l+1

j ] = CI(Clj)

11 Do one iteration of MHMC on consensus variables
for new information Clj

[δi
l+1

j , δI
l+1

j ] = MHMC(Ml
j)

12 l← l + 1

13 Calculate the posteriors according to:

Y j(t1) = Y l
j + nCGδI

l

j (12)

yj(t1) = y lj + nCGδi
l

j (13)

return [yj(t1),Y j(t1)]

For an N -agent system with the ith agent having prior Y −i ,
the ICI approach is used to find a consensus over the priors
using Eq. 8 recursively. The MHMC approach is used to form
the consensus over the new information, i.e.,

∑N
j=1 δIj . One

cannot do MHMC on Eq. 14 because Y −1 and Y −2 differ; note
how this contrasts with Eq. 15. Hence, we can use the two
pairs [y lj ,Y l

j ] and [δi
l

j , δI
l

j ] to represent the consensus variables
of the ith agent at consensus iteration l for ICI and MHMC
processes, respectively.

In line 13 of the algorithm, nCG is the number of agents
that form a connected group, which can be determined by
assigning unique IDs to the agents and passing them along
with the consensus variables. Each agent keeps track of unique
IDs it receives and passes them to its neighbors.
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V. ANALYSIS

Next, we provide analyses of different aspects of the
algorithm.

A. Convergence of the ICI Algorithm

The following demanded that we change notation a little:
we denote the consensus iterations via l in parenthesis so as to
avoid overloading the superscript. (We continue, as mentioned
previously, in dealing with consensus iterations, which happen
between two ∆t-time-steps.)

Proposition 1. If the objective J (·) in Eq. 8 is strictly convex,
the ICI process over a connected group in a network is
guaranteed to reach a consensus over the priors, i.e., ∃!Y∗,
such that ∀i liml→∞ Yi(l) = Y∗. The same result holds for the
information vector as well.

Proof. At each iteration l and for each agent j, ICI solves an
instance of the optimization problem in Eq. 8. Local variables
Yi(l),∀i ∈ {1, · · · , N} are then updated according to

Y −1i (l + 1) =
∑
j∈Ni

ω∗j Y −1j (l). (16)

The definition of the optimization problem in Eq. 8 requires
that

J (Y −1i (l + 1)) ≤ J (Y −1j (l)), ∀j ∈ Ni. (17)

Performing ICI is equivalent to a mapping F that maps
the set of local covariance matrices at step l to a new
set of covariance matrices at step l + 1. Defining I(l) =
[Y −11 (l), · · · ,Y −1N (l)], we can write

I(l + 1) = F
(
I(l)

)
. (18)

Next, take the Lyapunov function of the whole network at
iteration l to be

V(I(l)) =

N∑
i=1

J (Y −1i (l)). (19)

If J (·) is a positive function over the set of Symmetric Positive
Definite matrices SN

++, then ∀ l, V(I(l)) > 0. Also, because
of Eq. 17, V(I(l + 1)) ≤ V(I(l)). Since V is monotonically
decreasing and bounded below,

lim
l→∞

V(I(l)) = V∗.

But convergence of V does not necessarily mean I has
converged. However, in this case, it turns out to be indeed the
case.

Consider the limit set Ω = {I|V(I) = V∗}. If the set Ω
consists only of elements I, such that all the the components
of any element I are equal, then, the ICI process becomes
stationary, i.e., F(I) = I . For any such I with all components
equal, ICI converges to a unique covariance for all nodes.
Thus, all we need to show is that Ω cannot have an element
such that its components are not all equal.

We proceed by contradiction. Let us assume there is an
I ∈ Ω such that the elements of I are not all equal. Let Im
denote the mth component of I. Suppose that Ij 6= Ik, for

some k, j. Further, let us assume without loss of generality
that: J (Ij) > J (Ik). Then given any weights ωj

j , ω
j
k, with

ωj
j + ωj

k = 1, we have that J (ωj
jIj + ωj

kIk) < ωj
jJ (Ij) +

ωj
kJ (Ik) < J (Ij), where the first inequality follows from the

strict convexity of J (·), and the second inequality is due to the
convexity of the line segment [J (Ik),J (Ij)]. Using F(I)j
to denote the jth component of F(I), from the definition
of the optimization inherent in ICI, we see: J (F(I)j) =
J (
∑

l∈Nj
ωj∗
l Il) ≤ J (ωj

jIj + ωj
kIk) < J (Ij), where ωj∗

l

are the optimal weights resulting from the ICI optimization for
node j, and ωj

j , ω
j
k are the arbitrary weights from before.

Therefore, the Lyapunov function V(F(I)) =∑
l J (F(I)l) <

∑
l J (Il) = V(I) = V∗, which contradicts

our assumption that V∗ is the lower bound. Thus, any element
of Ω has to be such that all its components are equal thus
implying that the ICI process converges to a unique covariance
at all nodes.

Since the ICI map F(·) is deterministic, given the initial
condition I(0) is fixed, the set Ω has to be a singleton set,
since if there were two elements I 6= I ′ in Ω, it would imply
that the ICI map can converge to either of these elements which
contradicts the fact that the map is deterministic.

By establishing strict convexity, the convergence of ICI
process is guaranteed by Proposition 1. For instance, J (A) ,
log det(A) is strictly convex in its argument [30]. And similarly,
trace(A) is strictly convex.

B. Discussion on Consistency

At the end of Section III-B, we outlined the fact that ICI
fusion produces a consistent result (recall discussion of Eq. 10);
that fact about the estimate holds regardless of whether fusion
is performed on priors or posteriors. Next, we consider the
question of consistency for the Hybrid method with an analysis
that is generalized to Eq. 12 of Algorithm 1, using the known
consistency of ICI.

It suffices to examine the case of two agents, the extension
to multiple agents is straightforward.
Suppose the agents’ prior estimates are P−1 and P−2 , respec-
tively. Then, by the definition of the covariance intersection
rule,

P−HYB = ωP−1 + (1− ω)P−2 > P−,

where ω is the intersection weight and P− is the true prior
covariance. Owing to the ICI consistency:

Y HYB = (P−HYB)−1 + δI1 + δI2 < (P−)−1 + δI1 + δI2 = Y

where δIj = HT
j R
−1
j Hj is the information matrix corre-

sponding to the measurement by the jth agent, Y and Y HYB

represent the true and Hybrid posterior information matrices,
respectively. Noting that P = Y −1,P HYB = Y −1HYB, it follows
that P < P HYB. However, P < P HYB only shows that the filter
is conservative. For consistency, we prove in Proposition 2,
that the following holds:

P HYB
xi
≥ E[(x− x̂HYB

i )(x− x̂HYB
i )T ].

To understand the consistency of the Hybrid method in
practice, including the effects of early termination of consensus,
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we conduct an evaluation using the Normalized Estimation
Error Squared method for realistic scenarios in Section VI-G.

Proposition 2. The Hybrid filter is consistent i.e.

P HYB
xi
≥ E[(x− x̂HYB

i )(x− x̂HYB
i )T ],

if the agents in a connected group have reached consensus.

Proof. Let the true covariance of the prior estimate be defined
as

P̄
HYB−
xi

= E[(x− x̂HYB−
i )(x− x̂HYB−

i )T ]. (20)

We know from Eq. 10 that the ICI process is consistent. So,
the convariance (for agent i) P HYB−

xi
, which we obtain from ICI

on priors for the Hybrid filter will satisfy: P HYB−
xi

≥ P̄
HYB−
xi

.
Using the prior covariance given by ICI, the posterior is

computed by the well known Kalman update equations:

x̂HYB
i = x̂HYB−

i + K(z −Hx̂HYB−
i ), (21)

x̂HYB
i = x̂HYB−

i + KH(x− x̂HYB−
i ) + Kv,

P HYB
xi

= (I −KH)P HYB−
xi

(I −KH)T + KRKT (22)

where, K = P HYB−
xi

HT (HP HYB−
xi

HT + R)−1 is the
Kalman gain, z is the measurement, and v is the measurement
noise. The true covariance of the posterior is given by:

E[(x− x̂HYB
i )(x− x̂HYB

i )T ]

= (I −KH)E[(x− x̂HYB−
i )(x− x̂HYB−

i )T ](I −KH)T

+ KRKT .

Using Eq. 20 and P HYB−
xi

≥ P̄
HYB−
xi

, we get

E[(x−x̂HYB
i )(x− x̂HYB

i )T ]

= (I −KH)P̄
HYB−
xi

(I −KH)T + KRKT

≤ (I −KH)P HYB−
xi

(I −KH)T + KRKT

= P HYB
xi
.

Thus,

E[(x−x̂HYB
i )(x− x̂HYB

i )T ] ≤ P HYB
xi
. (23)

C. Realistic evaluation criteria

One way to assess performance of a distributed algorithm
is to compare its output to that of a centralized estimator with
access to all the data. But since, in general, no algorithm
subject to network disconnection will fare as well as one not
subject to message loss, a better means of comparison ought
to be fairer. We consider, instead, the best possible estimator
given the network connectivity constraints throughout time. We
use the moniker Full History Sharing (FHS) for a hypothetical
non-recursive method used as a yardstick, which operates as
follows: each agent keeps track of its own observations and
all the observations ever received (even indirectly) from other
agents connected to it. Denote this by Ht

i . If memory and
communication constraints are of no concern, at each time-step
agents can share their history with each other and update their

history according to the shared information. The update rule
for Ht

i is
Ht

i =
⋃

∀j,1i→j=1

Ht−1
j

⋃
∀j,1i→j=1

ztj (24)

where 1i→j is an indicator function which is 1 when there is a
path between node i and j under the current network topology.
Obviously 1i→i = 1.

In FHS, at each step, the best possible estimate for each
agent is obtained by updating the history and then re-running
the filter from scratch. If the network remains connected, the
output is equal to the centralized estimator. If the network gets
disconnected, FHS gives the best estimate possible.

D. Complexity Analysis

Consider the the problem of distributed estimation of a state
vector of dimension n by a system consisting of N agents
connected to each other through a network G = 〈V, E(k)〉.

Complexity of the ICI method: The core of CI is a
determinant maximization problem and, according to [31],
the number of iterations required to solve the optimization
is O(

√
nf(ε)) where ε is a convergence parameter. For each

iteration of the optimization algorithm and for each agent i, cost
(considering the objective function − log det(·)) and gradient
calculations are O(n3 + |Ni|n2) and O(|Ni|n2) respectively,
where |Ni| is node i’s degree. Therefore, the complexity of
CI’s optimization step is O(

√
n(n3 + |Ni|n2)), where we have

suppressed the f(ε) contribution as it is a constant contribution
throughout.

Assuming TICI to be the number of iterations until ICI
converges, the computational complexity requirement for each
agent can be summarized as

O
(√
n(n3 + |Ni|n2)TICI

)
. (25)

ICI relies on passing messages of size |Ni|(n2 + n) which is
independent of the size of the network and only depends on
the number of agent i’s neighbors.

Complexity of the Hybrid method: For the Hybrid method
the cost of doing MHMC consensus should be considered in
addition to the ICI steps. Each MHMC consensus iteration
updates local covariance in time O(|Ni|n2). The convergence
times of these algorithms are different in general. Assuming
TMH to be the number of iterations until MHMC converges,
the computational complexity requirement for each agent can
be summarized as

O
(√
n(n3 + |Ni|n2)TICI

)
+O(|Ni|n2TMH). (26)

The Hybrid method relies on passing messages of size
2|Ni|(n2 + n) for exchanging information with neighbors.

Complexity of the FHS approach: A conservative upper
bound for the computational cost is O(tN2n3). Even without
considering the computational cost of performing the union and
the prohibitive memory size and communication requirements
for passing messages, the full history estimation cost is larger
than the Hybrid method for large t. This makes it a generally
impracticable approach, as there is no reason to believe that
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Fig. 3: Topology of the network when all sensors are connected (left) and when sensors
7, 8 and 9 get disconnected from the rest of the group (right).
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Fig. 4: Comparison of the estimation results using the Centralized Kalman filter, the
Iterative Covariance Intersection, and the Hybrid method. The regions shown in grey
indicate the time intervals in which sensors 7, 8, 9 are disconnected from the remainder.

tracking would only need to occur for some a priori bounded
time.

Memory and message passing requirements to keep the full
history also grow linearly in time which finally will make
the FHS infeasible for real world applications. We only use
the FHS algorithm for comparison purposes as it represents
the best achievable performance under the network topology
constraints.

VI. EXPERIMENTS

We performed several experiments on an atmospheric
dispersion problem to show the effectiveness of the Hybrid
method, evaluate its performance during disconnection and
after reconnection and show its scalability, convergence rate
and filter consistency. We study a three dimensional problem
and, after proper discretizing of its Partial Differential Equation
(PDE), we get a system in the form of Eq. 1a.

For our experiments after discretization, the dimension
of the state is 80. We assume that there are 10 sources
emitting pollutant Zinc (referred to as Zn from now on)
into the atmosphere. There are also 9 sensors making noisy
measurements of the concentrations of Zn around them. We
assume that sensors can communicate with each other through
a time varying network which does not remain connected at all
times. Sensors receive information only from their immediate
neighbors. They all have access to the sources’ locations and
the source emission is modeled as a white noise process with
known covariance. For our experiments on scalability and

Fig. 5: Estimation performance comparison among sensors 5 and 8. The former is
connected to at least 6 nodes at all times, the latter is isolated during network partition.
The first row of the images represents the estimate and the second represent the variance.
The surface plots give a sense of how the estimates vary: (1) and (2) differ quite distinctly
(owing to Receptor No. 8 being disconnected), whereas (3) and (4) are similar (after
reconnection). The comparisons are with respect to the Centralized estimator.

convergence, we run the filter for 20 time-steps. Since we have
multiple sensors, we take the average of the corresponding
metric from data given by all the sensors for each time-step
and show box plots using samples from different time-steps
for a particular case of the respective experiment.

A. The effect of disconnection on estimation performance

In this experiment we intend to evaluate the performance
of the Hybrid method during the phase where some sensors
become disconnected from the rest of the group and get
connected again after some interval. The topology of the
network takes one of the forms depicted in Fig. 3. The network
starts fully connected and starting from time-step 3, sensors
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7, 8 and 9 become isolated and remain in this situation for 2
steps, then they are connected back to the rest of the sensors.
Similarly, disconnection happens in intervals [17 − 20] and
[23− 30].

In order to make a comparison we obtain the estimation
result using pure ICI, Hybrid method and also a centralized
estimator to see how much of its performance can be recovered.
Note that the MHMC consensus cannot be done here due to
disconnection. The results are depicted in Fig. 4 where we use
three measures to evaluate the estimates.

As it can be seen, the Hybrid method outperforms pure ICI
as expected and is able to get performance very close to the
centralized estimator results after reconnection. Let SB(P1, P2)
be the Bhattacharyya distance [32] between the two distribu-
tions P1 and P2. We use DB(P1, P2) = exp(−SB(P1, P2)) as
a closeness measure between the two distributions. As shown in
the figure, the closeness DB between centralized and distributed
estimators drops during the disconnection interval as expected
since sensors do not have access to all the information available
to the centralized estimator. While the Hybrid method is able
to immediately recover after reconnection, pure ICI continues
to have lower performance even after reconnection owing to
the fact that it calculates conservative upper bounds for the
joint covariance matrices.

Fig. 5 takes a closer look at the performance of the Hybrid
method and compares the estimation results of sensors 5 and 8
during two different time steps. The horizontal axes represent
consensus steps not time. Based on Fig. 3, sensors 5 remains
in a group of size 6 during the disconnection periods, whereas
sensor 8 is totally isolated at those points in time. The greater
difference between centralized and distributed estimates for this
sensor can be explained by the fact that it has less information
at its disposal. However, after reconnection both sensors are
able to converge to the same value, very close to the centralized
estimator.

B. Performance analysis and robustness to link failure

In this experiment we evaluate the performance of the Hybrid
method in a systematic way to establish its usefulness and
robustness to networks with a high probability of link failure.
We consider the same system as in the first experiment and
simulate it for 50 time steps. At the beginning of each step, a 4
regular graph with 9 nodes is generated and, given a probability
of failure for each link, some links in the graph are randomly
disconnected. The graph still remains connected some fraction
of the times, depending on the regularity degree and probably
of link failure. However, with decreasing degree or increasing
probability of failure, the network becomes disconnected, more
often than not.

In our experiment, for p ≥ 0.2, consensus methods no longer
always succeed since there is almost certainly a case where
the network becomes disconnected at some point in time.

We ran the Hybrid method for 50 steps, for each probability
of link failure and compared its performance with the ideal cen-
tralized result (which is obtained by assuming full connectivity
at all times). The performance is evaluated by calculating the
average value for Bhattacharyya distance and determinant ratio
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Fig. 6: The estimates of various filters compared against against a centralized estimator
that does not suffer from communication failures. The differences are quantified via the
Bhattacharyya coefficient.

measure at all steps and for all sensors. Based on Fig. 1, for
the case considered in this experiment, the Hybrid distributed
estimator performs very similarly to the ideal centralized one for
p ∈ [0.0, 0.4], drastically outperforming pure ICI all the time.
This means that in the case considered here, the method can
perform almost as well as the ideal estimator for an unreliable
network. The Hybrid method recovers the performance of
the centralized method when the network is unreliable and
outperforms pure ICI substantially (and always does so, as
already been established theoretically).

C. Comparison with Full History Sharing method

We performed a comparison with FHS for the atmospheric
sampling example. We reduced the dimension of the system
from 105 to 40 using RPOD (A Randomized Proper Orthogonal
Decomposition Technique) [33] and simulated the reduced
order system for 80 steps. A comparison of results with that
of FHS is shown in Fig. 6. The performance gap between
the results of the Hybrid method and FHS is the price of
not keeping all the information. The plot shows that, despite
the widespread use of ICI in applications, it is inferior to the
Hybrid method.

D. Scalability of the Hybrid method

We show that the Hybrid method is scalable by increasing
the number of sensors/agents and comparing its performance
with ICI . We also show that it is scalable even in the dimension
of the state by varying the dimension of the state vector of
our system. As shown in Fig. 7, the Hybrid method clearly
outperforms ICI not only in estimation performance but also
in terms of scalability. Further, the Hybrid estimator is able
to match the performance of the FHS estimator for a small
network and its performance degrades gracefully as the network
size increases.

As more sensors are added, more iterations will be needed to
reach convergence (this dependency will be considered shortly,
when we examine Fig. 8). For both Figs. 7a and 7b, with a
fixed number of iterations (60 for all cases), they show the
gap between the ideal full history filter and the two algorithms.
Because the plots report the relative difference from the ideal, it
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(a) Performance in terms of Bhattacharyya coefficient (DB ) as network size increases.
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(c) Illustration of how the estimate quality increases with network size though RMSE and
DB metrics show a degradation. This is a trivial result that shows increasing the number
of sensors increases the estimate quality.

Fig. 7: Performance comparison of Hybrid and ICI estimators as the number of sensors
is varied. DB of the algorithms is calculated with respect FHS. The data shown are for
a state dimension of 80 with a fixed number of 60 consensus iterations and a link failure
probability of 0.2.

obscures the fact that estimates (for both ICI and Hybrid) with
more sensors are better. In other words, though DB falls moving
left to right, the absolute estimate quality actually improves.
The performance difference between the FHS and the Hybrid
estimators with 100 agents is larger than the performance
difference between them with 10 agents, and this can be seen
in Fig. 7c.

E. Convergence rate of the Hybrid estimator

Figs. 8, 9 and 10 show the convergence rate of the Hybrid es-
timator and how it varies with the network size and connectivity.
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(a) Performance in terms of DB for 10 agents.
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(b) Performance in terms of DB for 30 agents.
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(c) Performance in terms of RMSE for 30 agents.
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Fig. 8: Convergence rate of Hybrid and ICI estimators. Dimension of the state vector is
80 and the Fiedler values for the experiments are shown in lower subfigure.

As seen, the algorithm converges at an exponential rate. As the
network size increases the number of interactions required to
converge also increases. The rate of convergence also depends
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Fig. 9: Convergence of the Hybrid estimator showing exponential behavior.
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(a) Performance of the algorithms on two networks with different connectivities. ICI-1 and
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for network 2.
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(b) Fiedler values for the networks used in Fig. 10a.

Fig. 10: Comparison of convergence of Hybrid filter in two networks having 30 agents
each but with different connectivity. As seen in Fig. 10a, the Hybrid algorithm converges
faster on network 1 due to better connectivity.

on the connectivity of the network (see Fig. 10) and is the
next topic we turn to. Though terminating the algorithm before
convergence can sometimes lead to an inconsistent estimate, the
iterations can be stopped at any point of time if the application
demands it, but by trading away performance.
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(a) The NEES test result on network 1.
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(b) The NEES test result on network 2.
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(c) Fiedler values of the networks used for NEES test.

Fig. 11: The results of NEES tests carried out on a system with 20 states and 15 agents.
The number of consensus iterations (iters) done by the filter are also varied to show
how it affects the consistency. The Hybrid estimator is also compared with Distributed
Hybrid Information Fusion (DHIF) algorithm described in [34]. DHIF is equivalent to
the Hybrid algorithm but does consensus only for a single iteration. The data are shown
for only one of the agents since the trends are generalisable for the other agents. The
corresponding Fiedler values of the networks are also shown.

F. Connectivity of the network

A good indication of network/graph connectivity is the
second smallest eigenvalue of the Laplacian matrix of the
graph, also called the Fiedler value [35]. The Fiedler value is
non-negative with a value strictly greater than zero means that
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the graph is connected, with higher values indicating better
connectivity. The convergence speed of the Hybrid filter is
determined by the Fiedler value. The filter converges faster
for a network with a high Fiedler value. Fig. 10 shows this
effect (and see also, Fig. 11 for further support of this claim).
Since our network is prone to changes in its topology at every
time-step, the value also changes.

G. Consistency of the Filter

To show the consistency of the filter i.e. P HYB
xi
≥ E[(x −

x̂HYB
i )(x − x̂HYB

i )T ], we perform the Normalised Estimation
Error Squared (NEES) test [36]. The results of the NEES
test carried out for 50 Monte Carlo runs in our atmospheric
dispersion problem appears in Fig. 11. As seen, the Hybrid
filter is within the 95% bounds of NEES when it has converged
or when close to convergence, while ICI is below the bounds
meaning its estimate is too conservative. It can also be seen
how the Fiedler value affects the convergence rate. (In Fig. 11b
the Hybrid filter has converged in 10 consensus iterations while
in Fig. 11a it has taken 60 iterations.)

VII. CONCLUSION

In this paper we studied a distributed estimator for dynamic
systems in networks with changing topology and those that
do not remain connected all the time. Separating the process
of consensus for the correlated and uncorrelated information
is one key to achieving better performance when compared
to Iterative Covariance Intersection. Evaluating the Hybrid
method on an 80 dimensional estimation problem showed
substantial performance improvement compared to ICI and also
the ability to recover after a disconnection interval occurs. As a
summary, these results show that the approach first introduced
by Battistelli et al. [9] in order to be a method with attractive
stability properties, has a much wider range of applicability
than considered heretofore. In fact, the empirical results suggest
that time varying networks may come to be seen as its raison
d’être, rather than its original setting.
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VIII. APPENDIX

A. Properties of ICI weights

ICI iteration for each agent i starts by making a convex
combination of Yi(0) , Y ICI

i (0) + δIi(0),∀i ∈ Ni. In the
second iteration,

Y ICI
j2 (1) =

∑
j1∈Nj2

ωICI
j1 (1)Y ICI

j1 (1) (27)

=
∑

j1∈Nj2

ωICI
j1 (1)

[ ∑
j0∈Nj1

ωICI
j0 (0)

[
Y ICI
j0 (0) + δIj0(0)

]]
(28)

=
∑

j1∈Nj2

∑
j0∈Nj1

ωICI
j1 (1)ωICI

j0 (0)Y ICI
j0 (0)

+
∑

j1∈Nj2

∑
j0∈N j1

ωICI
j1 (1)ωICI

j0 (0)δIj0(0). (29)

One can rewrite the ICI iterations as the multiplication of time
varying stochastic matrices by the results from the previous
iteration. The multiplication of two stochastic matrices is also
a stochastic matrix. Therefore, dropping the ICI superscript for
better clarity, the following can be said about {m,n}th element
of Yi’s:

Y {m,n}(l + 1) =


Y {m,n}
1 (l + 1)

Y {m,n}
2 (l + 1)

...
Y {m,n}
N (l + 1)



=


w1,1(l) · · · w1,N (l)
w2,1(l) · · · w2,N (l)

...
. . .

...
wN,1(l) · · · wN,N (l)




Y {m,n}
1 (l)

Y {m,n}
2 (l)

...
Y {m,n}
N (l)

 , (30)

in which wi,j(l) , 0 if {i, j} /∈ E and for the rest of the
elements in ith row where {i, j} ∈ E at least one of them is
non-zero and the non-zero elements always sum to one. In a
more concise form,

Y {m,n}(l + 1) = WG(l)Y {m,n}(l), (31)

in which WG(l) is the graph topology dependent weight matrix
for ICI at iteration l. WG(l) is a stochastic matrix, hence, the
ICI process is equivalent to performing a convex combination
of priors and local information matrices.

Y {m,n}(∞) = lim
l→∞

∞∏
l=1

WG(l)Y {m,n}(0). (32)

We have shown that under ICI, all estimates converge to
a unique matrix and given that the ICI is equivalent to a
convex combination of initial values over all the nodes, we
can concluded that

1) The matrix WG(∞) =
∏∞

l=1W
G(l) is a stochastic

matrix and has an eigen value of 1
2) The corresponding eigen vector for eigen value 1 is a

vector of all ones.
3) The ICI estimate is a convex combination of priors and

additional information over all the network nodes, i.e.,
∃w = (w1, · · · , ωn) ∈ RN , where ∀i, 0 ≤ ωi ≤ 1,∑N

i=1 ωi = 1 and

Y ICI(∞) =

N∑
j=1

ωjY ICI
j (0) +

N∑
j=1

ωjδIj(0). (33)
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