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Abstract
We study multi-robot task allocation problems where task
costs vary. The variation may be, for example, due to the
revelation of new information or other dynamic circum-
stances. As robots update their cost estimates, typically
they will update task assignments to reflect the new infor-
mation using additional communication and computation.
In dynamic settings, the robots are continually repairing
the optimality of the system’s task assignments, which can
incur substantial communication and computation.

We investigate how one can reduce communication and
centralized computation expense during execution by us-
ing a prior model of how costs may change and perform-
ing upfront computation of possible robot–task assign-
ments. First, we develop an algorithm that partitions a
team of robots into several independent sub-teams that are
able to maintain global optimality by communicating en-
tirely amongst themselves. Second, we propose a method
for computing the worst-case cost sub-optimality if robots
persist with the initial assignment and perform no further
communication and computation. Lastly, we introduce an
algorithm to assess whether cost changes affect the op-
timality of the current assignment through a succession
of local communication exchanges. Experimental results
show that the proposed methods are helpful in reducing
the degree of centralization needed by a multi-robot sys-
tem (e.g., the third method gave at least 45% reduction of
global communication across all scenarios studied). The
methods are valuable in transitioning multi-robot tech-
niques which have met with success in structured applica-
tions (like factories and warehouses) to the broader, wilder
world.
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1 Introduction

Currently multi-robot task allocation (MRTA) methods
are among the best established ways for coordinating
teams of robots. Task assignment and task allocation algo-
rithms fall under the broad banner of task planning meth-
ods, and address the specific concern of which robots (i.e.,
who) should do which tasks (i.e., what). They seek to
maximize some notion of collective performance. Gener-
ally, each robot maintains an estimate of the cost of per-
forming the available tasks. The robots share their esti-
mates over a communication network and, depending on
the approach involved, this information might be used lo-
cally or aggregated centrally. In the most common case, a
centralized system, an optimal assignment is computed by
a server or a distinguished robot: approaches to compute
this include the Hungarian method [14], an auctioneer [7],
or a linear programming framework. Despite being opti-
mal on the basis of the initial information, the robot–task
assignment may turn out to be unfavorable while execut-
ing the tasks. For example, the environment may change,
robots may fail, or a variety of other unexpected situations
may arise. One way to retain optimality is to compute
new assignments to reflect the most recent cost estimates.
Regular re-computation may be necessary to ensure flu-
idity, but this incurs computational and communication
expense proportional to the desired responsiveness.

In this paper, we consider the MRTA problem of find-
ing the optimal assignment of a set of tasks to a team of
robots when the associated costs may vary at run-time.
We propose a cost representation which incorporates un-
certainty by generalizing a single cost value to a range of
possible values. Take for example the robot in Fig. 1: it
is able to estimate its shortest and longest driving times to
a destination by considering information about its route.
The lower bound would be merely the time spent on driv-
ing (distance divided by the maximum speed); adding the
maximum waiting time for traffic signals gives an upper
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t1=[0, 10] t2=[0, 15]

Figure 1: A simple example where task costs are not pre-
cisely known to the robot beforehand. The driving time c
to the destination varies depending on the traffic signals.
A lower bound c is d

vmax
when t1 = t2 = 0, and an upper

bound c̄ is d
vmax

+ 25 (assuming the robot drives with the
maximum speed) where d is the distance to the destination
and vmax is the maximum speed.

bound.1 Then, conceptually, all permissible values for
costs fall in a (high-dimensional) region as illustrated in
Fig. 2(a). Less trivial interrelationships between the per-
missible costs can be described by regions more complex
than an axis-aligned box (cf. Fig. 2b and Fig. 2c).

With this region-based model, the approach we de-
scribe performs additional computation upfront in order
to lessen later communication and computational burdens.
Once execution begins, even though uncertainty may be
reduced, the robots are more likely to have constraints
and limits on their ability to communicate. Stone and
Veloso [29] first studied circumstances where prior com-
putation can aid robots in their subsequent coordination.
They introduced the term locker-room agreement, moti-
vated by study of prior arrangements (e.g., of switching
formations) of soccer robots. Our upfront computation
serves a similar purpose, though the technical approach
differs: we employ Sensitivity Analysis (SA) of optimal
assignments to reason about appropriate behavior in parts
of the cost region.

SA has been studied in Operations Research to delin-
eate the forms of perturbations to costs that do not alter the
optimal solution [10]. Thus far, SA has found limited ap-
plicability to MRTA problems: the analysis assumes that
the decision maker is able to access all information off-
line and has control all over the constituents without com-
munication constraints. The physically distributed nature
of multi-robot systems and their limited communication
and computational resources pose challenges to the direct
application of classical SA. We use SA in an initial phase,
before robots are dispatched, to make the robots aware of
all possible arrangements of optimal assignments within
the cost region. Based on this information, we develop
methods that answer questions pertinent to robots as their

1For simplicity, we assume an absence of congestion and accelera-
tion/deceleration here.
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(a) A cost region de-
fined by an upper and
a lower bound. Costs
are uncertain but inde-
pendent.
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(b) A linear con-
vex boundary show-
ing both uncertainty
and a linear interrela-
tionship.
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c2

(c) A nonlinear non-
convex boundary, for
complex uncertainty
and interrelationships.

Figure 2: Illustrations of region-based cost representa-
tions. Costs that are uncertain and interrelated are rep-
resented with boundaries by treating the set of possible
costs as regions.

cost estimates change during the second phase, task exe-
cution. These methods can reduce global communication
and centralized computation, or quantify the optimality
trade-offs if communication is avoided altogether.

To clarify the scope of the paper, next we summarize
the setting studied, along with our assumptions and limi-
tations. This paper addresses the question of what we call
the need to communicate at run-time in three ways. First,
by providing a policy for when agents ought to broadcast
estimates and re-compute, if they wish to retain global op-
timality. Secondly, if the operator has robots that adopt
the policy of never communicating, we compute a bound
on how much their optimality will be affected (so that
the operator may make this decision contingent on lim-
ited loss of efficiency, for instance). And, thirdly, if com-
munication is used to regain optimality, then we provide
a means to escalate the communication so as to involve
only those agents who are needed. These three elements
reduce communication—as the paper’s title alludes to—
in three ways, either (1) avoiding communication because
it is unnecessary as it will not change the task assign-
ment; (2) avoiding it because the communication costs
do not justify the savings in efficiency; or (3) limiting
the participants involved in messaging. These reflect sav-
ings for most messaging modalities, though the precise
value of the third case depends on the particular commu-
nication technology involved. As already outlined, the
approach employs an initial (compute intense) phase of
planning before mission execution. Our assumption is
that, at this point, resources (time, memory, communica-
tion) are abundant, so we employ a centralized algorithm.
Then, in the second phase, namely during execution, these
requirements are relaxed. The domain knowledge used to
model changes in costs is not expected to be predictive of
cost dynamics but only to delineate the limits of the costs
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could feasibly change.
The following are contributions of this paper:

• We propose a region-based cost representation that
captures the uncertainty in the states of robots, tasks,
or the environment. This representation is rather
rich: it does not make the simplifying assumption
that costs of different tasks are independent, and
it is capable of modeling tightly interrelated costs
(Sec. 4).

• We develop an algorithm that analyzes the cost struc-
ture for a given assignment to seek sub-teams within
the overall team. It partitions the group into sub-
teams that are able to work independently, forgo-
ing global communication by communicating only
amongst the members of the sub-teams, but retain-
ing optimality (Sec. 6.3).

• We consider the problem of deciding whether it
is beneficial to persist with the current assignment
even if cost changes mean that it is no longer opti-
mal. We develop a method for computing the worst-
case cost sum if the robots retain their current as-
signment, allowing one to decide whether to persist
with the current assignment because the computa-
tional/communication expense needed for reassign-
ment is prohibitive (Sec. 6.4).

• We examine how, once costs change, the robots can
determine whether the current task assignments are
sub-optimal with minimal communication. Each
robot may compute an interval of cost within which
any cost variation does not affect optimality. But
even if a cost violates these bounds, other costs may
have changed too, and optimality may still be re-
tained when the cost changes have been considered
too. We introduce a method that incrementally in-
creases the dimensionality of the bounding region,
growing the number of costs considered by commu-
nicating with additional robots (Sec. 6.5).

2 Related Work
Some researchers have proposed re-optimization schemes
for multi-robot systems, allowing updated assignments to
be computed more efficiently than a naı̈ve re-computation
from scratch. Mills-Tettey et al. [19] describe a dynamic
(or incremental) Hungarian method that repairs initial
optimal assignment to obtain a new optimal assignment
when costs have changed. Shen and Salemi [28] give a
decentralized dynamic task allocation algorithm that uses

an heuristic search. These methods still use computational
resources for those cost modifications which end up with
the same assignment.

Parker et al. [23] proposed a decentralized algorithm
to minimize the maximum cost where costs change over
time. They represent a cost as a monotonically increasing
function as time passes (e.g., fire spreading). Each agent
assigned to a task decreases the cost (i.e., performs the
task) with a fixed rate. They propose a modified MAX-
SUM algorithm which optimizes a global utility function
greedily, where the modification of the original algorithm
is made to incorporate uncertainty of the global utility.
They model varying costs precisely and add Gaussian
noise to the costs where the noise represents the errors
in the cost function modeling or empirically evaluated pa-
rameters. Since their method is intended only for circum-
stances where costs change with a constant rate, it is not
applicable for costs which cannot be modeled by a linear
function.

In [24, 25], nonlinear models of changing cost are pro-
posed where the growth of cost is monotonically accel-
erating or decelerating. Although these models provide
wider applicability for the cases where the evolution of
costs is not simple as linear, constructing such models re-
quires additional domain-specific information. Also, such
models represented as functions may be outdated so can-
not describe costs accurately in dynamic environments
where the models should be updated to reflect changes
in the environments.

Another model of changing costs is proposed in [1] for
formation control problems of multiple robots. The scaled
goal formation problem considers a transition from an
original formation to a goal formation where the goal for-
mation is scaled from the initial formation. The model of
costs is described by nonlinear functions of a scaling fac-
tor (i.e., ratio) between the original and the goal formation
changes. To find the global optimal assignment, the pro-
posed method finds intervals of the scaling factor in which
each interval has one optimal assignment. In other words,
each optimal assignment remains optimal within its cor-
responding interval of the scaling factor. This approach is
similar to our method employing sensitivity analysis de-
veloped in Sec. 6.2 that finds the ranges of costs in which
any cost value in each range produces the same optimal
assignments. However, the model of costs could be out-
dated in dynamically changing environments, so the in-
tervals found from upfront computation using the model
could be invalid during execution owing to new run-time
changes that may make the model obsolete.

In [21], the present authors consider multi-robot teams
operating in probabilistic domains. In that work we repre-
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sented costs as random variables where distributions ex-
press uncertainty in the environment and which also in-
corporate inter-robot couplings as the probabilistic repre-
sentation does not assume that costs are statistically inde-
pendent. Although that representation is richer than the
interval-based model in dealing with a variety of forms of
uncertainty, the algorithm proposed in that work neither
takes dynamic changes in costs into account nor considers
the system overhead caused in handling uncertain costs.

Liu and Shell [17] proposed the interval Hungarian
method (IHM) to permit uncertainties in costs. Given
an optimal assignment, the algorithm computes the max-
imum interval around each cost in which its perturbation
does not affect the current optimal assignment. Thus, the
robots can determine how a cost change affects the opti-
mality of the current solution. However, that formulation
treats the problem of multiple simultaneous cost modifi-
cations, which do occur naturally in multi-robot systems
(e.g., a single robot failure affects n costs), in an ad hoc
fashion.

The same authors also proposed a sparsification and
partitioning method to distribute the assignment problem
to reduce global communication and reassignment [18].
That method coarsens the utility matrix by using locality
and sparsity of tasks. Once the matrix has been partitioned
into several clusters, each cluster is able to compute an
assignment independently. This method for decentraliz-
ing the work mitigates difficulties of the centralized ap-
proach such as maintaining global connectivity and per-
forming heavy computations by a single unit. Inspired
by that work, here we propose a partitioning method for
problems where single time-step sparsity is insufficient.

Chopra et al. [6] propose a distributed version of the
Hungarian method. Robots exchange messages contain-
ing state information in a peer-to-peer fashion to update
their own states. They run the Hungrian method locally
with a (possibly incomplete) graph in order to get close
to the state producing an optimal assignment. Once an
assignment is found through the repeated local commu-
nication and computation, it is propagated to all robots.
An earlier work [5] proposes a distributed simplex method
solving an MRTA problem but computationally more ex-
pensive than [6]. Although the both methods and ours aim
to reduce global communication and computation, there
are several distinctions. First, the previous methods do
not consider any central processor whereas our methods
aim to reduce computations when centralized methods are
used. Second, the previous methods consider costs that
are deterministic while our costs could change during ex-
ecution. Third, the methods assume a strongly connected
communication network. A relaxation is suggested in [6]

that assumes only a jointly strongly connected network
over some time period. However, the necessary condition
of our upfront analyses is maintaining just a connected
network (not necessarily strong) before the robots are dis-
patched while the upfront computation is performed. Dur-
ing execution, our methods may need a connected net-
work (still not strongly) but disconnected networks could
be allowed based on the result of the analyses.

A preliminary result of this present paper has published
in [20]. We extend the prior study to include (i) a richer
representation of the region-based cost that models in-
terrelationships between costs (Sec. 4), (ii) an additional
experiment that shows the benefit from using the richer
representation (Sec. 7), (iii) a new randomized algorithm
(Alg. 1) that runs faster than the previous one in [20],
(iv) an additional experiment showing the running time
of the new randomized algorithm (Sec. 7), (v) an addi-
tional proof that shows the computational complexity of
Alg. 2 if the cost region is nonlinear and convex (The-
orem 5.2), (vi) an appendix that helps understand Theo-
rem 5.2, and (vii) a major revision for the organization,
detailed descriptions of the problem, the algorithms, the
experiments, and the future work.

3 Preliminaries

This section provides a mathematical formulation of the
MRTA problem and introduces sensitivity analysis of an
optimal assignment. The analysis computes a region of
costs where changes within the region preserve the opti-
mality of the current assignment.

3.1 Multi-robot task allocation

The MRTA problem can be posed as an Optimal Assign-
ment Problem (OAP). For n robots and m tasks, we as-
sume we are given costs cij ∈ R≥0 that represent the
cost of the ith robot Ri performing the jth task Tj for
i ∈ {1, · · · , n} and j ∈ {1, · · · ,m}. The robots should
be allocated to tasks with the minimum cost sum. Let xij
be a binary variable that equals to 0 or 1, where xij = 1
indicates that the Ri performs Tj . Otherwise, xij = 0.
For simplicity here we have assumed that n = m. (This is
without loss of generality, since if n 6= m, dummy robots
or tasks would be inserted to make n = m.) Then a math-
ematical description of the MRTA problem is

min

n∑
i=1

n∑
j=1

cijxij (1)

4



subject to

n∑
j=1

xij = 1 ∀i, (2)

n∑
i=1

xij = 1 ∀j, (3)

0 ≤ xij ≤ 1 ∀{i, j}, (4)
xij ∈ Z+ ∀{i, j}. (5)

We make use of matrix representations C and X∗ that are
n× n matrices representing a cost matrix and an optimal
assignment of the problem, respectively. Matrix X∗ is one
among a larger set of matchings, which are all matrices
satisfying (2)–(5).

3.2 Sensitivity analysis of optimal assign-
ments

Sensitivity analysis (SA) has been studied for several
decades in Operations Research to assess the robustness
of optima for an optimization problem to perturbations in
the input specification [10,16,30]. Analysis of an optimal
assignment must compute a region where costs within that
region preserve the optimality of the current assignment.

The OAP can be relaxed to a linear programming prob-
lem (LP) by removing the integral constraint. The LP for-
mulation of MRTA may make use of SA of an optimal
assignment to yield a safe region of costs where the as-
signment remains optimal if all costs stay in the region.
We provide a brief interpretation of the analysis for the
MRTA problems, based on a comprehensive study of [30].

An LP problem corresponding to an MRTA problem
can have more than one feasible solution. For each feasi-
ble solution, the decision variables xij (i, j ∈ {1, · · · , n})
can be divided into basic variables and nonbasic variables
where a variable is basic if it corresponds to one of the
vectors in the basis, given a feasible basis to a linear-
programming problem. If k is an index of a feasible so-
lution, then for each k, critical region CRk, a set of costs
where an MRTA problem has the same optimal assign-
ment for any cost c ∈ CRk. Thus,

CRk = {c ∈ R(n2) : cNk
− cJkB−1k ANk

≥ 0}, (6)

where Jk and Nk indicate basic and nonbasic variables of
the kth feasible solution, respectively. In other words, any
costs within CRk do not alter the feasible (optimal) solu-
tion of k. The matrices Bk and ANk

are the constraints
of basic variables and nonbasic variables.2 Here cJk and

2A constraint matrix of an optimization problem consists of coeffi-

cNk
are cost vectors of basic and nonbasic variables. The

critical region CRk is formed by linear boundaries with
nonempty interiors.

However, there is an additional source of complexity
because the MRTA problem is degenerate. One easy way
to understand degeneracy is using a polytope defined by
the constraints of the optimization problem (2) and (3).
In non-degenerate cases, an extreme point of a polytope
corresponds to one feasible solution. In degenerate cases,
one extreme point corresponds to many different degener-
ate solutions [11, 13].

Consequently, the critical region CRk of one feasible
solution k is not a complete description of the region that
preserves optimality. The complete set is

θ(X∗) =
⋃
k∈H

CRk, (7)

which is the union of critical regions of all feasible solu-
tions where H = {k : X∗Jk = B−1k ,X∗Nk

= 0}, which is
the set of indices of feasible solutions. Note that θ(X∗) is
also a polyhedral set [30, Theorem 17] consisting of linear
boundaries that cross the origin.

An n × n MRTA problem has 2n − 1 basic variables
and (n−1)2 nonbasic variables. To compute (7), we must
identify the basic and nonbasic variables of the kth feasi-
ble solution. The n variables corresponding to costs in
the optimal assignment are basic variables, but the degen-
eracy means that the remaining n− 1 basic variables (i.e.,
degenerate basic variables) cannot be identified directly.
We choose the n − 1 basic variables from the remaining
n2 − n variables, yielding a total of

(
n2−n
n−1

)
choices. Not

all
(
n2−n
n−1

)
sets of variables can be feasible solutions be-

cause the set H indicates X∗Jk = B−1k which means that
Bk must be nonsingular. If Bk with the set of those n
basic variables and chosen n− 1 variables is of full rank,
then the set is one of the feasible solutions in H .

4 The cost representation: bounded
regions and interrelated values

In this section, we formalize the cost representation in
terms of a bounded region. We also show how the model
of interrelationships gives a better understanding of an as-
signment problem subject to uncertain costs.

Suppose that the costs belong to a finite region C where
C ⊆ R(n2), so any particular matrix of costs C ∈ C. We

cients of variables. Here, Bk is a set of columns corresponding to basic
variables. Similarly, ANk

corresponds to the coefficients of nonbasic
variables.
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will assume that domain knowledge permits specification
of the boundary of C. If only upper and lower bounds of
costs are known, we can define the largest cost boundary
as in Fig. 2(a), that is, as an n2-orthotope.3 In other words,
C ∈ C has, for each cij , a range cij ≤ cij ≤ c̄ij . While
this serves as a concise characterization of uncertain costs,
it fails to capture any interrelationships between different
costs.

Costs that have interrelationships can be modeled by
having a more complex boundary for C as shown in
Fig. 3(a), where the boundary is modeled as a linear func-
tion. A slightly richer example appears in Fig. 3(b) where
part of a route is shared between two destinations but after
a fork in the road there are different waiting times and dis-
tances. The resultant cost boundary is a convex polygon.

In practice, costs could have rather more complex
boundaries. Fig. 3(c) shows an example of Zermelo’s
navigation problem [31]. Suppose an underwater vehi-
cle capable of navigating at a certain maximum speed and
heading angle moves through a water flowing with some
current. The problem is to find the time-optimal path from
a position to a destination. If the vehicle solves the prob-
lem by steadily aiming at the appropriate fixed angle to
the current, the vehicle is able to navigate along a straight
path to the destination, which is optimal. The cost of mo-
tion changes with changes in the direction of the current.
If the current may have any direction, the corresponding
boundary of the costs is nonlinear and convex as shown in
the right graph in Fig. 3(c).

More complex cases might result in cost regions with
nonconvex boundaries or interior holes. Although the
methods described herein cannot handle such cases ex-
actly, the approach may still have utility if the region is
reasonably approximated. For example, a simple way to
find such regions is to use the maximum and the min-
imum points in each dimension of the cost space, or
to compute the convex hull. Such over-approximations
do not alter the correctness of the algorithms but may
cause the robots to incur additional, unnecessary compu-
tation/communication because the algorithms’ attempts to
avoid expending effort will be conservative.

5 Problem Description
In a centralized system, a single unit computes an allo-
cation of robots to tasks and propagates the result to the
robots. We will assume that any robot is capable of act-
ing as the central unit. This is a common assumption as

3The dimensionality of the cost space of an MRTA problem is often
extremely high. The 2-D representation in the figure is merely an aid to
presentation.

t1=[0, 10] t2=[0, 15]

(a) Left: Two destinations have routes that share a common segment.
When cost is proportional to driving time, traffic signals (with un-
known state) induce a delay which affects both. Right: The line rep-
resents the possible costs.

t1=[0, 10] t2=[0, 5]

t3=[0, 15]

(b) Left: A route forks and each fork has different waiting times and
lengths. One traffic signal affects both driving times to the destina-
tions but other signals influence the times independently. Right: The
corresponding convex linear cost boundary.

θ

T2

T1

x

y
10m

10m

(c) Left: An underwater vehicle plans to navigate to each of two des-
tinations. The vehicle is influenced by water current and adjusts its
heading to cancel out the current. The costs depend on the angle θ of
the current. Right: The corresponding convex nonlinear cost bound-
ary when 0 ≤ θ < 2π and the vehicle moves at the maximum speed.

Figure 3: Richer robot navigation scenarios and their cor-
responding cost boundaries.
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(a) Finding partitions a team to bound communi-
cation within the sub-teams (red and blue ovals)

(b) Understanding the cost incurred by for-
going further communication and sticking
with the initial assignment (arrows)

(c) Limiting communication to nearby robots
to determine if the current assignment is still
optimal despite cost changes

Figure 4: Three proposed ways of reducing centralized global communication. They require an upfront computation
before the robots are dispatched, but in appropriate circumstances the result of the computation reduces run-time
communication significantly.

often leader election algorithms choose the distinguished
unit dynamically to ensure that failure of any single robot
never debilitates the whole system. To achieve optimal
coordination, the central unit should be able to communi-
cate with all robots via a network to (i) collect the most
recent cost estimates from the robots and (ii) notify them
of task allocations, if the updated costs alter the previ-
ous allocation. Maintaining global connectivity in multi-
robot systems is expensive, however, and the quality of
communication can undergo drastic changes during task
execution [22].

It is, therefore, worthwhile to develop methods for dis-
tributing the assignment problem in a way which will al-
leviate the strong and continual dependence on centraliza-
tion. We assume that robots have some initial opportunity
for global communication (e.g., before the robots are dis-
patched). They use this time to perform additional upfront
computation for a locker-room agreement, the results of
which are used afterward while costs change dynamically.
It is worth noting that our focus is on reducing the degree
of connectivity of a network and the number of messages
communicated in the network irrespective of the mecha-
nism used for maintaining the connectivity.

For a given cost region C, an optimal assignment can be
associated to each different cost matrix within the region.
If all changes to costs preserve the same assignment, then
alterations of the costs, within the bounds of C, have no
effect on the optimality of the robot–task pair matching.
However, it is more likely that changes will effect opti-
mality of the matching: let N be the number of optimal
assignments within C. The upfront computation proposed
in Sec. 6.2 computes all N optimal assignments X∗q for

q ∈ {1, · · · , N} in C and their θ(X∗q) for each optimal
assignment.

Three methods are proposed to make use the result of
the upfront computation; each of them helps reduce com-
munication between the central unit and other robots dur-
ing the task execution (i.e., run-time) phase:

§ 5.1 The team of robots is partitioned into sub-teams
(Fig. 4a) so that each sub-team need only commu-
nicate internally, if such sub-teams exist.

§ 5.2 The current optimal assignment is compared to other
possible assignments within a given cost region. This
assesses whether the benefit of communicating actu-
ally outweigh that of merely persisting with the cur-
rent assignment (Fig. 4b).

§ 5.3 Once a robot discovers that its costs have changed,
whether these changes have an impact which global
or only parochial can be determined by starting
with local queries and then gradually escalating their
range of communication (Fig. 4c).

5.1 With whom do the robots need to com-
municate?

By sub-team we will mean a proper subset of robots from
the entire system, where robots in a sub-team have non-
overlapping sets of tasks with robots other sub-teams.
Singleton sets of robots satisfy this criterion for a single
assignment (the mutual exclusion constraints (2) and (3)
ensure this fact). But once the costs may be altered, there
are multiple tasks that might be assigned to a robot, and
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they depend the precise values involved, the realizations
of random variables, and so forth. This makes the notion
of a sub-team as well as the preceding criterion both more
interesting and more useful.

If such sub-teams exist they need never communicate
with robots outside their own sub-team (or even take the
other sub-teams into account) when computing their task
allocations. 4 Moreover, each sub-teams computation will
construct the globally optimal allocation. Partitioning the
team of robots into multiple sub-teams yields the benefit
reducing communication range and computation load (op-
timal assignment algorithms have super-linear running-
time) when costs could change without sacrificing opti-
mality. Partitioning teams where tasks have spatial local-
ity [26] and sparsity [18] has been studied previously, but
we make no assumptions about the particular properties.

Then, when sub-teams exist, the important question be-
comes one of whether such sub-teams can be found. With
cost region C, the possible assignments depend on the cost
matrix C ∈ C. If all N optimal assignments within the
region can be found, one can determine whether the team
can be partitioned by basic matrix operations (described in
Sec. 6.3). Since costs are nonnegative real numbers, com-
puting assignments for all possible costs is intractable.
The problem is to find a set of all possible assignments
X∗q for q ∈ {1, · · · , N} quickly so that finding partitions
can be done efficiently.

5.2 When should the robots stick with their
initial assignment?

Important research has examined how to maintain global
connectivity in networks of robots, including, for exam-
ple, control-based schemes [27] or multi-hop routing pro-
tocols [8]. But when is the expense incurred by these
methods for maintaining global connectivity prohibitive?
Clearly this is a question that can must be answered in a
contextually specific way. In the task allocation setting
one can assess the difference in assignment quality with
and without further communication. Then, with some
measure of cost incurred in sending messages, one can
make a determination for the particular domain at hand.
Specifically, the cost difference between the worst-case
cost sum—if the robots commit to their initial assignment
and use no run-time communication—and the best-case
cost sum—if they update costs and reallocate—can be

4Being in the same sub-team does not necessarily mean that they
are always connected directly. Thus, robots in the same sub-team may
need multi-hop communication at some time frames during execution.
However, finding sub-teams still reduces communication and computa-
tion by splitting the whole communication network into multiple small
networks.

used to make the decision. A small cost difference means
that the cost reduction obtained by maintaining global
connectivity is minor. If the expense for global commu-
nication5is larger than this reduction, the team does not
profit from updating costs and recomputing assignments.

Once optimal assignments X∗q and their θ(X∗q) for
q ∈ {1, · · · , N} are computed, the cost difference is com-
puted by finding the minimum cost matrix Cminq in each
θ(X∗q) and computing

max(C̄�X∗1 −Cminq �X∗q), (8)

for q ∈ {1, · · · , N} where X∗1 is the initial (or current)
assignment, and the � symbol is an operator which de-
notes the sum of all elements in the Hadamard product of
two matrices, that is, A � B ≡ 1T (A ◦ B)1. In other
words, (8) is the cost difference between the minimum
among cost sums (where robots change their assignments)
and the maximum cost sum (if robots maintain their initial
assignment).

5.3 When costs change, how do you notify
only those for whom it matters?

Even if a team or a sub-team of robots decide to respond
to every cost change according to the decision made in
Sec. 5.2, there are still opportunities to curtail unnecessary
communication. Suppose that robots have some knowl-
edge about their own costs (e.g., robot Ra manages a sub-
set of costs cij for i = a, j ∈ {1, · · · , n}) that is a set of
tolerable ranges of the costs that preserve the current opti-
mal assignment, irrespective of how costs of other robots
change. Any cost changes within the ranges incur no com-
munication as those changes are guaranteed not to break
global optimality. With this knowledge, the robots can
work independently until any of the robots has a cost(s)
that deviates from its range.

The robots may have to begin communicating with
other robots if a violation occurs. Suppose that the costs
ofRa change according to a new information (e.g., a door,
which Ra had previously assumed to be open, is found to
in fact be locked). This new information may incur vi-
olations of the tolerable cost ranges associated with Ra.
We describe two cases: (i) only one robot at each time
step experiences the violations and (ii) multiple robots
could have violations simultaneously. The case (i) could
be reasonable in environments with local or infrequent dy-
namic changes whereas (ii) is more appropriate when en-
vironmental changes occur frequently and likely have a

5In this paper, we are not explicit about the expense of communica-
tion since it depends on the method used. A common measure might be,
e.g., time (with delays incurred by multi-hop routing), or total energy
expended.
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global influence. In both cases, the first problem is to ob-
tain the knowledge about the tolerance ranges of costs.
Geometrically, the cost ranges construct an n2-orthotope
Tij = [cij−τij , cij +τij ] for all i and j for the current as-
signment where a low-dimensional projection of Tij rep-
resents a 1-D interval for each cost. Once the intervals of
the costs are calculated, the two cases have different ways
of using them to reduce communication.

The robot can assess for itself (without communica-
tion) whether the new information incurs cost changes
that break global optimality. If the knowledge is not suf-
ficient for the self-assessment, the robot would need ad-
ditional information about how the costs of other robots
have changed. This is the point at which Ra should com-
municate locally with some other (nearby) robot, say Rb,
to know the costs of Rb. Notice that the nearby robot to
be included in the local communication could be deter-
mined depending on the ease of establishing communica-
tion. With Ra and Rb together, it may be the case that
the assignment remains optimal. If this is not, then the
process should be repeated by bringing some new robot
Rc into the fold. There might be some other robots that
perceive the locked door and update their costs. Each of
those robots could perform the local checking process for
itself simultaneously while others do.

The problem is to obtain the prior knowledge of about
the tolerance of the current assignment. Geometrically, it
is to find an n2-orthotope Tij = [cij−τij , cij+τij ] for all i
and j for the current assignment where a low-dimensional
projection of Tij represents a 1-D interval for each cost.
With θ(X∗q), the validity of the current optimal assign-
ment should be checked by incorporating all costs. This
is checking whether the current costs, which is a point in
the n2-dim cost space, reside in θ(X∗q). This process re-
quires a collection of current costs through some central-
ized structure. With the 1-D intervals from Tij , each cost
can be checked independently from other costs whether
the cost is in its interval. When a robot knows the intervals
for its costs, the robot can work independently until any
of updated costs leave the intervals. However, distributing
the checking process does not come free; the n2-orthotope
Tij is “conservative” than θ(X∗q) (i.e., Tij ⊂ θ(X∗q)).
If cost changes do not violate any of intervals, nothing
need be done since the current assignment is preserved
as θ(X∗q) is not violated. Since a violation of Tij does
not necessarily violate θ(X∗q), a robot with costs violat-
ing Tij needs to know the costs of other (nearby) robots
to check whether a subspace of θ(X∗q) constructed by the
costs of the robots involved is violated. For example, sup-
pose that C is the cost matrix at an arbitrary time step.
In the next step, a cost of one robot changes so C be-

comes C′violating /∈ θ(X∗q). It is entirely possible for
the cost change of another robot to produce C′′ which is
in θ(X∗q). If even just these two robots communicate, the
current assignment is preserved, and the conclusion has
been reached via local communication.

5.4 An illustrative example

We give an example multi-robot navigation problem to
show how the proposed methods can be used together.
Suppose we have three autonomous robots (R1,2,3) and
three destinations (T1,2,3) as shown in Fig. 5(a). The goal
is to have one robot at each destination while minimizing
the total sum of traveling times (in seconds). The reader
might like to think of it in terms of self-driving taxis pick-
ing up customers while the taxi company aims to mini-
mize the total fuel cost (which is proportional to the total
traveling time). We assume that the robots drive through
the shortest path, and each intersection has a traffic signal.
The waiting time at each signal is tw ∈ [0, 10]. Again, we
assume that robots drive at the maximum speed (10 m/s)
when they move and, for simplicity, we model neither de-
lays from congestion nor acceleration/deceleration. The
corresponding cost matrix is shown in Fig. 5(b).

The initial optimal assignment is X∗1 =
( 1 0 0

0 1 0
0 0 1

)
sup-

posing green lights. First, the robots use the method de-
scribed in Sec. 5.2 that computes the maximum cost dif-
ference (8) to decide whether the robots respond to every
cost change. The highest cost sum if the robots keep the
initial assignment is 100 (when c11, c22, c33 are at the up-
per bounds). There is no run-time communication and
task reassignment with this assignment. If they are com-
mitted to update every cost change and recompute the as-
signment with updated costs, the lowest possible cost sum
is 50 (i.e., when X∗ =

( 0 0 1
0 1 0
1 0 0

)
and the costs are at the

lower bounds). If the expense for global communication
is smaller than the difference, the robots keep communi-
cating with the central unit to update cost changes. Other-
wise, they simply stick with the initial assignment.

In the case where the robots communicate with each
other, the robots try to partition the team into sub-teams
using the method described in Sec. 5.1. When such par-
titions are found, the sub-teams can work independently
while not communicating with those robots in other sub-
teams. The method for escalating local communication
described in Sec. 5.3 can be used within a sub-team or the
entire team as and when each robot detects changes in its
costs (such as a new speed limit or road closure, in this
example).
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(a) Multi-robot navigation
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(b) Corresponding cost matrix

Figure 5: An MRTA problem with costs that vary within
ranges. The mission objective is to have one of the three
robots at each destination, shown in (a), while minimiz-
ing the total traveling time. Possible ranges for costs in
this instance are collected in the matrix in (b). The meth-
ods we describe reduce centralized operation during run-
time via upfront computation that is completed before the
robots are dispatched.
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6 Algorithms
As it is essential to compute (7), in this section we first de-
scribe an inexact randomized method for sensitivity anal-
ysis that runs much faster than the exact method described
in Sec. 3.2. Next, we describe the algorithm employ-
ing the randomized (or the exact) sensitivity analysis that
computes all N possible assignments X∗q and their θ(X∗q)
for q ∈ {1, · · · , N}. This algorithm is executed upfront
before the robots start performing tasks, then finally, us-
ing the result of this prior computation, we propose three
algorithms for the problems described in Sec. 5.

6.1 A randomized sensitivity analysis
Any cost C within the set of linear boundaries θ(X∗q) pro-
duces the same optimal assignment X∗q for an arbitrary
q. The exact method of computing the set is described
in Sec. 3.2 which computes (7) by enumerating a facto-
rial number of feasible solutions. Specifically, a feasible
solution must include n basic variables (corresponding to
the optimal assignment) out of all n2 variables. Among
the remaining n2 − n variables, n − 1 non-degenerate
basic variables need to be chosen to complete a feasible
solution which consists of 2n − 1 basic variables. The
exact method SA(X∗q ,Cq) enumerates all k =

(
n2−n
n−1

)
choices. The running time grows exponentially with the
input size. Though this computation is done off-line, the
method cannot produce a solution in tolerable time unless
the instances are small (we show in the section describing
experiments that it takes a few minutes for n < 7). A
faster method is needed for larger instances.

We develop a randomized algorithm,
RANDSA(X∗q ,Cq), to facilitate a faster computa-
tion of θ(X∗q). Let H ′ be a partial set of all feasible
solutions’ indices (recall that H is the complete set). A
partial enumeration of the variables brings an incomplete
set of linear boundaries, which is θ′(X∗) =

⋃
k∈H′ CRk,

but the incomplete set often covers a large portion of
θ(X∗q). From this observation, we implement Alg. 1.
With the given n basic variables, the additional n − 1
variables are randomly chosen. A feasible solution with
the 2n − 1 basic variables makes a coefficient matrix
Bk; one of full rank (i.e., nonsingular) is needed since
(6) computes the inverse of Bk (line 12). The algorithm
iterates the while loop (lines 4–15) until the randomly
chosen variables complete the basic variables of a feasi-
ble solution. If a feasible solution is found, it produces
(n − 1)2 linear boundaries (line 17). We experimentally
verified that even a single feasible solution is enough to
produce high-quality solutions. Should a single feasible
solution be insufficient, line 4 can be modified to add

more feasible solutions to F (along with the addition of a
check before line 13 to determine whether J is already in
F will avoid duplicating work).

Algorithm 1 RANDSA
Input: The n × n cost matrix Cq and its optimal assignment X∗q for
an arbitrary q
Output: A partial set of linear boundaries θ′(X∗q)

1 F = ∅
2 S∗ = {s : s is an index of a variable in X∗q whose assignment is 1}
3 S = {1, 2, · · · , n2} \ S∗

4 while empty(F )

5 SR = ∅
6 for l in 1 to n− 1 // choose n− 1 additional basic variables from
S

7 i← a randomly chosen index from S

8 SR = SR ∪ i
9 S = S \ i
10 end for
11 J = S∗ ∪ SR // index set of basic variables in a feasible solution
12 if Bk is full rank . . . . . . . . . . . . . . // Bk in (6) should be invertible
13 F = F ∪ J
14 end if
15 end while
16 H′ = {1, 2, · · · , |F |}
17 θ′(X∗) =

⋃
k∈H′ CRk . . . . . . . . . . . . . . . . //CRk computed by (6)

18 return θ′(X∗q)

6.2 Finding all optimal assignments and
θ(X∗) in C

A cost region C may contain multiple optimal assign-
ments. By employing sensitivity analysis (either the ex-
act method or Alg. 1), we develop an algorithm that finds
θ(X∗q) for all X∗q where q ∈ {1, · · · , N}.

An assignment problem has at least 4-dimensions (two
robots and two tasks) so hard to visualize the geome-
try. A cartoon 2-D representation appears in Fig. 6(a)
for pedagogical purposes. One difference from higher di-
mensional cases is that all linear equations in θ(X∗) are
greater or equal to zero (see (6)), but the upper boundary
of θ(X∗) in Fig. 6(a) has the opposite inequality.

We have an initial optimal assignment X∗1 for an initial
cost matrix C1 and its θ(X∗1) (Alg. 2, lines 2–3 where
HUNGARIAN is the standard Hungarian method [14]).
Let l be an arbitrary linear boundary in θ(X∗). If the
objective value is greater than or equal to zero when l is
maximized over the shaded area6 (line 6), l contains the
entire cost set (the shaded area C in Fig. 6a). Otherwise,

6All l should be maximized because of the inequalities in (6).
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the shaded area is not covered by l (see Fig. 6b) thus a
cost on l is perturbed to find a new θ(X∗) that includes
the remainder of C (lines 12–22). As the current θ(X∗)
is expanded by perturbing the costs, newly found θ(X∗q)
regions are merged and checked as well. The algorithm
terminates if θ(X∗) completely includes C. It returns all
X∗q and θ(X∗q) found.

In Fig. 6(a), the direction of a perturbation is toward c′.
The magnitude of the perturbation, ε, must be carefully
chosen. Too large a value may skip some θ(X∗q). The
following describes how we determine the optimal mag-
nitude and the direction of a perturbation.
Lemma 5.1 Let l be an arbitrary linear boundary in
θ(X∗). A perturbation with magnitude ε to perturb an
arbitrary point p on l will not miss any θ(X∗) if 0 ≤ ε ≤
|p|
n .

Proof. Let v be the normal of an arbitrary linear boundary
l in θ(X∗). From line 6 in Alg. 2, we have c′, which is
an extreme point of C outside of the current θ(X∗). The
projection of c′ onto v is

p =
c′ · v
|v|2

v.

Suppose that vc is the normal vector of the nearest bound-
ary to l (other than itself). Let q be a vector orthogonal
to vc. The direction of movement from p to q is along a
vector

pnew = p + d(q− p)

where d = |p| tanψ is the magnitude of the move. We
look for the minimum d because pnew is toward the clos-
est boundary. Since tanψ is an increasing function in
(−π2 ,

π
2 ), d is also minimized if ψ is minimized.

Normalized vectors of the above vectors are denoted as
v̂, v̂c, p̂, ˆpnew, and q̂. Since v̂ ⊥ p̂ and v̂c ⊥ q̂, the angle
between v̂ and v̂c is ψ as well. Therefore, v̂ · v̂c = cosψ.
Since ψ = arccos v̂ · v̂c, ψ is minimum at maximum
v̂ · v̂c.

The coefficients (normals) of linear boundaries in
θ(X∗) are−1, 0, or 1 since Bk and ANk

are from a totally
unimodular coefficient matrix. To maximize the dot prod-
uct of two normals of boundaries, the boundaries should
have the maximum number of 1’s (or the maximum num-
ber of −1’s). The vector 1̂ ensures this case, but two
boundaries should be distinct; the other boundary must
have a single 0. Thus, the product of 1√

n2
[1 1 1 · · · 1 1] and

1√
n2−1 [1 1 1 · · · 1 0] is the maximum, that is n2−1√

n2
√
n2−1

where n is the dimension of the cost space.
Now we have ψmin = arccos n2−1√

n2
√
n2−1

. Therefore,

dmin = |p| tan
(
arccos

n2 − 1√
n2
√
n2 − 1

)
=

|p|√
n2 − 1

,
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(a) The perturbation process.
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Figure 6: A 2-D representation of the cost space. (a) Bold
lines represent linear boundaries (hyperplanes) of θ(X∗)
and the shaded area represents a cost region C bounded by
C and C̄. (b) If a boundary does not cover all shaded area,
the objective value of maximization over the area is nega-
tive (left). Otherwise, the value is nonnegative (right).

which is the distance to the closest boundary along pnew.
A safe magnitude for perturbation 0 ≤ ε ≤ |p|

n < dmin,
ensures we do not skip any θ(X∗q). �

If Alg. 2 employs Alg. 1 to speedup computation, a
partial set θ′(X∗) will cover a smaller area than the full
θ(X∗). Thus, a perturbation with ε still never skips any
θ(X∗q). However, a single perturbation may not be enough
to find a new optimal assignment if the perturbed cost is
in between the actual area and the underestimated area. In
this case, perturbing multiple times will eventually find a
new assignment. When θ′(X∗) is close to θ(X∗) there are
few repetitions.

Note that the shape of cost regions relates to line 6
in Alg. 2, in which the feasible region of the optimiza-
tion problem is the cost region. If the cost region is lin-
early constrained convex (i.e., a hyper-polytope such as
Fig. 3b), one is able to find the vertices of the cost region
that maximize the objective value with linear program-
ming in polynomial time.

On the other hand, the problem becomes the optimiza-
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Algorithm 2 FINDTHETA

Input: An n× n cost matrix C1, C, and C̄
Output: A set of assignments X∗q and θ(X∗q) for q ∈ {1, · · · , N}

1 i = 0, q = 2

2 X∗1 = HUNGARIAN(C1)

3 θ(X∗1) = SA(X∗1,C1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . // compute (7)
4 θ(X∗) = θ(X∗1)

5 do forever
6 (c′i, obji) = LINPROG(li,C, C̄,max) // max li over the bounds
. . . . . . . . . . . . . . . . . . . . . . . // where li is the ith linear boundary in θ(X∗)
7 if obji ≥ 0 . . . . . . . . . . . . . . . . . . . . . . . // if C does not satisfy li ≥ 0

8 i = i+ 1

9 if i = |θ(X∗)| . . . . . // if all linear boundaries in θ(X∗) checked
10 break
11 end if
12 else // perturb a point on li toward c′ to find a new X∗ and θ(X∗)
13 p = c′·vi

|vi|2
vi . . . . . . . . . . . . . . . . // p is a projection of Xi onto li

14 ε =
|p|
n

15 pnew = p + ε(c′ − p)

16 Cq = RESHAPE(pnew, n) . // reshape vector into n× n matrix
17 X∗q = HUNGARIAN(Cq)

18 θ(X∗q) = SA(X∗q ,Cq)

19 θ(X∗) = θ(X∗) ∪ θ(X∗q)

20 i = 0

21 q = q + 1

22 end if
23 end do
24 return {X∗1, · · · ,X∗N} and {θ(X∗1), · · · , θ(X∗N )}

tion of a linear objective function subject to a nonlinear
convex constraint set (which we call LONC) if the fea-
sible region is convex but nonlinear (as in the example
in Fig. 3c). To show that Alg. 2 still has the same time
complexity with the convex linear feasible region case,
we prove that LONC is in P . We show a polynomial-time
reduction from LONC to the optimization of a nonlinear
convex objective function subject to a linear convex set
(NOLC), which is proven to be in P [3].
Theorem 5.2 LONC is in P .
Claim. If LONC≤P NOLC, LONC is in P since NOLC is
in P .
Proof. In line 6 of Alg. 2, the objective function of the lin-
ear programming is separable. If both the objective func-
tion and the set of constraints are separable, LONC is eas-
ily transformed to NOLC in polynomial time by variable
substitution (an example of the substitution is given in the
Appendix). If the constraint set is represented by non-
separable functions, some known methods in Table 13.1
of [4] can transform nonseparable functions to separable
in polynomial time. Therefore, LONC ≤P NOLC. �

However, the problem becomes NP-hard if the feasible
region is nonconvex [2]. In this case, we can find a mini-
mum convex region that includes the nonconvex region as
we discussed briefly in Sec. 4. Alternatively, we can re-
place the linear programming solver (line 6 in Alg. 2) by a
solver appropriate to the shape of the feasible region, us-
ing a suitable polynomial-time approximation algorithm
for nonconvex optimization problems (see the review of
optimization solvers in [15]). For the cost regions with k
isolated convex regions, one may still use Alg. 2 apply-
ing it k times for each sub-region. Each run produces the
result for that sub-region, and the last step involves elimi-
nating duplicated pieces among the results.

The preceding discussion of hardness results show that
the analysis of the assignment optimality can include in-
terrelated costs essentially for free if they are linear, but
are tractable even for costs related to problems like that of
Zermelo’s (Fig. 3c). This is important for experimental re-
sults in Sec. 7.6 which will show that treating interrelated
costs as independent significantly decreases the value of
the analysis.

6.3 Partitioning the team of robots
Partitioning a team of robots into sub-teams, as discussed
in Sec. 5.1, is performed via elementary matrix operations
on all the assignment matrices computed from Alg. 2.
First, the sum of the assignments XC =

∑N
q=1 X∗q is

computed. Zero elements in XC mean that the associ-
ated robot–task pairs will be never assigned. The matrix

13



columns and rows are exchanged to find a block diago-
nal matrix, where a polynomial time method exists. For
example, a method converts XC to a 0-1 matrix (nonzero
values of XC becomes 1 while zero values do not change),
which takesO(n2), and uses aO(n log n) quicksort twice
(row-wise and column-wise) using the binary values of
rows and columns. Then the time complexity of the
method isO(n2). If a block diagonal matrix can be found,
the main diagonal blocks represent sub-teams. Given such
an input matrix, clearly communication and computation
localized to within each sub-team suffices for the robots
to achieve global optimality.

We show an example of finding sub-teams from the out-
put of Alg. 2. Suppose Alg. 2 returns three assignments
whose sum is

XC =
( 1 0 0 0

0 0 1 0
0 1 0 0
0 0 0 1

)
+
( 0 1 0 0

0 0 1 0
1 0 0 0
0 0 0 1

)
+
( 0 1 0 0

0 0 0 1
1 0 0 0
0 0 1 0

)
=
( 1 2 0 0

0 0 2 1
2 1 0 0
0 0 1 2

)
.

Then XC is converted to a 0-1 matrix where each row
(and column) has a binary string. Sorting the rows in a de-
scending order followed by a column-wise sorting yields
a block diagonal matrix as shown below.( 1 2 0 0

0 0 2 1
2 1 0 0
0 0 1 2

) conversion−−−−−→
( 1 1 0 0

0 0 1 1
1 1 0 0
0 0 1 1

) sort−−−→
( 1 1 0 0

1 1 0 0
0 0 1 1
0 0 1 1

)
Practically, the diagonalization is simply done using a
MATLAB function blkdiag. The two diagonal blocks
represent two sub-teams because the two robots corre-
sponding to the first two rows do not share any tasks with
the other two robots.

6.4 Choosing to persist with the initial as-
signment

The idea proposed in Sec. 5.2 to analyze the impact of to-
tally forgoing further communication despite cost changes
is implemented in Alg. 3. All assignments X∗q and θ(X∗q)
for q ∈ {1, · · · , N} are given by Alg. 2 (line 1). For
each θ(X∗q), we seek the minimum costs Cq over θ(X∗q)
within the bounds C, and C̄ (line 3). For each q, we have
an assignment X∗q and the minimum cost Cminq

. In line 6,
min(Cminq

�X∗q) returns the minimum cost sum among
the N assignments. On the other hand, we can compute
the maximum cost sum if robots never change from their
initial assignment with C̄ � X∗1. Thus, line 6 gives the
maximum cost loss when robots persist with the initial as-
signment and opt to avoid communication and reassign-
ment.

As described in Sec. 5.4, one can decide with cworst
whether to persist with the initial assignment by consider-
ing the communication/computational expense of a reas-
signment.

Algorithm 3 MAXLOSS

Input: An n× n cost matrix C1, C, and C̄
Output: A maximum cost difference cworst

1 (X∗q , θ(X
∗
q)) = FINDTHETA(C1,C, C̄) for q ∈ {1, · · · , N}

2 for q = 1 to N
3 (c′q , objq) = LINPROG(c, θ(X∗q),C, C̄,min) . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . // minimize costs over θ(X∗q) with the bounds
4 Cq = RESHAPE(c′q , n)

5 end if
6 cworst = max{C̄�X∗1 −min(Cminq �X∗q)}
7 return cworst

6.5 Incremental communication

We develop an algorithm for determine whether cost
changes destroy the optimality the current assignment
through escalation of the communication neighborhood,
the idea discussed in Sec. 5.3. A set of boundaries θ(X∗)
can be summarized in different ways to show relevant
information about the effect of cost changes. A one-
dimensional cut provides a lower and an upper bound for
each cost. This interval is valid if all other costs remain
unchanged. The generalization, α-dimensional cuts, al-
low simultaneous changes of α costs, but n2 − α costs
must remain unchanged. Tolerance approaches, such as
that of [9], find a single value (tolerance percentage) to
represent the maximum cost perturbation which can be
applied simultaneously and independently without affect-
ing optimality. The current cost matrix C is expanded in
all dimensions to have the margins as much as the tol-
erance percentage. It produces a tolerance cost region,
essentially an n2-orthotope in which each dimension is
bounded by an interval cij − τij ≤ cij ≤ cij + τij where
τij ∈ R≥0.

These intervals (call them τ -intervals to distinguish
them) are not larger than the 1-D cuts of θ(X∗), but their
validity is completely independent of changes in other
costs. This is attractive in multi-robot systems because
communication is not needed for cost changes inside the
associated τ -intervals. On the other hand, even when a
robot’s cost has violated its τ -interval, other costs may
have changed to counter-balance the effect so that the op-
timality of the present assignment is retained, i.e, remain-
ing inside θ(X∗). The algorithm shown in Alg. 4 checks
for a violation incrementally, starting from the robot it-
self and then, if necessitated by the results of the earlier
checks, by growing to incorporate information from other
robots.

The set of boundaries θ(X∗) and τ -intervals of the ini-
tial assignment are computed and distributed to robots
(lines 2–5). Then the following procedure runs on each
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robot Ri concurrently. If cij violates its τ -interval, the
costs are collected in a set Cvi (lines 6–11). Robot Ri
checks cij ∈ Cvi altogether whether they satisfy θ(X∗).
The checking returns Vi ∈ {0, 1} where Vi = 0 means
that the cost changes turn out not to violate θ(X∗) and
otherwise Vi = 1. This is done by substituting cost vari-
ables in θ(X∗) for the initial and changed costs (line 13).
If Vi = 0, the algorithm terminates. Otherwise, Ri finds
another robot, initiates communication to it, first request-
ing and then receiving changed cost set Cva . We assume
there is at least one robot in communication range. If there
is no such robot,Ri can increase transmit power, navigate,
or wait until a robot is found. If any Ri ultimately re-
turns Vi = 1, global communication is necessary; if none
of the Ri return Vi = 1, their cost changes do not alter
the current assignment, and this fact has been determined
without requiring global communication.

Algorithm 4 INCREMENTALCOMM

Input: The current n× n cost matrix C, C, and C̄
Output: Indicator variables {V1, · · · , Vn}

1 l = 1, V1, · · · , Vn = 0, Cvi = ∅
2 X∗ = HUNGARIAN(C)

3 θ(X∗) = SA(X∗,C)

4 T = TA(θ(X∗),C) . . . . . . . . . . . . . . . . . . . . . . // compute τ -intervals:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . //Tij = [cij − τij , cij + τij ]

5 Distribute θ(X∗) and Tij to corresponding Ri

. . . . . . . . . . . // Below runs on each robot Ri concurrently // . . . . . . . . . . .
6 for j = 1 to n . . . . . . . . . . . . . . . . . . . . // i is fixed to each robot’s index
7 if cij < cij − τij and cij + τij > c̄ij . . . . . . . // if Tij is violated
8 Vi = 1 . . . . . . . . . . . . // there is at least one violation in Ri’s cost
9 Cvi = Cvi ∪ cij . . . . . . . . . . . . . . . . . . . . . // collect violated costs
10 end if
11 end for
12 while |Cvi | ≤ n2 . . . . . . . . . . . . . . . // while not all costs are included
13 Vi = CHECK(θ(X∗), Cvi ,C) . . . . . . . . . . // check Cvi altogether
14 if Vi = 0

15 break
16 end if
17 (Ra, Cva ) = FINDADJACENT(Ri) . . . //Ra is an adjacent robot
18 Cvi = Cvi ∪ Cva

19 end while
20 return Vi . . . . . //Vi = 1 if global comm. needed, otherwise Vi = 0

6.6 Complexity analysis

Computing θ(X∗) via the exact SA has O(kn2) time
complexity where k is the number of feasible solutions.
Each feasible solution has (n − 1)2 linear boundaries so
there are at most k(n − 1)2 boundaries. Alg. 1 computes

the boundaries for one feasible solution thus it has O(n2)
time complexity. Alg. 2 is dominated by the SA compu-
tation (i.e., determining θ(X∗)) which is repeated in the
while loop (line 18). Iteration continues as new θ(X∗)s
are found. The time complexity is, thus,, thus,, thus,, thus,
O((kn2)N ) where N is the number of possible assign-
ments in C.

The time complexity of the partitioning method de-
pends on the number of row/column exchanges in the
n × n matrix (which is the sum of all N assignments).
In the worst case, all rows and columns are exchanged so
the complexity is O(n2). Alg. 3 executes Alg. 2 first, and
an O(n3) LP runs N times, giving O((kn2)N +Nn3) =
O((kn2)N ). If the output of Alg. 2 has already been com-
puted, the complexity of Alg. 3 is O(Nn3). Alg. 4 in-
cludes SA so is dominated by it, but the remainder of the
procedure, which runs on each robot has O(n) time com-
plexity.

Except for Alg. 1, all the algorithms do not have poly-
nomial time complexity because they employ SA. How-
ever, RANDSA (Alg. 1) runs fast while producing high-
quality solutions (which will be shown in Sec. 7.1) so it
serves as a useful replacement for SA. Even with SA, the
algorithms work well for small instances since the costs
are incurred prior to task execution. So long as the robots
have a few minutes in the “huddle” they are able to com-
plete the computation.

7 Experiments

We consider two scenarios where cost—traveling time—
would change depending on the situation. Both employ
the same assumptions as the example in Sec. 5.4. The first
one is a rescue scenario shown in Fig. 7(a). In a city cen-
ter, 10 victims (red stars) are inside a disaster site (black
polygon) and 10 robots (blue circles) are outside. The
robots navigate into the site while pushing debris. The
robots move with 1 m/s speed and meet debris every 10 m.
The time to push one object is tw ∈ [0, 1]. The second
scenario is a multi-robot navigation problem in an urban
area shown in Fig. 7(b), where 30 Robots and 30 tasks
are uniformly distributed in a bounded area. The robots
move at 10 m/s and encounter a traffic signal every 300 m.
The waiting time for the signal is tw ∈ [0, 30]. Distances
from the robots to the tasks are collected using the Google
API [12]. The raw data are in meters but converted to time
(sec) by considering the moving speeds of the robots. The
system is with Intel Core i5, 8G RAM and MATLAB.
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Table 1: The running time of Alg. 1 (10 repetitions).
n 5 10 15 20 25 30 35 40

Time 0.0390 0.1710 0.9940 2.614 11.47 42.70 62.03 136.1
Std. Dev. 0.0208 0.0628 1.092 1.431 9.795 29.88 36.63 91.39

(a) A rescue scenario. Stars are vic-
tims and circles are robots.

(b) A navigation scenario.
Randomly distributed robots
and tasks inside the box.

Figure 7: Experimental setup for the multi-robot naviga-
tion problem. The marked robots and tasks in (a) are spe-
cially chosen for Sec. 7.3.
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Figure 8: The box plot of the running time of Alg. 1 (10
repetitions).

7.1 Computing θ(X∗)

The running times of the exact method SA are 0.0180,
0.0410, 0.4370, 53.19 sec for n = 3, 4, 5, 6, respectively
(standard deviations are 0.0063, 0.0185, 0.0607, 4.5368,
and 10 repetitions). The exact method would not be ap-
propriate if the problem size is large but can be used for
small problems if few minutes of upfront computation
time are allowed before robots are dispatched. With large
sizes, Alg. 1 can help decrease running-time. Practically,
the algorithm produces near-optimal solutions quickly.
Fig. 8 and Table. 1 show the running time of Alg. 1 with
10 repetitions. The standard deviation increases as the
problem size grows because there are more cases that the
set of variables with randomly chosen ones cannot pass
the rank test, which incur repetitions of the random sam-
pling.

As discussed in Sec. 6.1, Alg. 1 computes a partial set
θ′(X∗) of the complete set θ(X∗) (by finding H ′ ⊂ H).
The solution quality can be measured by the ratio of the
partial set to the complete set. However, the running time
for computing complete sets is prohibitive for large in-
stances, so we use a Monte Carlo method to check solu-
tion quality. An n × n cost matrix C is sampled from
a uniform distribution U(10, 20) and the optimal assign-
ment X∗ for C is computed by HUNGARIAN. Then we
sample an n × n perturbation matrix from U(−10, 100).
It is added to C so we get a perturbed cost matrix (which
represents changed costs within C). Let Cp and X∗p be
a perturbed cost matrix and its optimal assignment (also
computed by HUNGARIAN), respectively. If θ′(X∗) does
not contain Cp (i.e., the changed costs violate the set of
boundaries) but X∗p is the same with X∗, it means that Cp
is in between θ(X∗) and θ′(X∗), which is the region of
the complete set that the partial set does not cover. This
case represents a false positive. We repeat the random
perturbation 10,000 times and count false positives. It is
shown that the solution qualities exceed 0.99 in average
(10 repetitions).

It is worth noting that the high-quality could be exag-
gerated since the area which the random perturbed ma-
trices occupy would not sufficiently cover all of the un-
derestimated part of the exact area covered by θ(X∗). For
example, the perturbed costs would stay around their orig-
inal cost. They likely result in the solution qualities close
to optimal since the perturbed costs only cover the part
where true positives dominate. But practically, our choice
of the distribution of perturbations (U(−10, 100)) is rea-
sonable in the sense that it produces relatively large per-
turbations (cost changes) to the original costs which are
uniformly distributed over [10, 20].

Even though Alg. 1 shows a good performance, we use
the exact method in the following experiments to find a
theoretically complete region since the topic of this paper
is not about improving running time per se.

7.2 Reducing futile effort
If the robots can establish global connection, θ(X∗) can
be used in a very useful way. Robots report cost changes
to the central unit which then checks if the updated costs
violate θ(X∗). If they do not, the current optimal assign-
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Figure 9: Comparisons of different approaches with re-
spect to cost changes.

ment is preserved, and the team keeps working as before
(no other computation is needed, no other robots need be
notified of the cost change).

We compare systems with HUNGARIAN, 1-D intervals,
and SA to see how efficiently they deal with cost changes.
Suppose that there are multiple consecutive updates to
costs. A system using HUNGARIAN must execute the al-
gorithm at every update to ascertain whether the updated
costs alter the current assignment. Some re-computations
find new assignments, but the others would return the
same assignment as before. The methods using a 1-D in-
terval for each cost (e.g., the IHM discussed in Sec. 2)
save some re-computation, attempting a new assignment
when any of the intervals are violated. Nevertheless some
re-computation would still be in vain because the method
fails to consider simultaneous cost changes. Lastly, a
system with SA does not recompute an assignment un-
less changed costs actually alter the current assignment.
It only executes the valid re-computations. We measure
the number of valid re-computations with the same cost
changes. We compare HUNGARIAN and the 1-D cuts of
θ(X∗), which are equivalent to IHM, and θ(X∗).

Given an arbitrary n × n cost matrix (for n =
3, 4, 5) uniformly sampled from [0, 1], an optimal as-
signment was computed. Then 50 random perturba-
tion matrices, uniformly sampled between [0, 2], are
added to the cost matrix. The result is shown in
Fig. 9 and Table 2. The success rate is computed
by (# of valid re-computations/# of re-computations)×
100. The result clearly shows that SA reduces unneces-
sary computations and communication. We note that the
amount of upfront computation is not compared here. Al-
though SA has the smallest amount of computation at run-
time, it may need the largest computational resources at
planning time because SA is the most expensive in terms
of computation. HUNGARIAN needs no upfront computa-
tion as it does not plan ahead. 1-D is cheaper than SA as
there is a variant [17] runs in polynomial time. However,
communication and computational resources at run-time
are much expensive than those at planning time, so the
benefit of using SA is still obvious.
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(a) The rescue scenario.
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(b) The navigation sce-
nario.
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(c) Tasks with spacial
locality.

Figure 10: The result of partitioning. Frequency means
the number of sub-teams found in 20 trials.

7.3 Partitioning a team of robots
For each scenario, we randomly choose four robots and
four tasks from the data collected from Google API. For
each chosen problem instance, we check whether the team
has partitions and find sub-teams if it has (proposed in
Sec. 5.1). The result is shown in Fig. 10 and Table 3. In
Table 3, we show the results from 20 runs in each sce-
nario. The frequency indicates the number of runs that
have the particular sub-teams as labeled in the leftmost
column. A label such as 2R:2R, for example, should
be interpreted as there being two sub-teams, each of two
robots. Even though the scenarios do not have obvious
spatial sparsity and/or locality, the algorithm is able to
detect sub-teams when a team has such an underlying
structure. The average running times of two scenarios
are 1.337 sec and 1.905 sec (σ = 0.0951, σ = 0.1448
for 20 repetitions), respectively. We also report results
of partitioning when tasks do have strong spatial locality
(Fig. 10c). Here, the spatial locality means that two robots
and two tasks are located as the marked robots and tasks
in Fig. 7(a).

7.4 Persisting with an initial assignment
We test Alg. 3 that computes the maximum cost loss when
robots persist with the initial assignment and make any
further effort for cost changes. Table 4 shows examples
of maximum cost losses for n = 2, 3, 4. The first col-
umn (PERSIST) shows the largest possible cost sum if the
robots persist with the initial assignment. The second col-
umn (CHANGE) shows the smallest possible cost sum if
they are committed to respond to any cost changes with
communication and re-computation. The difference be-
tween two columns gives the third column (MAX LOSS)
which is the maximum loss of costs if robots persist with
the initial assignment without paying no effort on run-
time cost changes. One (the central unit or an operator)
can decide whether to execute the initial assignment with-
out having any communication and computation using the
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Table 2: Comparisons of different approaches with respect to cost changes. (HUNGARIAN, 1-D intervals, SA.)
n = 3 n = 4 n = 5

Method Attempts Success Rate Attempts Success Rate Attempts Success Rate
HUNGARIAN 50 15 30.00% 50 14 28.00% 50 15 30.00%

1-D 36 15 43.59% 36 14 38.88% 42 15 35.71%
SA 15 15 100% 14 14 100% 15 15 100%

Table 3: The result of partitioning. Frequency means the
number of sub-teams found in 20 trials.

Sub-team size Frequency
Rescue Navigation Locality

1R’s only 0 0 0
1R:3R 4 2 0

1R:1R:2R 0 0 0
2R:2R 4 2 20

No sub-team 12 16 0

Table 4: The maximum loss of persisting with assign-
ment. Some examples of execution results are shown
(navigation scenario). The three columns shows cost sums
(sec).

Size PERSIST CHANGE MAX LOSS

3R 970.2 424.7 545.5
4R 1385 730.2 655.4
5R 716.8 402.3 314.5

cost loss information. If the communication/computation
expenses are prohibitive, it would be beneficial to per-
sist with the initial assignment. For example, if the to-
tal execution time of tasks including the time for addi-
tional communication and computation for dealing with
cost changes takes longer than the suboptimal execution
time of the initial assignment, it is more beneficial for the
robots not to use their time for updating the optimal as-
signment. The the average running times of the algorithm
(including Alg. 2 with the exact SA) are 0.6140, 9.830,
and 262.6 sec (20 repetitions) for n = 3, 4, 5 (standard de-
viations are 0.2941, 2.811, and 97.75, respectively). The
large standard deviations result from the varied N which
is the number of possible assignments in the cost region.
Since we choose the initial cost randomly, some repeti-
tions could have many possible assignments whereas oth-
ers do not. The range of N is [1, n!] so the variance be-
comes larger as n increases.

7.5 Incremental communication

Finally, we show how few communication messages are
actually needed to detect whether optimality has been vi-
olated by cost changes. For each scenario, we compute
the τ -intervals and distribute them to the robots. Each
robot independently performs its task unless its costs vio-
late the τ -intervals. Once a violation is detected, the robot
runs the individual procedure in Alg. 4. For each changed
set of costs, each robot needs to check the violation by
self-assessment (i.e., checking its own costs for all tasks)
or with nearby robots. We record how many robots are
involved with this process for each robot and how many
times such the process occurs until tasks are completed.
A team may have several local communications, but one
robot may require global communication. To understand
such cases, we record the size of the largest neighborhood
needed for communication among the robots. For exam-
ple, the previous case needs global communication even
though only one robot needs it while other robots do lo-
cal checks. Note that we ensure every robot has at least
one violation so all robots execute Alg. 4. We randomly
choose robots and tasks from the data sets. Our experi-
ment varies the team size from three to five. Fig. 11 and
Table 5 show the results (for 20 repetitions). In the follow-
ing, we give an example interpretation of the result in the
navigation scenario (the leftmost bars in Fig. 11b) with
three robots. Among all 20 trials, the self-assessment is
enough until the end of the mission in nine trials, 2-robot
communication is the maximum range in seven trials, and
global communication is needed in the rest four trials. As
the result shows, local communication suffices in many
trials (bold numbers in Table 5). The reported running
time includes the computation time for the τ -intervals and
Alg. 2 with SA.

7.6 Interrelated costs

Since we propose the region-based cost that can represent
interrelationships between costs, we examine the benefit
of using the richer model compared to a simple bounded
cost (like Fig. 2a). We assume that costs have linear re-
lationships and, like Fig. 3(a), the robots share one re-
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Table 5: Frequency of communication ranges. The bold numbers indicate the frequencies of local communications.
For example, in the rescue scenario with three robots (3R), six trials out of 20 only require self-assessment (no inter-
robot communication) until tasks are completed.

Rescue Navigation

Team size
Range Self 2 3 4 5 Time (sec) Self 2 3 4 5 Time (sec)

Mean Var Mean Var
3R 5 10 5 N/A N/A 0.0475 0.0023 9 7 4 N/A N/A 0.0495 0.0018
4R 4 5 5 6 N/A 0.5710 0.0352 5 6 2 7 N/A 0.4685 0.0273
5R 2 6 4 3 5 7.468 11.07 5 7 0 1 7 6.635 14.56
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(a) The rescue scenario.
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(b) The navigation scenario.

Figure 11: Frequency of communication ranges. For
each team size, the left most bar means self-assessment
whereas the right most bar mean global communication.
Local communication is more frequent with Alg. 4.

source to perform tasks. Thus, any vicissitude affecting
the resource changes all costs by the same amount. For
example, if there is a delay on a common route to reach
tasks, all traveling times increase accordingly by the same
amount. We randomly choose an n × n cost matrix and
a scalar value of delay from U(0, 10). We model the re-
lationships of costs through a set of linear equations (e.g.,
cij − cpq = tij − tpq for ij 6= pq where t is a nominal
cost without delay). We first run Alg. 2 to compute all op-
timal assignments under the cost boundary modeling in-
terrelationships of costs. We also run the algorithm with a
simple bounded region for the same instance, which does
not model the interrelationship arising from the shared re-
source.

By modeling costs more accurately considering inter-
relationships, the resulting cost region could be smaller
than the simple bounded cost. This smaller cost region
produces a smaller number of output assignments from
Alg. 2. Thus, the richer model prunes away some scenar-
ios (possible assignment alterations) that the robots do not
have to prepare for. The results (Fig. 12 and Table 6) show
that the number of output assignments is greatly reduced
when interrelationships are modeled (averagely from 9.95
to 1.85 for n = 4). From this analysis, we are able to find
more sub-teams. For example, with the simple bounded
cost, there is only one trial where sub-teams are found. In
the rest 19 trials, no sub-team is found. On the other hand,
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(a) No interrelationship modeled.
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(b) Interrelationships modeled.

Figure 12: The results of partitioning a team of robots
without and with interrelationship modeling (20 trials).
Modeling interrelationships reduces false positives in
computing all possible assignments within a cost region.
Thus, more sub-teams can be found with the smaller num-
ber of assignments.

the richer cost model enables the partitioning method to
find more sub-teams (18 out of 20 trials). In addition, the
reduced N by having a smaller cost region decreases the
running time of the algorithms that iterate their procedure
N times.

8 Conclusion
In this paper, we propose a cost representation that incor-
porates uncertainty in costs and is also capable to express-
ing some interrelationships between costs. The represen-
tation assumes that costs are bounded by a finite region.
We employ a sensitivity analysis approach for multi-robot
task allocation and compare it with other methods, show-
ing that is advantageous when costs change. We also pro-
posed three methods that reduce centralization of multi-
robot systems alongside the basic routine for computing
θ(X∗) and a fast approximate version, which is a random-
ized algorithm. We examined our algorithms with two re-
alistic scenarios and data, not merely randomly generated
matrices. We also show that modeling interrelationships
yields tighter cost regions and hence better predictions for
how the optimality of the task allocation under interre-
lated and uncertain costs.
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Table 6: The results when cost interrelationships are mod-
eled (20 repetitions).

(a) The number of assignments from given cost regions.

Interrelationship Not modeled Modeled
Mean 9.9500 1.8500

Std. dev. 4.2855 1.0984

(b) Frequency of sub-teams found when n = 4.

Partition type Interrelationship
Not modeled Modeled

1R’s only 0 13
1R:3R 0 3

1R:1R:2R 1 1
2R:2R 0 1

No sub-team 19 2

Finally, it is worth noting that the algorithms and re-
sults that are reported work even if an overestimation of
the region of feasible costs is given. More generally, if
robots are permitted to generate global synchronization
events, then even an underestimated version of the region
could be useful. For example, when some cost variation is
found to violate the presumed model, the robot could trig-
ger synchronization with a more pessimistic region. Do-
ing so is analogous to the way most MRTA approaches
operate today: they simply replan when things change.
With region-based models one can hope to find regions
which force replanning less frequently.

Our future work includes the problems occurring if a
modeled cost region is no longer valid owing to some un-
foreseen circumstances. As a result, all the upfront com-
putations done with the outdated cost region might be in-
effective. In this case, the cost region should be updated
with new information collected from observations, and the
upfront computation needs to follow for the updated re-
gion. We are interested in developing methods that find
and use some reusable pieces from the previous results if
such an outdated cost region is detected. Unless there is a
holistic change in the environment which is rare, only few
of costs need remodeling at one point (of course there may
be a series of such cost remodelings as the robots observe
more dynamic changes). We will investigate how we can
prevent a complete restart of the upfront computation if
partial changes in the cost region occur.

A An example transformation from
NOLC to LONC

An example of LONC is maxx1 + x3 − x4 subject to
x21 + x43 ≥ 1 and x22 + x24 ≥ 1. This can be transformed
to max

√
y1 + 4

√
y3 −

√
y4 subject to y1 + y3 ≥ 1 and

y2 + y4 ≥ 1 by substituting yi = x2i for i ∈ {1, · · · , 4}.
Now the transformed objective function is convex and the
constraints are linear, which is NOLC.
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