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Abstract

Increasingly, marine robots and unmanned surface vehicles will be de-
ployed in rivers and riverine environments. The structure produced by
flowing waters is worth investigating because it may be exploited for pur-
poses of estimation, planning, and control. This report adopts a widely
acknowledged model for the geometry of watercourse channels, namely
sine-generated curves, as a basis for estimators that predict the shape
of the yet unseen portion of the river. Predictions of this sort help a
robot to choose actions which anticipate the future, for example, in throt-
tling speeds to round a bend. After examining how to reparameterize
standard filters to incorporate this model, we compare the performance of
three Gaussian filters and show that nonideality and theoretical challenges
(of non-linearity, multi-modality/periodicity) degrade the performance of
standard Kalman filters very severely, but can be successfully mitigated
by imposing an interval constraint. Thereafter, we present results of a
constrained interval Kalman filter on data from three natural rivers. The
results we report, including data from simulation, on map-based data, and
on GPS positions collected from a boat on the Colorado river, show the
effectiveness of our method on the estimation of meander parameters.
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1 Introduction

Rivers have a degree of predictability that is important. The birth of civiliza-
tion was, as we best understand it, critically linked to rivers and the regularity
of their flooding. Still, the näıve impression of rivers as mostly straight water-
courses is quite erroneous. As geologists Leopold and Langbein [4] write, “in
fact, it is almost certain that the distance any river is straight does not exceed
10 times its width at that point.” The fact that rivers do not erode to form
straight lines, minimizing the source-to-sea distance, is a puzzle which remained
a source of confusion for many years. The question attracted the attention of
no less than Einstein, who, in 1926, clarified the process of river bank erosion
(and the related paradox of loose tea leaves moving to the center of a stirred
cup), overturning the accepted model at that time [2]. It is now understood
that meanders are no accident but that they form because the river does the
least work in snaking along its course, turning first this way, then that, many
times.

Inevitably, as more and more applications are conceived, autonomous sur-
face vehicles will advance beyond open water scenarios to be deployed more
widely. Rivers and riverine environments present many interesting and impor-
tant opportunities because they are arteries carrying fresh water—a precious and
all-too-scarce resource; because they are sites of ecological diversity—including
unique fauna and flora; and because they are corridors of commerce—several
rivers are of especial historical and cultural significance. But streams and rivers
pose significant difficulties too. As Synder et al. [8] observe “prior map infor-
mation on water hazards and obstacles is not dependable and does not have the
accuracy needed for precision navigation and sensor directed reconnaissance.”
Meanders, in particular, present challenges because they hamper long-distance
observation and occlusion increases uncertainty. Inevitably, watercraft navigat-
ing a river for the first time have only limited understanding of stretches of
water lying ahead.

Fortunately, meandering rivers possess considerable regularity: meanders
have been shown to be well-characterized by a sine-generated curve, of which the
angular direction at any point with respect to the mean down-valley direction
is a sine function of the distance measured along the channel [4]. This report
explores how this model can serve as the foundation for estimators that fuse
observations to make predictions of the shape of unseen portions of the river (see
Fig. 1). Essentially, the model provides a parsimonious state space over which
our filters operate, this representational economy being translated into efficiency.
The output of the estimation process is valuable for making control decisions,
for example, in selecting reference trajectories or paths for a controller to track,
or, more simply, in imposing velocity bounds to slow down the vehicle as it
approaches a bend. Predictions of river geometry can provide rich information
especially when combined with other domain knowledge. A great deal that is
useful for navigation can be gleaned, as illustrated by the following passage:

“River boatmen navigating upstream on a large river face the problem
that the deepest water, which they usually prefer, tends to coincide with



Figure 1: This report formulates and compares estimators that model river
meanders to predict the shape of the channel ahead of the robot. Such estimates
could be helpful in choosing the appropriate throttle to apply in rounding the
next bend, or in picking trajectories for the controller to track.

the streamline of highest velocity. Their solution is to follow the thalweg
(the deepest part of the river, from the German for ‘valley way’) where
it crosses over the center line of the channel as the channel changes its
direction of curvature but to cut as close to the convex bank as possible
in order to avoid the highest velocity near the concave bank.” [4]

As readers may anticipate, the periodic nature of the model presents some
challenges for a standard extended Kalman filter. Indeed this is the case and, as
will be clearly shown, these issues affect performance in practice. Our first step
was to adopt a parameterization of meander geometry (Section 3) and then to
seek an understanding of how classical Gaussian filters would behave using the
model. This examination, which we report in Section 4.1, involved comparison
of the performance of three Gaussian filters in tracking and predicting the river’s
centerline. It led us to recognize the importance of constraints on the state space
to ensure the estimate is confined to a single period, guaranteeing unimodality.
Thereafter, we investigated the performance of this superior, constrained filter
on data from three natural rivers in detail (Sections 4.2–5). In the next section,
however, we discuss relationships to the relevant literature.

2 Related work

2.1 Models of river meanders

Langbein and Leopold [4] first proposed the sine-generated curve model of river
meanders, formalized as:

θ(s) = A sin

(
2πs

M

)
, (1)



where θ(s) is the angle in radians between the direction of flow and the mean
down-valley direction. The mean down-valley direction is a reference axis ori-
ented along the centerline of the meandering pattern, pointing downstream; as
the name indicates, it reflects the broad slope of the land. Note that θ(s) is a
function of the maximum angle A in radians, spatial period per meander M in
meters and s, which is the distance along river from the apex of a left-hand bend
in meters. This form was proposed because it minimizes the sum of squares of
change in direction and also total work in bending.

Thereafter, Thakur and Scheidegger [10] examined the statistical distribu-
tion of angles of deviation with the mean down-valley direction. They confirmed
that the angles of deviation in river courses are normally distributed. Their evi-
dence provides support for the sine-generated curve model and also hints toward
its aptness as a representation for estimation.

Much more recently, Mecklenburg and Jayakaran [5], to sidestep the highly
nonlinear sine-generated curve, proposed a new arc-and-line meander pattern
that represents the meander pattern with connecting arcs and lines; such a
model, while perhaps easier to fit to geological data, does not provide an obvious
state space description—unfortunately making it rather more complicated for
our purposes.

2.2 Estimators from a constrained vs. unconstrained op-
timization perspective

A vast panoply of Bayesian filters have been proposed for parameter estimation.
The present report, being the first we are aware of to study the meander prob-
lem, begins by applying standard estimation techniques. The Kalman filter,
a parametric recursive estimator for systems with Gaussian uncertainty, seems
like a good choice, especially given that a Gaussian distribution is reported
in [10]. However, as the meander problem is not linear, we must turn to various
progeny of the classical Kalman filter.

For nonlinear systems, the extended Kalman filter (ekf) and the unscented
Kalman filter (ukf) are the most commonly used Gaussian filters. The ekf
linearizes system dynamics using the first term of the Taylor series expansion,
which requires the calculation of Jacobians or Hessians. The ukf approximates
the state distribution by generating weighted samples, or so-called sigma points,
deterministically from the state distribution [3]. Both filters, at each iteration,
are two-step estimators that include a prediction step and a measurement update
step. Compared to the ekf, the ukf has comparable computational complexity
while being shown to yield more accurate results, at least to the second order
of the Taylor series expansion [1]. In the prediction step, the ekf propagates
the previous state estimates through linearized system dynamics. On the other
hand, the ukf first generates sigma points from the previous state estimates
and then propagates them into the system dynamics. The measurement update
step of both filters is a correction of the predicted state estimates from the
measurements. Though seldom seen this way, measurement update steps of



both filters can be regarded as the solution of an unconstrained optimization
problem [13].

Constraints can be introduced, for example, to impose a restriction on parts
of the state space; this leads to constraint Kalman filters, which have been
formulated to integrate additional information of the system into the filter de-
sign. A comprehensive literature review of Kalman filter and its extensions
with state constraints can be found in [7] and [9]. Constraint Kalman filters
can be classified into linear and nonlinear types according to the linearity of the
system transition function and measurement function. Based on the types of
constraints, there are equality and inequality constraint filters.

The unscented recursive nonlinear dynamic data reconciliation (urnddr)
filter [12] improves the way that the ekf obtains the updated state estimates
by solving (numerically) a constrained optimization problem and updates the
state covariance by selecting sigma points and weights like the ukf does. But,
additionally, urnddr solves a constrained optimization problem to ensure that
any state inequality constraints are satisfied in the sigma point updates too.
Taken together, both the updated state estimate and error covariance will satisfy
state space constraint. Unfortunately, this comes at a substantial cost: urnddr
needs much more computation than the ukf and is sensitive to the performance
of the constrained optimization problem solver. For a four-dimensional state
space, at each iteration, it needs to run the solver nine times and, moreover,
estimation terminates when the solver fails to find a solution.

A practical solution, and one which we adopt, is proffered by the constraint
interval unscented Kalman filter (ciukf) of Teixeira et al. [9]. It uses the same
method as urnddr for the selection of 2n+ 1 sigma points χj,k−1 and weights
γj,k−1, where n is the dimension of the state space and j = 0, . . . , 2n.

Equations (2) to (7) are used to generate sigma points that satisfy the in-
terval constraints, xL ≤ χj,k−1 ≤ xU .

χ0,k−1 = x̂k−1|k−1, (2)

χj,k−1 = x̂k−1|k−1 + αj,k−1colj [(P
xx
k−1|k−1)

1
2 ] for j = 1, . . . , n, (3)

χj,k−1 = x̂k−1|k−1 − αj,k−1colj [(P
xx
k−1|k−1)

1
2 ] for j = n+ 1, . . . , 2n, (4)

where for i = 1, 2, . . . , n and j = 1, . . . , 2n:

αj,k−1 = min(colj(β)) (5)

β(i,j) =


√
n+ λ if Γ(i,j) = 0,

min
(√

n+ λ ,
xU,i−x̂i,k−1|k−1

Γ(i,j)

)
if Γ(i,j) > 0,

min
(√

n+ λ ,
xL,i−x̂i,k−1|k−1

Γ(i,j)

)
if Γ(i,j) < 0,

(6)

Γ =
[

(P xx
k−1|k−1)

1
2 − (P xx

k−1|k−1)
1
2

]
. (7)



The weights corresponding to χk−1 are calculated as, for j = 1, . . . , 2n:

γ0,k−1 = bk−1, γj,k−1 = ck−1αj,k−1 + bk−1, (8)

where

ck−1 =
2λ− 1

2(n+ λ)
(∑2n

j=1 αj,k−1 − (2n+ 1)
√
n+ λ

) , (9)

bk−1 =
1

2(n+ λ)
−

2λ− 1

(2
√
n+ λ)

(∑2n
j=1 αj,k−1 − (2n+ 1)

√
n+ λ

) . (10)

The constrained sigma points are then propagated through system transition
function f(χj,k−1, uk) to obtain the predicted sigma points χj,k, where uk is the
control vector at state k.

χj,k = f(χj,k−1, uk) for j = 0, . . . , 2n (11)

x̂k|k−1 =

2n∑
j=0

γj,k−1χj,k (12)

P xx
k|k−1 =

2n∑
j=0

γj,k−1[χj,k − x̂k|k−1][χj,k − x̂k|k−1]T +Qk (13)

Equations (12) and (13) are for computing the predicted parameters state esti-
mate x̂k|k−1 and its error covariance matrix P xx

k|k−1.

χ∗0,k = x̂k|k−1 (14)

χ∗j,k = x̂k|k−1 +
√
n+ λ colj [(P

xx
k|k−1)

1
2 ] for j = 1, . . . , n (15)

χ∗j,k = x̂k|k−1 −
√
n+ λ colj [(P

xx
k|k−1)

1
2 ] for j = n+ 1, . . . , 2n (16)

Based on the predicted parameters state estimate, (14)–(16) are used to calcu-
late unconstrained sigma points χ∗j,k as in standard ukf.

Yj,k = h(χ∗j,k) for j = 0, . . . , 2n (17)

ŷk|k−1 =

2n∑
j=0

γj,k−1Yj,k (18)

P yy
k|k−1 =

2n∑
j=0

γj,k−1

[
Yj,k − ŷk|k−1

] [
Yj,k − ŷk|k−1

]T
+Rk (19)



P xy
k|k−1 =

2n∑
j=0

γj,k−1

[
χj,k − x̂k|k−1

] [
Yj,k − ŷk|k−1

]T
(20)

Kk = P xy
k|k−1(P yy

k|k−1)−1. (21)

In (17), predicted observation sigma points Yk are computed from unconstrained
sigma points χ∗j,k. Predicted observation ŷk|k−1 and its error covariance matrix
are calculated in (18) and (19). Cross-variance between parameters and obser-
vation P xy

k|k−1 is computed in (20). Kalman gain Kk is then calculated in (21).

Finally, the mean and error covariance matrix of the updated state estimate are
obtained by (22) and (23), where θ̄k is the measurement at state k:

x̂k|k = arg min
{xk}

[
(θ̄k − h(xk))T(Rk)−1(θ̄k − h(xk)) +

(xk − x̂k|k−1)T(P xx
k|k−1)−1(xk − x̂k|k−1)

]
, (22)

subject to the following constraints: xL ≤ xk ≤ xU ,

P xx
k|k = P xx

k|k−1 −KkP
yy
k|k−1K

T
k . (23)

Above, (22) solves the constrained optimization problem only for the sampled
mean of the state distribution, instead of solving 2n+1 constrained optimization
problems for 2n + 1 updated sigma points. Thus, as a result, the ciukf opts
to weaken the constrained requirement for variances compared to the urnddr
method. It, instead, uses the standard ukf method as in (23) to obtain the
state covariance.

3 Formulation and approach

Estimating meander parameters using the model in (1) requires the robot to
measure the mean down-valley direction and to start at the apex of a left-hand
bend. Such requirements are excessively unreasonable for autonomous vehicles
and are limiting, if they cannot be overcome. By including offset and scaling
parameters, we introduce a new function for the river’s centerline:

θ(s) = A sin(Bs+ C) +D, (24)

where s is the distance along the river from the robot’s initial location; θ(s) is
the angle between the direction of flow and magnetic East in radians; A is the
maximum angle in radians; B is the spatial frequency in radians per unit length;
C is the phase shift in radians; D is the angle between the mean down-valley
direction and magnetic East. In addition to the spatial frequency B, the spatial
period M is computed as:

M =
2π

B
. (25)

Fig. 2 shows a illustration of the parameters A, D and M .



Figure 2: Illustration of the parameters A, D and M .

3.1 Problem Formulation

Consider a river meander centerline that is well-characterized by the following
sine-generated curve in a Cartesian coordinate system:

y1(s) =

∫ s

0

cos(θ(τ)) dτ + y1(0), (26)

y2(s) =

∫ s

0

sin(θ(τ)) dτ + y2(0), (27)

θ(s) = A sin(Bs+ C) +D. (28)

Collecting A, B, C and D into a single parameter vector to be estimated, we
define the state describing the river as:

x =
[
A B C D

]T
. (29)

We assume that the robot is equipped with sensors that can measure the
coordinates (y1(k), y2(k)) of locations along the river’s centerline, a distance sk
along river from an initial point (y1(0), y2(0)), and the angle θk ∈ [−π, π) be-
tween the direction of flow and magnetic East, where the subscript k denotes
the kth measurement. To simplify this problem, the measurements of sk (dis-
tances along the river) are treated as perfect and, therefore, sk ≤ sk+1. We are
concerned with θ at sk, but of which only an imperfect observation, denoted
θ̄k, can be made; we assume that its error, vk, is normally distributed with zero
mean and variance Rk. Since we are assuming measurements of the watercourse
centerline, nothing need be assumed about the river width.

We desire an estimate of the parameters xk at a point (y1(k), y2(k)) given
spatially discrete sensor readings. With these definitions in place, at each state
k the river meander estimation problem is formulated as follows.

3.2 Filter Design

The sine-generated curve model exhibits nonlinearity in three of the four param-
eters [A B C D]T, none of which are directly observable. Nevertheless, we wish



Problem 1: River Meander Estimation
Input: Prior belief of state N (x̂k−1, Pk−1)
Input: An observation N (θ̄k, Rk)
Input: Distance sk along the centerline from initial point
Output: Posterior belief of state N (x̂k, Pk)

to enable the robot to estimate these parameters in real-time. The non-linearity
precludes a standard Kalman filter, so we began by implementing ekf and ukf
solutions.

The prior studies by geologists treat the sinusoidal parameters as fixed con-
stants over the region of the river under study. We expect that over long dis-
tances these parameters may drift but, as we have no a priori transition model
for any of the four variables, we assume constant parameters for each river. Of
course, if other information is known it can be incorporated too; we have:

xk = Txk−1 + µk (30)

where the transition matrix T is the 4×4 identity matrix I. To account for grad-
ual drift in the values, it is prudent to add system process noise µk ∼ N (0, Qk)
to the state transition equation, where Qk is the process-noise covariance ma-
trix. (We have Qk as a diagonal matrix, because error of each parameter is
assumed to be independent.)

For the measurement update step of the filter, we choose the meander di-
rection angle θ̄k as the (sole) observed variable because it has been confirmed
to be normally distributed [10]. Perhaps the obvious alternative, using the
Cartesian coordinates of points on the meander centerline, does not have this
statistical property and, moreover, the measurement model for the coordinates
(equations (26), (27)) is complicated. In contrast our measurement function is
given by:

θ̄k = h(xk, sk) = A sin(Bsk + C) +D + vk, (31)

where vk ∼ N (0, Rk) is the measurement error. The Jacobian matrix Hk

for the observation model is given as:

Hk =
∂θ(s)

∂xk

∣∣∣∣
xk=x̂k|k−1,s=sk

= [sin(Bsk + C) AB cos(Bsk + C)

A cos(Bsk + C) 1]. (32)

Since Kalman filters, along with various extensions thereto, represent be-
lief over their state space with a multivariate normal distribution, they can do
poorly (even breaking down) when the distribution is not unimodal [11]. Regret-
tably, the state space distribution of meander parameters is not unimodal. The
periodic nature of sine functions poses a problem: even exact observations could
confirm an infinite number of values. For example, parameters [A B C D]T and
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Figure 3: State weighted error of constraint interval unscented Kalman filter
vs. Number of measurements. The ekf and ukf produce estimates that are
divergent. Plots show estimates of mean and variance computed from 30 inde-
pendent simulations for each filter. Measurements are made every 5 m, though
the three curves are of different scales. The horizontal axis is in units of the
ground truth curve’s spatial period.

[A B (C + 2nπ) D]T represent the same sine-generated curve for any integer
number n. The probabilistic analogue, thus, has multiple modes. These infi-
nite modes make it impossible to approximate the state distribution as a single
Gaussian or a Gaussian Mixture [6]. We approach this problem by using the
ciukf to incorporate the fact that it is unimodal when parameters are con-
strained inside a single period (for a proof of unimodality, given the constraints,
refer to the Appendix).

We implement a ciukf based on the algorithm given in [9] and the system
dynamics in (30) and (31). The posteriori state estimate x̂k is computed by
solving the constrained optimization problem described in the following equation
numerically:

x̂k = arg min
{xk}

[
(θ̄k − h(xk, sk))T(Rk)−1(θ̄k − h(xk, sk)) +

(xk − x̂k|k−1)T(P xx
k|k−1)−1(xk − x̂k|k−1)

]
subject to: xL < xk ≤ xU , (33)

where the observation model is given in (31).

4 Results

This section reports measures of the performance of the estimators in three
separate evaluations. In Section 4.1, we first consider a simulated setting where
the ground truth is both known and is a true sine-generated curve. Since the
true parameters are known, we can measure error of the estimate exactly. Even
in these circumstances that are much simpler than customarily encountered,
the ekf and ukf leave much to be desired. The second and third evaluations



involve estimation on river meanders using map-based data (Section 4.2) and
GPS positions collected from a boat (Section 4.3). Of course, these meanders
are only approximately characterized by the sine-generated curve model, but
the data show that the ciukf is able to provide useful predictions for the robot
nevertheless.

4.1 Evaluation on sine-generated curves

For real rivers, one determines the scale of a meander from its spatial period M .
The longer the spatial period, the larger the scale of the meander. Leopold and
Langbein [4] presented the data collected from two meanders of the Mississippi
River near Greenville, Mississippi (USA) and the Blackrock Creek in Wyoming
(USA) to illustrate their model. Comparing the meander of the Mississippi River
has spatial period of about 20 miles, while Blackrock Creek is of much smaller
scale with a period of 700 feet. Here, we choose three curves with different
spatial period to examine the filter performance of estimations on meanders
with different scales.

Comparisons of performance of the ekf, ukf and ciukf on sine-generated
curves c1, c2, c3, of which the ground truth parameters are:

xc1 =

[
1

2π

500

2π

3

π

4

]T
, (34)

xc2 =

[
1

2π

1000

2π

3

π

4

]T
, (35)

xc3 =

[
1

2π

2000

2π

3

π

4

]T
. (36)

The initial state and its covariance matrix are given as

β0 = [π/2
2π

1500
π/2 π/2]T, (37)

P0 =


1 0 0 0
0 0.01 0 0
0 0 1 0
0 0 0 1

 . (38)

The measurement covariance matrix R, the process covariance matrix Q,
and the sampling distance ∆s, i.e., the distance between two sequential mea-
surements, are initialized as

R =
π

6
, (39)

∆s = 5 m, (40)

Q = 0. (41)

The ciukf lower and upper limits, xL and xU , were

xL = [0 0 0 0]T and xU = [2.2 0.1 2π 2π]T. (42)



Figure 4: After taking measurements (shown in blue) part of the way along
the Brazos River, 100 samples are drawn randomly from the ciukf estimator’s
current state distribution. Main image takes samples up to 8995 m from the
designated start, lower-left up to 3975 m, and lower-right takes 12 957 m. These
are plotted forward from this point to show predictions for the still unseen
portion of the river. The curve in yellow is the river’s actual centerline that the
robot has not observed yet. Transparency corresponds to normalized probability
of the sample.

The upper limit for parameter A was selected to be 2.2 rad because the sine-
generated curve model generates meanders with closed loops for values of A
above approximately 2.2 rad, cf. [5]. And the upper limit for B is set to
0.1 m/rad, since we ignore the meanders with spatial period less than 62.83 m.
Error corrupted observation is introduced to the filter by adding zero mean
Gaussian error with standard deviation of π/18 rad to the true measurements.

For all estimation results reported in this report, the filters were initialized
as described in this scenario, except that for real data, no additional Gaussian
noise was added to the measurements, nor is the sampling distance treated as
fixed.

A standard measure of performance in literature on the Kalman filters and
its extensions [7,9] is the root-mean-square error (rmse) of each state. However,
we found it necessary to adopt a different indicator because the spatial frequency
parameter, B, has a much smaller order than the other parameters, especially
for large-scale meanders, yet affects the quality of predictions rather acutely. We
decided instead to use the weighted error of the estimated parameters, defined
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Figure 5: Plots showing estimation quality of ciukf on the Brazos River data.
Left: (a) Blue dots are data points and the solid orange line shows the estima-
tor’s fit after 225 measurements. Right: (b) State weighted error calculated as
data arrive (error estimated with all measurements used as ground truth).

Figure 6: An analogous plot to that of Fig. 4 but for the L’Anguille River. It is
a substantially smaller watercourse. In the main image the samples are drawn
after 647 m, for the lower-left after 369 m, and for the lower-right after 991 m.
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Figure 7: An analogous plot to that Fig. 5 but for the smaller L’Anguille River.
Left: (a) Blue dots are data points and the solid orange line shows the estima-
tor’s fit after 159 measurements. Right: (b) State weighted error calculated as
data arrive (error estimated with all measurements used as ground truth).

as

εk = (x̂k − xci)T(Pk)−1(x̂k − xci), (43)

where xci denotes the ground truth for the sine-generated curves. The similarity
between (33) and (43) is worth clarifying: the measurement update steps of all
three filters can be regarded as the solution of an optimization problem, for
which the objective function is simply weighted least squares [13]. The first
term in (33) is concerned with the immediate sensor reading; we discard its
contribution and the second term forms the basis of the state weighted error
metric, as it uses the same matrix, P−1

k , for the weights.
Representative results using the three filters on the curves appear in Fig. 3,

which shows mean and variances summarizing 30 independent simulations per
filter. The vertical axis is the logarithm (base 10) of weighted error of estimated
parameters at each state. The horizontal axis shows the observation data set for
each curve, for twice the spatial period of each curve, with measurements with
an inter-sample distance of 5 m. The convergence of ciukf’s stands in clear
contrast to the degradation of the estimates of both the ekf and ukf.

4.2 Evaluation on map-based data

The verisimilitude of the sine-generated model will always be imperfect for real
rivers. In a sense, the preceding evaluation gives best possible conditions for an
estimator and, thus, gives ample justification to dispense with the ekf and ukf
further.

In order to provide realistic river data as input to the ciukf, we manually
labeled rivers on maps within Google Earth. Longitudes and latitudes of points
on two centerlines of the Brazos River near Lake Whitney, Texas (USA) and the
L’Anguille River near Caldwell, Arkansas (USA) were collected and processed to
provide measurements for the filter. Satellite photographs of these two meanders
are shown in lower-center insets in Fig. 4 and Fig. 6.



As before, we purposefully used input data at different scales. The total
distances traversed in the datasets for the rivers are 15 929 m and 1849 m, re-
spectively. There are 225 labeled points with average sampling distance of 70 m
for the meander centerline of the Brazos River, and 159 labeled points with
average sampling distance of 11 m for the meander centerline of the L’Anguille
River. Fig. 5(a) and Fig. 7(a) show the measured and the ciukf estimated
directional angles of both meanders, where the angles are computed using (24)
and red line is plotted using the estimated parameters after the final measure-
ment. In order to track the performance of the filter over the distance along the
flow, we have constructed the weighted error at each state, see Fig. 5(b) and
Fig. 7(b), using (43), where here parameters estimated after all measurements
is taken to be the ground truth in lieu of any alternative.

A more direct and perhaps a more meaningful visualization of the estimate
is to produce sine-generated curves using sampled parameters from the estima-
tor, and convert those into Universal Transverse Mercator (UTM) coordinates.
Fig. 4 and Fig. 6 show predictions of the river forward of where the robot has
traveled. Fig. 4 shows the visualization of estimates at 3975 m (lower-left in-
set), 8995 m (main figure) and 12 957 m (lower-right inset). Fig. 6 shows the
visualization of estimates at 369 m (lower-left inset), 647 m (main figure) and
991 m (lower-right inset). The transparency of predicted meanders indicates the
normalized probability densities of the samples.

4.3 Evaluation using data collected on a boat

To further get a sense of how capable the estimator would be for use on a
robot, we used data collected in situ from a boat navigating an extended stretch
of river. We hired a ski-boat (along with an experienced pilot) and collected
GPS positions of the boat trajectory on the Colorado River starting from noon,
4th Sept. 2016. To get an overall sense of the entire dataset, Fig. 10 shows
the trajectory tracked on our homeward leg, returning from the furthest point
reached back to the dock, with a distance of 40 593 m. The entire trip was twice
this one-way length, for which we made 8366 measurements with an average
sampling distance of 10 m. The measurement frequency for the GPS sensor was
10 Hz. The average speed for the boat was 10 m/s, though the boat is capable
of a maximum speed roughly double that.

Turning first to data collected on the outward journey, we applied ciukf
using parameters identical to before on the first stretch of 14 900 m for which
there are 1370 measurements with average sampling distance of 10 m. Fig. 8
provides a visualization of estimates at 5020 m (lower-left inset), 9651 m (main
figure) and 12 030 m (lower-right inset) on the outward journey. The filter fits
a sinusoidal curve to the measurements in a manner comparable to previous
data. Fig. 8 shows additional detail on convergence for this part of the journey.
However, in the next the section, we apply the filter over a longer stretch of the
Colorado River, with a far less satisfactory outcome.

We are also interested in situations where the boat does not to follow the cen-
terline exactly owing to uncertainty. To simulate this situation we corrupted the



Figure 8: Plots analogous to those in Figs. 4 & 6 for data collected from GPS in
a boat on the Colorado River. In the main image the samples are drawn after
5020 m, for the lower-left after 9651 m, and for the lower-right after 12 030 m.
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Figure 9: Plots analogous to those in Figs. 5 & 7 for GPS data from the boat on
the Colorado River. Left: (a) Blue dots are data points and the solid orange line
shows the estimator’s fit after 1370 measurements. Right: (b) State weighted
error calculated as data arrive (error estimated with all measurements used as
ground truth).



Figure 10: The trajectory the boat travelled on the Colorado River, TX (USA).

GPS positions with noise through the addition of random displacements. Vec-
tors vd, in polar coordinates (rvd , θvd), are randomly drawn from distributions
rvd ∼ N (20, 25) and θvd ∼ U(0, 2π). The mean value of the displacement mag-
nitude, 20 m, is inappreciable compared to the length and width of the meander.
Nevertheless, Fig. 11 (a) shows that the added displacement vectors introduce
non-negligible errors into the estimate of direction. As shown in Fig. 11 (b), it
also takes more steps for the ciukf to converge. In our experiments, the boat’s
skipper may have deviated from the true river centerline, but one would expect
that the error introduced by an experienced pilot would be less than the noise
introduced synthetically in the preceding evaluation.
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Figure 11: Plots analogous to those in Figs. 5, 7 & 9 for GPS data from the boat
on the Colorado River, but with noise added. Left: (a) Blue dots are data points
and the solid orange line shows the estimator’s fit after 1370 measurements.
Right: (b) State weighted error calculated as data arrive (error estimated with
all measurements used as ground truth).
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Figure 12: State weighted error of predictions made by the ekf. The horizontal
axis is in units of the ground truth curve’s spatial period.

5 Further analysis and outlook

5.1 Assessing sensitivity to choice of initial conditions

In Section 4.1, we presented estimation results for true sine-generated curves
with fixed initial parameters. To further evaluate the sensitivity of the ap-
proach to the given initial variance we ran additional tests. We randomly gen-
erated 30 pairs of initial variances where δA, δC , δD ∼ U(0.8, 1.2) and δB ∼
U(0.008, 0.012). (These ranges were chosen on the basis of the geological in-
terpretation of these four parameters and, as a result, these meander param-
eters cover a large portion of all possible rivers on Earth.) The curves in
Figs. 12 and 14 show that neither the predictions made by the ekf, nor those
of the ciukf, are sensitive to initial covariance matrices. For ukf, in Fig. 13,
the maximum and minimum state weighted error differ by more than 4 magni-
tudes. The degradation of all estimates using ekf and ukf further support our
suggestion that ciukf is the preferred choice.

5.2 Quantifying confidence in the predictions

The curves in Figs. 4, 6, and 8 show that predictions generally improve with
additional measurements, but also that there are parts of river bends that devi-
ate from the sine-generated curve model. In judging curves by sight alone one
can easily be mislead. What is desired is a measure of precision with an obvi-
ous interpretation: we wish to have a general sense of how useful the resulting
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Figure 13: State weighted error of predictions made by the ukf. The horizontal
axis is in units of the ground truth curve’s spatial period.
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Figure 14: State weighted error of predictions made by the ciukf. The hori-
zontal axis is in units of the ground truth curve’s spatial period.
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Figure 15: Prediction confidence vs. look-ahead distance for the (top) Brazos,
(center) L’Anguille, and (bottom) Colorado Rivers. The 1st, 2nd, and 3rd refer
to the three positions on meanders shown in Figs. 4, 6 and 8, respectively.

predictions will be for subsequent planning. If the estimator’s output is to be
used by a robot to select its actions, for example, in bounding throttling speeds
as the boat rounds a bend, a metric that relates to some notion of risk as a
function of distance ahead of the boat seems prudent.

We introduce a measure, that we call the prediction confidence, which serves
to quantify that proportion of predictions (weighted by the probability) falls in-
side the river. The idea is that one can tolerate some imprecision, but misclassi-
fying riverbank for water is crucial mistake. This confidence is most meaningful
when thought of as a curve that falls off a one looks further up the river. We
define Wk, the prediction confidence at state k, as:

Wk(sahead) =

∫ +∞

−∞
min

(
sin

sahead
, 1

)
Pr (x | x̂k, Pk) dx, (44)

where Pr (x | x̂k, Pk) is the probability density of the normal distribution with
mean x̂k and variance Pk, sahead is the look-ahead distance and sin is how
far the look-ahead distance remains inside the riverbanks. The value of sin is
computed starting from the Cartesian coordinates of the position at sk. (Note
that, up to this point, the report has considered only the centerline of any river;
computation of sin also requires knowledge of the river’s breadth.)
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Figure 16: The estimator clearly fails to converge on this long stretch of data,
in contrast to successes on local portions of the data. After fusing 4183 mea-
surements, it appears to ignore the ‘high-frequency’ structure in the angular
data.

Fig. 15 shows the prediction confidence versus look-ahead distance for three
positions on meanders shown in Figs. 4, 6, and 8. This quantifies the improve-
ment in prediction as the filter processes more observations (from the first loca-
tion to the second, and to the third), indicating how the robot can have more
confidence in its estimation. Analyzing these curves allows one to understand
the horizon over which a planner might safely and profitably operate.

5.3 Nonstationarity in the meander model

Following the evaluation reported in Section 4.3, we attempted to run ciukf
on the full homeward trajectory taken by the boat, shown in Fig. 10. The
measured and the end-location ciukf estimated angles are shown in Fig. 16 in
a plot similar figures before. In this case, the failure of ciukf to fit a sinusoidal
curve to the measured directional angles is obvious. We posit that this failure
is because the overall trajectory of the river is not sufficiently well-characterized
with a sine-generated curve for any choice of parameters.

One might have better success on this full trajectory if it is regard as a
piecewise concatenation of multiple sine generated curves, each with local sine-
generated curves. One may be able to reset the filter once a series of measure-
ments indicate poor fit and converge (from the prior) to a good local character-
ization. (This is not an entirely idle speculation, as the data in Fig. 9 are very
similar to a window in Fig. 16, one being part of the outward journey, the other
being the full return journey.) Alternatively, with a better understanding of
how non-stationarity is manifest in river meanders, one may be able to capture
this in (30). These remain directions for future work.

6 Limitations and issues for future work

This work represents a first examination of how structure induced in rivers by
their flowing waters can be exploited to help robots tasked with navigating such
waters. We have shown that it certainly is possible to use such structure to help
provide reasonable predictions of what lies around the next bend, but the pre-
dictions produced are not yet useful for control. For one thing, in watercourses



of the scale used for conducting our evaluation, any ASV would certainly have
amble time to react without prediction. At 10 m/s, a reactive control policy
would certainly suffice—it remains to be seen whether small craft navigating
on narrow channels of water would be able move at sufficient speed to need
predictions of this form.

Even if it is not the case that models of rivers based on geological data
are directly useful for control, such models can help with planning and other
computations operating at slower timescales. Examples include applying such
models to infer features of the river for which the riverbank geometry is a useful
indicator, such as the thalweg (mentioned on pg. 3), and the flow characteristics
affected by the shape (but also width) of the river. When additional data, like
measurements of how rapidly elevation is changing, and other domain knowledge
are fused, the result has the potential to provide rich task-level information.

In Section 5.3 we have discussed the challenges of non-stationarity in the
sine-generated curve model. In future work we are interested in examining
parameterizations which involve a sum of sinusoids or a composition of a sinusoid
and a cubic spline to approximate larger structural properties.

7 Conclusion

In this report, we have shown how to use a simple but classical geological model
of watercourses to parameterize estimators. The periodic and non-linear form
of the model, while quite natural seeing as river meanders are themselves char-
acteristically periodic phenomena, poses challenges for straightforward Kalman-
based filters. Our results provide convincing evidence that imposing state space
constraints to ensure unimodality improves the quality of prediction estimates,
helping achieve convergence. The model of meanders has been shown to be
applicable across an impressive range of scales, from small streams to cross-
continental rivers. In our evaluation too, we examine diverse scales of river.
When the observations are from a part of the river that is well-described by the
meander model, no matter the particular scale of the river, the estimates are
sufficient to aid a planner.

More broadly, the regularity induced by a flowing stream of water represents
an important opportunity for the roboticist. Relatively little research has in-
corporated such structure, but the present report provides only one example of
a rich lode ready for exploitation.
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Figure 17: The boat used for data collection, see Section 4.3.
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Appendix

We provide a proof for the unimodality of the state distribution within the
constrained interval (xL, xU ]. Consider two trigonometric functions:

θ1(s) = A1 sin(B1s+ C1) +D1, (45)

θ2(s) = A2 sin(B2s+ C2) +D2, (46)

where s ∈ [0,∞) and if x1 = [A1 B1 C1 D1]T, and x2 = [A2 B2 C2 D2]T, where
xL and xU are defined in (42). If xL < x1 ≤ xU and xL < x2 ≤ xU , then the
unimodality follows when, for all s ∈ [0,∞),

x1 6= x2 =⇒ θ1(s) 6= θ2(s). (47)

By rearranging θ1(s) = θ2(s) we have:

A1 sin(B1s+ C1)−A2 sin(B2s+ C2) = D2 −D1. (48)

Here D1 = D2 because the left-hand side of (48) cannot equal a non-zero con-
stant. Then we write (48) as:

A1 sin(B1s+ C1) = A2 sin(B2s+ C2). (49)

where either A1 = A2 = 0 (which is prohibited by the lower constraint xL) or
neither. Also sin(B1s + C1) and sin(B2s + C2) are non-zero for some s, since



x1, x2 > xL = [0 0 0 0]T. So by rearranging (49) we have:

A1

A2
=

sin(B2s+ C2)

sin(B1s+ C1)
. (50)

To make the right hand side of the preceding a constant value of A1

A2
, we can

get:

B2s+ C2 = B1s+ C1 + kπ, or (51)

B2s+ C2 = −B1s− C1 + kπ, k ∈ Z, (52)

where (52) is prohibited by the positivity of B1 and B2. When k is odd, then
from (51) we have A1 = −A2, which is prohibited by the lower constraint xL.
Therefore, k must be even and A1 = A2. For even k in (51), we obtain B1 = B2

and C2 = C1 + kπ. As C1, C2 ∈ (0, 2π], we conclude that C1 = C2. Thus

θ1(s) = θ2(s) =⇒ x1 = x2, (53)

and unimodality of the state distribution follows from the contrapositive.
We note that the interval we have taken is maximal in possessing the non-

periodicity for, if the xL < xk constraint is relaxed to xL ≤ xk, then we find
there are multiple solutions to and (53) holds no longer.
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