
Analyzing Uncertainties in Cost:
Mitigating Centralization in
Multi-Robot Task Allocation∗

Changjoo Nam and Dylan A. Shell†

February 8, 2015

Abstract

We consider the problem of finding the optimal assignment of tasks
to a team of robots when the costs associated with the tasks may vary.
This arises often because robots typically update their cost estimates
and re-compute task assignments to deal with dynamic situations (e.g.,
the addition of new robots to the team, arrival of new tasks, or the
revelation of new information). This paper describes a way to com-
pute a sensitivity analysis that characterizes how costs may alter from
current estimates before the optimality of the present assignment is
violated. Using this analysis, robots are able to avoid unnecessary
re-assignment computations.

By exploiting this analysis, we propose multiple methods that help
reduce global communication and centralized computations. First,
given a model of how costs may evolve, we develop an algorithm that
partitions a team of robots into several independent cliques, which
can maintain global optimality by communicating only amongst them-
selves. Second, we propose a method for computing the worst-case cost
sub-optimality if robots persist with the initial assignment and per-
form no further communication and computation. Lastly, we develop
an algorithm that assesses whether cost changes affect the optimality

∗This paper is an extended version of [1].
†Both authors are with the Department of Computer Science and Engineering at Texas

A&M University, College Station, Texas, USA. {cjnam,dshell} at cse.tamu.edu



of the current assignment through a succession of local checks. Ex-
perimental results show that our proposed methods reduce the degree
of centralization needed by a multi-robot system.

1 Introduction

Multi-robot task allocation (MRTA) addresses optimization of collective
performance of a robot team by reasoning about which robots should per-
form which tasks. In general, each robot estimates the costs of performing
each task, then these estimates are shared by robots over a communication
network. Most often an optimal assignment is computed by a central com-
putation unit (e.g., most approaches using the Hungarian method [2], an
auctioneer [3], or a linear programming framework). But while robots are
executing their assigned task, the assumptions under which costs were cal-
culated may turn out to be invalid: the environment may change, robots
may fail, or a variety of other unexpected situations may emerge. One solu-
tion which ensures a fluid response to these contingencies, is to periodically
re-calculate costs and re-compute the optimal task assignments. This solu-
tion incurs computational and communication expense proportional to the
desired recency.

We are interested in the MRTA problem where an instantaneous scalar
estimate of a cost may be inappropriate or invalid. This arises naturally when
there is uncertainty in some state used in computing the costs, or when the
costs evolve as tasks are performed and the estimates are out of date. In
this paper, we model costs for a task as varying within some prescribed
range. For example, the autonomous robot in Fig. 1 is able to estimate its
shortest and longest driving times (which may be used as cost measures) to
a destination by considering information about its route. The lower bound
of the time would be merely the time spent on driving (distance over the
maximum speed), and adding the maximum waiting time for traffic signals
yields the upper bound1.

Sensitivity analysis (SA) has been studied for several decades in Opera-
tions Research to assess the robustness of optima for an optimization problem
to perturbations in the input specification [4], [5], [6]. Analysis of an optimal
assignment must compute a region where costs within that region preserve
the current optimal assignment. However, SA has found limited applicabil-

1For simplicity, we assume an absence of congestion and acceleration/deceleration here.



t1=[0, 10] t2=[0, 15]

Figure 1: A simple example where task costs which are not precisely known to the robot
beforehand. The driving time c to the destination will vary depending on the traffic signals.
A lower bound c is d

vmax
when t1 = t2 = 0, and an upper bound c̄ is d

vmax
+ 25 (assuming

the robot drives with the maximum speed) where d is the distance to the destination and
vmax is the maximum speed.

ity to multi-robot task-allocation problems: the analysis assumes that the
decision maker (its counterpart in multi-robot systems is the central compu-
tation unit) is able to access all information off-line and has control all over
the constituents without communication constraints. The physically dis-
tributed nature of multi-robot systems and their limited communication and
computational resources pose challenges to the direct application of classical
SA.

We use ideas from SA to develop methods that explore questions pertinent
to resource limitations in multi-robot systems. For a given problem instance,
these methods reduce global communication and centralized computation, or
quantify the optimality trade-offs if communication is avoided. This paper
makes the following contributions:

• We develop an algorithm that analyzes the cost structure for a given
assignment. It seeks cliques in the team, factorizing the group into
sub-teams that are able to work independently, communicating only
among themselves, forgoing global communication but without sacri-
ficing global optimality.

• We consider the problem of deciding whether it is beneficial to per-
sist with the current assignment even if cost changes mean that it is
no longer optimal. We develop a method for computing the worst-
case cost sum if the robots retain their current assignment, allowing
one to decide whether to persist with the current assignment because
the computational/communication expense needed for re-assignment is
prohibitive.

• We examine how, once costs change, the robots can determine whether



the current task assignments are sub-optimal with minimal communica-
tion. Each robot may compute a safe (one-dimensional) interval within
which any cost variation does not affect optimality. But even if a cost
violates these bounds, other costs may have changed too, and optimal-
ity may still be retained when the cost changes are considered together.
We introduce a method that incrementally increases the dimensional-
ity of the bounding region, growing the number of costs considered by
communicating with adjacent robots. Global communication may be
required in the worst case but oftentimes local computation can reach
the conclusion that the assignment is still optimal.

2 Related Work

Some authors have proposed reoptimization schemes for multi-robot sys-
tems, allowing updated assignments to be computed efficiently. Mills-Tettey
et al. [7] describe a dynamic (or incremental) Hungarian method that repairs
initial optimal assignment to obtain a new optimal assignment when costs
have changed. Also, Shen and Salemi [8] present a decentralized dynamic
task allocation algorithm that uses a heuristic searching method. These al-
gorithms still use computational resources for those cost modifications which
end up with the same assignment.

Liu and Shell [9] propose the interval Hungarian method (IHM) to manage
uncertainties in costs. Given an optimal assignment, the algorithm computes
the maximum interval of each cost in which costs within the interval do not
change the current optimal assignment. Thus, robots are able to decide how
a cost change affects the optimality of the current solution. However, the
algorithm treats the problem of multiple cost modifications, which do occur
naturally in multi-robot systems (e.g., a single robot failure affects n costs),
in an ad hoc fashion. The same authors also propose a sparsification and
partitioning method to distribute the assignment problem to reduce global
communication and re-assignment [10]. The method coarsens the utility ma-
trix by using locality and sparsity of tasks. Once the matrix is partitioned
into several clusters, each cluster is able to compute an assignment inde-
pendently. Inspired by that work, we propose a factorization method for
problems where mere single time-step sparsity is not enough.



3 Problem Description

3.1 MRTA with Changeable Cost

For n robots and m tasks, we assume we are given costs cij ∈ R≥0 that
represent the cost of the i-th robot performing the j-th task. The robots
should be allocated to tasks with the minimum cost sum. Let xij be a binary
variable that equals to 0 or 1, where xij = 1 indicates that the i-th robot
performs the j-th task. Otherwise, xij = 0. Assuming that for each i and j,
cij has a range cij ≤ cij ≤ c̄ij in which a cost can have any value within the
range. Then a mathematical description of the MRTA problem is

min
n∑
i=1

n∑
j=1

cijxij (1)

subject to

n∑
j=1

xij = 1 ∀i, (2)

n∑
i=1

xij = 1 ∀j, (3)

0 ≤ xij ≤ 1 ∀{i, j}, (4)

xij ∈ Z+ ∀{i, j}. (5)

For simplicity here we have assumed that n = m. (This is without loss
of generality, since if n 6= m, dummy robots or tasks would be inserted to
make n = m.) We also make use of matrix representations C and X∗ that
are n× n matrices representing a cost matrix and an optimal assignment of
the problem, respectively. Similarly, C and C̄ are matrices of cij and c̄ij. We
note that C is not necessarily a hyper-cuboid bounded by upper and lower
bounds. C also can be convex hyper-polytopes if cost changes are bounded
by such a region.

3.2 Background: Applying Sensitivity Analysis to MRTA

Since the early work of Gal [4] several decades ago, Sensitivity Analy-
sis (SA) has been recognized as an important method in linear program-
ming (LP). We present a tiny review based on the comprehensive study of



Ward and Wendell [5] to help introduce SA. We will confine the discussion
to changes in the objective function coefficients (i.e., costs).

Let k be an index of a basic index set in which a set consists of basic
variables2 of a feasible solution. For each k, critical region Rk is a set of costs
where an optimization problem has the same solution Xk for any cost vector
c ∈ Rk. More formally,

Rk = {c ∈ Rs : cNk
− cJkB−1k ANk

≥ 0} (6)

where s = n2, and Jk and Nk indicate basic and nonbasic variables, respec-
tively. Bk and ANk

are constraint matrices of basic variables and nonbasic
variables.3 cJk and cNk

are costs of basic and nonbasic variables. Note that
the critical region is a polyhedral cone with nonempty interiors if c ∈ Rs [5].

The MRTA problem can be posed as an Optimal Assignment Problem
(OAP), which can be relaxed to a special case of LP, and the LP formulation
of MRTA may make use of SA.4 However, the OAP is degenerate [11] (see
Appendix for details of degeneracy) and so needs a special treatment to use
the analysis. We introduce the optimal coefficient set

θ(X∗) = {c ∈ Rs : X∗ is optimal for Eq. 1–5} (7)

in which c ∈ θ(X∗) yields the optimal solution X∗. In nondegenerate cases,
R1 = θ(X∗) where k = 1 means the index set of the best solution among
feasible solutions. In degenerate cases, one should compute θ(X∗) as:

θ(X∗) =
⋃
k∈H

Rk, (8)

where H = {k : X∗Jk = B−1k , X∗Nk
= 0}, which means the union of critical

regions of all degenerate solutions. Note that θ(X∗) is also a polyhedral set
[5, Theorem 17]. Geometrically, all linear boundaries of Eq. 8 cross the origin
because Eq. 8 is a union of linear boundaries in Eq. 6 that pass the origin
(all zero RHS values). In addition, coefficients of linear boundaries are −1,
0 or 1 because Bk and ANk

are from a totally unimodular coefficient matrix.

2A variable is basic if it corresponds to one of the vectors in the basis, given a feasible
basis to a linear-programming problem.

3From the constraint matrix of an optimization problem, columns corresponding to
basic and nonbasic variables form Bk and ANk

, respectively.
4Technically, this relaxation requires c ∈ Z+. We skip over details of construction of a

GCD for the (inevitable) rational representation within a computer.



An n × n MRTA problem (with n robots and n tasks) has n2 variables.
Owing to degeneracy, the problem has 2n − 1 basic variables and (n − 1)2

nonbasic variables. From Eq. 6, we find that each Rk has (n − 1)2 linear
boundaries.

3.3 Problem Statement

With a centralized system, computing the results of the SA for the multi-
robot task-assignment problem is straightforward. The central unit computes
an optimal assignment with the latest costs and Eq. 8. Robots then report
cost changes to the central unit and which then checks if they violate θ(X∗).
If the change does not alter the current optimal assignment, the team keeps
working as before (no other computation is needed, no other robots need be
notified of the cost change).

The centralized approach is simple to implement but often undergoes
problems arising from the distributed nature of multi-robot systems. Espe-
cially, maintaining global connectivity in multi-robot systems is expensive,
and the quality of communication changes drastically [12]. We aim to develop
methods for distributing the assignment problem to alleviate dependence on
the centralized structure: (i) factorizing a team of robots into cliques if such
cliques exist (Fig. 2(a)), (ii) computing the cost difference between the worst-
case cost sum (if the robots persist their initial assignment) and the best-case
cost sum (if they reassign tasks) (Fig. 2(b)), and (iii) communicating locally
to decide whether a re-assignment is necessary with cost changes (Fig. 2(c)).

In (i), we find all N possible assignments with a cost matrix C, which
is changeable, to factorize a team of robots without locality and sparsity of
tasks. The challenge is how to find N assignments. A brute-force method is
computing all assignments for all costs in the hyper-cuboid, but it is impos-
sible because there is an infinite number of cij ∈ [cij, c̄ij].

Once optimal assignments X∗q and their θ(X∗q ) for q = 0, · · · , N are com-
puted by resolving the challenge in (i), (ii) can be solved by finding Cminq in
each θ(X∗q ) and compute

max(C̄X∗0 − CminqX
∗
q ) (9)

for q = 0, · · · , N where X∗0 indicates the initial optimal assignment. In other
words, Eq. 9 is the cost difference between the minimum among cost sums,
where robots change their assignments for the recent cost updates, and the
maximum cost sum if robots maintain their initial assignment.



(a) Factorizing a team into
smaller cliques.

(b) Persisting an initial as-
signment.

(c) Local communication to
check optimality violations
of costs.

Figure 2: The methods to mitigate centralization in MRTA. (a) Cliques could be found
by analyzing θ(X∗q ) for q = 0, · · · , N , where N is the number of all possible assignments
with given C. (b) The maximum cost loss is computed for which robots do not have
communication and persist an initial assignment even with cost changes. (c) Robots have
local communication to check whether their changed costs violate the current θ(X∗).

If robots have one-dimensional intervals of their costs in which any cost
change within its interval does not alter the current assignment regardless
of other cost changes, the robots can work independently until any of their
own intervals is violated. In (iii), such intervals should be computed and
distributed to robots. If a robot finds one of its intervals is violated, the
robot checks itself whether θ(X∗q ) is violated by looking at its all other costs.
If other cost changes countervail the violation, the current assignment is
preserved. Otherwise, the robot communicates with an adjacent robot to
consider more cost changes. Global communication may be required in the
worst case, but local communication is often enough.

3.4 An Example

We show a simple scenario and how the proposed methods can be used
concurrently. We consider a multi-robot navigation problem, which is a
multi-robot version of the example shown in Fig. 1. Suppose we have three
autonomous robots (R1,2,3) and three destinations (T1,2,3) as shown in Fig. 3.
Time is the measure of cost. The goal is to have one robot at each destina-
tion while minimizing the total sum of traveling times. We assume that the
robots drive through the shortest path, and each intersection has a traffic



𝑹𝟏 

𝑹𝟐 𝑹𝟑 

𝑻𝟏 

𝑻𝟐 

𝑻𝟑 

𝟏𝟎𝟎𝒎 

5𝟎𝒎 

𝒕𝒘 = [𝟎, 𝟏𝟎] 

m/s 

(a) A multi-robot navigation exam-
ple.

𝑅1 

𝑅2 

𝑅3 

𝑇1 𝑇2 𝑇3 

[10, 30] 

[20, 60] 

[10, 30] 

[20, 60] 

[10, 30] 

[20, 60] 

[30, 80] 

[20, 50] 

[10, 40] 

(b) The cost matrix corre-
sponding to (a).

Figure 3: An example of an MRTA problem with changeable costs. We have three robots
(R1,2,3) and three destinations (T1,2,3). The goal is to have one robot at each destination
while minimizing the total sum of traveling time. Since the costs could vary within the
ranges in (b), there are multiple assignments possible. The proposed methods can be used
concurrently to analyze the assignments and to have less centralized operations.

signal. The waiting time at each signal is tw ∈ [0, 10]. Again, we assume
that robots drive at the maximum speed (10 m/s) when they move, and we
do not model delays from congestion and acceleration/deceleration. The
corresponding cost matrix is shown in Fig. 3(b).

The initial optimal assignment is X∗0 =
( 1 0 0

0 1 0
0 0 1

)
. If global communication

and computation are reliable and not prohibitively expensive, the robots
may use SA directly. If not, the central unit computes the maximum cost
difference (ii) to decide whether the robots respond to changes. The worst
cost sum when the robots keep the initial assignment is 100, and the best
cost sum when they consider cost changes is 50 (i.e., when X∗1 =

( 0 0 1
0 1 0
1 0 0

)
. If

the central unit decides that the difference (loss) 50 is too large, it tries to
find cliques (i) but there is no such clique in this example. Therefore, the
robots finally cope with cost changes in an incremental fashion (iii) from
local communication.

4 Algorithms

In this section, we briefly describe our implementations of computing
Eq. 8. Then we propose three methods for the problems stated in the previous



section.

4.1 Computing θ(X∗)

4.1.1 An exact method

A feasible solution must include n optimal variables (correspond to op-
timal assignments). Among the remaining n2 − n variables, n − 1 variables
need to be chosen to complete a feasible solution which consists of 2n − 1
basic variables. Our implementation enumerates all |k| =

(
n2−n
n−1

)
feasible so-

lutions to compute Eq. 8. The running time grows factorially as the input
size increases. However, the interiors of Rk may overlap and θ(X∗) could
be covered by a subset of Rk. A method such as [13] can be used to find
nonoverlapping subsets of θ(X∗) which requires less effort than enumerating
all feasible solution sets.

4.1.2 An anytime algorithm

We develop an anytime algorithm to facilitate a faster computation of
θ(X∗). A partial enumeration of degenerate solutions bring an incomplete
θ(X∗), but an incomplete set often takes a large portion of the complete
θ(X∗). From this observation, we implement an anytime algorithm that
enumerates degenerate solutions and computes corresponding critical regions
(Eq. 6) as much as possible with given time.

4.2 Factorizing a Team of Robots

Factorization can be done by analyzing all possible assignments X∗q for
q = 0, · · · , N computed by Alg. 1. An assignment problem has at least
4-dimension (two robots and two tasks) so it is hard to visualize geometry of
the problem. Thus, we describe a figurative 2-D representation in Fig. 4(a).
One difference of the 2-D representation from higher dimensional cases is
that all linear equations in θ(X∗) are greater or equal to zero (see Eq. 6),
but the upper boundary of θ(X∗) in Fig. 4(a) has the opposite inequality.

We have an initial optimal assignment X∗0 and its θ(X∗0 ) (Alg. 1, line 2-3).
l is an arbitrary linear boundary in θ(X∗). If the objective value is greater or
equal to zero when l is maximized over the shaded area5 (line 6), l contains
the entire cost set (the shaded area C in Fig. 4a). Otherwise, the shaded

5All l should be maximized because of the inequalities of them (see Eq. 6).



area is not covered by l (see Fig. 4b) thus a cost on l is perturbed to find a
new θ(X∗) that includes the rest of C (line 12-22). Once the current θ(X∗)
is expanded by perturbing points (i.e., costs), newly found θ(X∗q ) are merged
and checked also. The algorithm terminates if θ(X∗) completely includes C.
It returns all X∗q and θ(X∗q ) found.

In Fig. 4(a), the direction of a perturbation is toward c′. The magni-
tude ε of the perturbation should be carefully chosen because a large ε may
skip some θ(X∗q ) on the way. We describe how we determine the optimal
magnitude and the direction of a perturbation.

Theorem 4.1. Let l be an arbitrary linear boundary in θ(X∗). The magni-

tude of a perturbation ε to perturb an arbitrary point p on l of |p|
n

will not
miss any θ(X∗).

Proof . Let l be the normal of an arbitrary linear boundary l in θ(X∗). From
line 6 in Alg. 1, we have c′, which is an extreme point of C outside of the
current θ(X∗). The projection of c′ onto l is

p =
c′ · l
|l|2

l.

Suppose that lc is the normal vector of the nearest boundary to l (other than
itself). Let q be a vector orthogonal to lc. The direction of movement from
p to q is along a vector

pnew = p + d(q− p)

where d = |p| tanψ is the magnitude of the move. We look for the minimum
d because pnew is toward the closest boundary. tanψ is an increasing function
in (−π

2
, π
2
). Therefore, if ψ is minimized, d is also minimized.

Normalized vectors of the above vectors are denoted as l̂, l̂c, p̂, ˆpnew, and
q̂. Since l̂ ⊥ p̂ and l̂c ⊥ q̂, the angle between l̂ and l̂c is ψ as well. Therefore,
l̂c · l̂c = cosψ. Since ψ = arccos l̂c · l̂c, ψ is minimum at maximum l̂c · l̂c.

As we discussed in Section 3.2, coefficients (normals) of linear boundaries
in θ(X∗) are −1, 0, or 1. To make a dot product of two normals of boundaries
maximum, the boundaries should have the maximum number of 1’s (or the
maximum number of −1’s). 1̂ is the case but two boundaries should be
distinct. Therefore, the product of 1√

n2
[1 1 1 · · · 1 1] and 1√

n2−1 [1 1 1 · · · 1 0] is

the maximum, that is n2−1√
n2
√
n2−1

where n is the dimension of the cost space.



O c1c1

c2

c2

c1

c2

c'

p
l

lc

θ(X*)

pnew

ψ

q

(a) A 2-D figurative picture.

O c1

c2

O c1

c2

(b) Objective values of two cases.

Figure 4: A 2-D figurative representation of cost space. (a) Bold lines represent linear
boundaries (hyperplanes) of θ(X∗) and the shaded area represents a cost matrix C bounded
by C and C̄. (b) If a boundary does not cover all shaded area, the objective value of
maximization over the area is negative (left). Otherwise, the value is nonnegative (right).

Now we have ψmin = arccos n2−1√
n2
√
n2−1

. Therefore,

dmin = |p| tan(arccos
n2 − 1√
n2
√
n2 − 1

) = |p| 1√
n2 − 1

,

which is the distance to the closest boundary along pnew. We set a safe
magnitude of perturbation ε = |p|

n
, which does not skip any θ(X∗). �

Cliques can be found easily by summing the assignments found: XC =∑N
q=0X

∗
q . If there are elements with zero in XC , the robot-task pairs are

never assigned. If a block diagonal matrix can be found, the main diagonal
blocks represent cliques. With local communication and computation within
each clique only, the robots achieve global optimality.

4.3 Choosing to Persist with the Initial Assignment

The pseudocode is shown in Alg. 2. All assignments X∗q and θ(X∗q ) for
q = 0, · · · , N are given by Alg. 1 (line 1). For each θ(X∗q ), find the minimum
costs Cq over θ(X∗q ) with the bounds C, and C̄ (line 3). For each q, we have an
assignment X∗q and the minimum cost Cminq . In line 6, minCminqX

∗
q returns

the minimum cost sum ofN assignments. On the other hand, we can compute
the maximum cost sum if robots do not change their initial assignment,
by computing C̄X∗0 . Therefore, line 6 gives the maximum cost loss when



Algorithm 1 FindTheta

Input: An n× n cost matrix C0, C, and C̄
Output: A set of assignments X∗q and θ(X∗q ) for q = 0, · · · , N

1 i = 0, q = 1
2 X∗0 = Hungarian(C0)
3 θ0(X

∗) = SA(X∗0 , C0) // compute Eq. 8.
4 θ(X∗) = θ0(X

∗)
5 while (1)
6 (c′i, obji) = linprog(li, C, C̄,max) // max li over the bounds.

// li: i-th linear boundary in θ(X∗)
7 if obji ≥ 0 // if C does not satisfy li ≥ 0,
8 i = i+ 1
9 if i = |θ(X∗)| // if all linear boundaries in θ(X∗) are checked,
10 break
11 end if
12 else // perturb a point p on li toward c′ to find a new X∗ and θ(X∗).
13 p = c′·li

|li|2 li // p is a projection of Xi onto li.

14 ε = |p|
n

15 pnew = p + ε(c′ − p)
16 Cq = reshape(pnew, n) // reshape a vector to an n× n matrix.
17 X∗q = Hungarian(Cq)
18 θ(X∗q ) = SA(X∗q , Cq)
19 θ(X∗) = θ(X∗) ∪ θ(X∗q )
20 i = 0
21 q = q + 1
22 end if
23 end while
24 return {X∗0 , · · · , X∗N} and {θ(X∗0 ), · · · , θ(X∗N)}



robots persist the initial assignment while having no communication and
re-assignment.

Algorithm 2 MaxLoss

Input: An n× n cost matrix C0, C, and C̄
Output: A maximum cost difference cworst

1 ({X∗0 , · · · , X∗N}, {θ(X∗0 ), · · · , θ(X∗N)}) = FindTheta(C0, C, C̄)
2 for q = 0 to N
3 (c′q, objq) = linprog(c, θ(X∗q ), C, C̄,min)

// minimize costs over θ(X∗q ) with the bounds.

4 Cq = reshape(~c′q, n)
5 end if
6 cworst = max{C̄X∗0 −min(CminqX

∗
q )}

7 return cworst

One can decide with cworst whether to persist with the initial assignment
by considering the computational/communication expense of a re-assignment.

4.4 Incremental Communication

θ(X∗) can be summarized in different ways to show relevant information
about the effect of cost changes. A one-dimensional cut yields a lower and
an upper bound for each cost. This interval is valid if all other costs remain
unchanged. But α-dimensional cuts allow simultaneous changes of the α
costs, but n2 − α costs must remain unchanged. The tolerance approach
finds the maximum tolerance percentage of the costs that finally gives a
tolerance region. The region is a hyper-cuboid in which each dimension is
bounded by an interval cij − τij ≤ cij ≤ cij + τij where τij ∈ R≥0. (See [5]
and the more recent advance by Filippi [14] for details.)

This intervals (call this τ -interval for distinction) is not larger than the
1-D cuts of θ(X∗), but they are independent from other cost changes. It
is attractive in multi-robot systems because robots do not need any com-
munication for cost changes, unless their own intervals are violated by cost
changes. On the other hand, even though one of a robot’s costs violates
its τ -interval, other cost changes countervail the violation. For example, an
increase of a cost violates the interval, but a decrease of another cost could
retain the optimal assignment. We develop an algorithm shown in Alg. 3
that incrementally checks a violation from a robot itself to adjacent robots.



θ(X∗0 ) and τ -intervals of the initial assignment are computed and dis-
tributed to robots (line 2-5). Then the following procedure runs on each
robot Ri concurrently. If cij violates its τ -interval, the costs are collected in
Cvi (line 6-11). Ri checks cij ∈ Cvi altogether whether they satisfy θ(X∗0 ).
(Use cij of C0 for cij /∈ Cvi .6) The checking returns Vi ∈ {0, 1} where Vi = 0
means that the cost changes turn out not to violate θ(X∗0 ) and otherwise
Vi = 1. It can be done simply by substituting cost variables in θ(X∗0 ) by
the initial and changed costs (line 13). If Vi = 0, the algorithm terminates
and return Vi to the central unit. Otherwise, Ri finds an adjacent robot and
receives its changed cost set Cva .7 If any of Ri finally returns Vi = 1, the
robots need global communication; if none of Ri returns Vi = 1, their cost
changes do not alter the current assignment, and this fact is checked without
global communication.

4.5 Complexity Analysis

Computing θ(X∗) has O(|k|n2) time complexity where |k| is the number
of degenerate solution sets. Each k has (n − 1)2 linear boundaries so there
are at most |k|(n − 1)2 boundaries. Alg. 1 is dominated by θ(X∗) compu-
tation in the while loop (lines 5–23). Each loop iterates if a new θ(X∗) has
found. Therefore, the time complexity is O((|k|n2)N) where N is the number
of possible assignments with cost matrix C. Alg. 2 executes Alg. 1 first, and
an O(n3) LP runs N times. Then it has O((|k|n2)N + Nn3) = O((|k|n2)N).
Alg. 3 includes Alg. 1 so is dominated by it, but the remainder of the proce-
dure, which runs on each robot has O(n) time complexity (we ignoring the
costs of inter-robot communication in this analysis). If Alg. 2 follows after
executing Alg. 1, its complexity is O(Nn3) since it uses the output of Alg. 1.

The worst-case time complexity is not polynomial to input size because
N and |k| are on the order of a factorial of n. However, not all cij ∈ R≥0
are likely to be considered because it is a bounded region, and the number
of possible assignments is manageable. Also, |k| can be reduced by using
known methods such as that in [13], as discussed.

6This needs an assumption that cij /∈ Cvi remain unchanged.
7We assume there is at least one robot in range. If there is no such robot, Ri can

navigate or wait to have a robot.



Algorithm 3 IncrementalComm

Input: An n× n cost matrix C0, C, and C̄
Output: Indicator variables {V1, · · · , Vn}

1 l = 1, V1, · · · , Vn = 0, Cvi = ∅
2 X∗0 = Hungarian(C0)
3 θ(X∗0 ) = SA(X∗0 , C0)
4 T = TA(θ(X∗0 ), C0) // compute τ -intervals: Tij = [cij − τij, cij + τij]
5 Distribute θ(X∗0 ) and Tij to corresponding Ri

// Below lines run on each robot Ri concurrently.
6 for j = 1 to n // i is fixed to each robot’s index.
7 if cij < cij − τij and cij + τij > c̄ij // if Tij is violated,
8 Vi = 1 // there is at least one violation in Ri’s cost.
9 Cvi = Cvi ∪ cij // collect violated costs
10 end if
11 end for
12 while |Cvi | ≤ n2 // while not all costs are included
13 Vi = Check(θ(X∗0 ), Cvi , C0) // check Cvi altogether
14 if Vi = 0
15 break
16 end if
17 (Ra, Cva) = FindAdjacent(Ri) //Ra is an adjacent robot
18 Cvi = Cvi ∪ Cva
19 end while
20 return Vi //Vi = 1 if global comm. needed, otherwise Vi = 0.



(a) A rescue scenario. Stars are vic-
tims and circles are robots.

(b) Randomly distributed robots
and tasks.

Figure 5: Experimental setup for the multi-robot navigation problem. The marked robots
and tasks in (a) are specially chosen for Section 5.3.

5 Experiments

We consider two scenarios based on reality where cost is traveling time.
Both employ the same assumptions as the example in Section 3.4. The first
one is a rescue scenario shown in Fig. 5(a). Here, 10 victims (red stars) are
inside a disaster site (black polygon) and 10 robots (blue circles) are outside.
The robots navigate into the site while pushing debris. The robots move with
1 m/s speed and meet debris at every 10 m. The time to push one object is
tw ∈ [0, 1]. The second scenario is the multi-robot navigation problem shown
in Fig. 5(b), where 30 Robots and 30 tasks are uniformly distributed in a
bounded area. The robots move at 10 m/s and encounter a traffic signal at
every 300 m. The waiting time for the signal is tw ∈ [0, 30]. Distances from
the robots to the tasks are collected using the Google API [15]. The raw
data are in meters but converted to time (sec) by considering robots’ moving
speeds.



0 50 100 150 200
80

85

90

95

100

105
Anytime algorithm

%

Time step

Figure 6: The performance of the anytime algorithm. It quickly approaches to 100% which
is the result from the exact method.

5.1 Computing θ(X∗)

5.1.1 An exact method

The running times of the exact method are 0.014, 0.0764, 1.4524, 98.0622
sec for n = 3, 4, 5, 6, respectively (variances are 0.001, 0.006, 0.0021, 0.1947,
and 10 iterations). Since the number of degenerate solutions |k| has facto-
rial growth as n increases, the running time is not fast for larger problem
instances. However, as discussed above, |k| can be reduced. With large sizes,
the anytime algorithm we suggested can help decrease running-time.

5.1.2 An anytime algorithm

As discussed, the anytime algorithm computes smaller area θ(X∗). Fig. 6
shows percentages of the area from the anytime method with respect to the
complete θ(X∗) from the exact method when n = 3. For each time step,
the percentage is measured by 100 uniform samples over cij ∈ [0, 1000],∀i, j.
The anytime algorithm quickly approaches to 100% (at the 220-th step, it
is same with the exact method). This means that θ(X∗) from this anytime
method is likely good enough to useful in most practical instances. Since the
topic of this paper is not about improving running time per se, we use the
exact method to find a theoretically complete region.



Figure 7: Comparisons of different approaches with respect to cost changes.

5.2 Reducing Futile Effort

We compare systems with the Hungarian method, 1-D intervals, and SA
to see how efficiently they deal with cost changes. Suppose that there are
multiple consecutive updates to costs given to the central unit. A system
using the standard Hungarian method must execute the algorithm at every
update to ascertain whether the updated costs alter the current assignment.
Some re-computations find new assignments, but the others would be fruitless
attempts. Employing the 1-D interval method (e.g., iHM) saves some re-
computation, attempting a new assignment when any of the intervals are
violated. Nevertheless some re-computation would still be in vain because
the method fails to consider simultaneous cost changes. Lastly, a system with
SA does not recompute an assignment unless changed costs actually alter the
current assignment. We measure the number of effective re-computations
with the same cost changes. We compare the standard Hungarian method
and the 1-D cuts of θ(X∗), which are identical to the intervals from the iHM,
and θ(X∗).

Given an arbitrary n× n cost matrix (for n = 3, 4, 5), an optimal assign-
ment was computed. Then 50 random matrices, uniformly sampled between
[0, 2], are added to the cost matrix. The result is shown in Fig. 7 and Table 1.
The success rate is computed by (# of assignment changes/# of re-computations)×
100. The result clearly shows that SA reduces unnecessary computations and
communication.



Table 1: Comparisons of different approaches with respect to cost changes. (The Hungar-
ian method, 1-D intervals, sensitivity analysis.)

n = 3 n = 4 n = 5
Method Attempts Success Rate Attempts Success Rate Attempts Success Rate

HM 50 15 30.00% 50 14 28.00% 50 15 30.00%
1-D 36 15 43.59% 36 14 38.88% 42 15 35.71%
SA 15 15 100% 14 14 100% 15 15 100%

1R:3R 2R:2R 4R
0

5

10

15

20

Factorization: Rescue

F
re

qu
en

cy

(a) The rescue scenario.

1R:3R 2R:2R 4R
0

5

10

15

20

Factorization: Navigation

F
re

qu
en

cy

(b) The navigation scenario.

1R:3R 2R:2R 4R
0

5

10

15

20

Factorization: Locality

F
re

qu
en

cy

(c) Tasks with spacial local-
ity.

Figure 8: Factorization results. Frequencies of cliques found (20 iterations).

5.3 Factorizing a Team of Robots

For each scenario, we randomly choose four robots and four tasks from the
data collected. For each chosen problem instance, we run Alg. 1. The result
is shown in Fig. 8 and Table 2 (2R:2R means that there are two cliques of
two robots). Even though the scenarios do not have obvious spatial sparsity
and/or locality, the algorithm is able to detect cliques when a team has such
structure. The average running times of two scenarios are 2.0210 sec and
2.2768 sec (σ2 = 0.1144, σ2 = 0.1851 for 20 iterations), respectively. We
also report results of factorization when tasks do have strong spatial locality
(Fig. 8(c)). Two robots and two tasks are located as the marked robots and
tasks in Fig. 8.

5.4 Persisting with an Initial Assignment

Table 3 shows examples of maximum cost losses for different sizes of
team. One (the central unit or an operator) can decide whether to execute
the initial assignment without having any communication and computation
using the cost loss information. If the communication/computation expenses



Table 2: Factorization results. Frequencies of cliques found (20 iterations).

Clique size
Frequency

Rescue Navigation Locality

1R:3R 4 2 0
2R:2R 4 2 20

4R only 12 16 0

Table 3: The maximum loss of persisting assignment. Some examples of execution results
are shown (navigation scenario). The middle three columns shows cost sums (sec), and
the last column shows running time (sec).

Size Persist Change Max Loss Time

2R 867.4 591.0 276.40 0.0624
3R 1036.6 518.2 518.4 0.8424
4R 1885.2 895.7 989.5 16.1305

are prohibitive, it would be beneficial to persist the initial assignment.

Table 4: Frequency of communication ranges. The bold numbers indicate the frequencies
of local communications. For example, in the rescue scenario, 3-robot team has 6 self
checks and 8 two-robot communications.

Rescue Navigation
XXXXXXXXXXXXTeam size

Range
Self 2 3 4 5

Time (sec)
Self 2 3 4 5

Time (sec)
Mean Var Mean Var

3R 6 8 6 N/A N/A 0.0769 0.0004 11 5 4 N/A N/A 0.0476 0.002
4R 2 5 6 7 N/A 0.5156 0.0471 7 5 1 7 N/A 0.4898 0.373
5R 2 3 6 1 7 20.0539 55.4456 1 6 2 1 10 19.5001 60.9115

5.5 Incremental Communication

Finally, we show how few communication messages are actually needed to
detect whether optimality has been violated by cost changes. For each sce-
nario, we compute the τ -intervals and distribute them to the robots. Each
robot independently performs its task unless its costs violate the τ -intervals.
Once any robot has intervals violated, the robot runs the individual proce-
dure in Alg. 3. For each changed set of costs, we check how many robots are
involved in communicating, and record the frequency of occurrence for this
number. A team may have several local checks, but one robot may require
global communication. In such a case, we record the largest communication
needed among the robots. Note that we ensure every robot has at least one



3-Robot 4-Robot 5-Robot
0

2

4

6

8

10

12
Local communication: Rescue

F
re

qu
en

cy

 

 

Self 2 3 4 5

(a) The rescue scenario.

3-Robot 4-Robot 5-Robot
0

2

4

6

8

10

12
Local communication: Navigation

F
re

qu
en

cy

 

 

Self 2 3 4 5

(b) The navigation scenario.

Figure 9: Frequency of communication ranges. For each team size, the left most bar
means individual check whereas the right most bar mean global communication. Local
communication is more frequent with Alg. 3.

violation so all robots execute Alg. 3. We randomly choose robots and tasks
from the data sets. We change the team size from three to five. Fig. 9 shows
the results (for 20 iterations). In many executions, purely local communica-
tion is enough (bold numbers in Table 4) to see how the costs changes affect
optimality of the current assignment. Note that running time includes the
central unit’s computation time for the τ -interval and θ(X∗). As the team
size increases, the running time increases as there is a combinatorial number
of local communications. The variance also increases because an early ter-
mination takes very short time while additional local communications take
an amount of time related to a combinatorial factor.

6 Conclusion

In this paper, we employed a sensitivity analysis approach for multi-robot
task allocation and compared it with other methods, showing that is advan-
tageous when costs change. We also proposed three methods that reduce
centralization of multi-robot systems alongside the basic routine for com-
puting θ(X∗) and fast approximate version, which is an anytime algorithm.
We examined our algorithms with realistic scenarios and data, not merely
randomly generated matrices. Our future work will examine other types of



cost uncertainty (e.g., time-varying cost functions, stochastically represented
costs) and unpredictable situations in multi-robot task allocation.

APPENDIX: Understanding Degeneracy in LP

One easy way to understand degeneracy in LP is using a polytope defined
by constraints of an optimization problem. In nondegenerate cases, an ex-
treme point of a polytope corresponds to one feasible solution. In degenerate
cases, one extreme point corresponds to many different degenerate solutions.
It is worth noting that the stalling and cycling problems in the Simplex
method are caused by pivoting between the multiple degenerate solutions on
the same extreme point. See [16, 17] for more details.

References

[1] C. Nam and D. Shell, “When to do your own thing: Analysis of cost
uncertainties in multi-robot task allocation at run-time,” accepted for
publication in the Proc. of IEEE Int. Conf. on Robotics and Automation,
2015.

[2] H. Kuhn, “The hungarian method for the assignment problem,” Naval
Research Logistic Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[3] B. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-based multirobot
coordination: A survey and analysis,” Proc. of the IEEE, vol. 94, pp.
1257–1270, 2006.

[4] T. Gal, Postoptimal analyses parametric programming and related topics.
McGraw-Hill, 1979.

[5] J. Ward and R. Wendell, “Approaches to sensitivity analysis in linear
programming,” Annals of Operations Research, vol. 27, pp. 3–38, 1990.

[6] C.-J. Lin and U.-P. Wen, “Sensitivity analysis of objective function co-
efficients of the assignment problem,” Asia-Pacific J. of Operational
Research, vol. 24, pp. 203–221, 2007.

[7] A. Mills-Tettey, A. Stentz, and B. Dias, “The dynamic hungarian algo-
rithm for the assignment problem with changing costs,” 2007.



[8] W.-M. Shen and B. Salemi, “Distributed and dynamic task reallocation
in robot organizations,” in Proc. of IEEE Int. Conf. on Robotics and
Automation, vol. 1, 2002, pp. 1019–1024.

[9] L. Liu and D. Shell, “Assessing optimal assignment under uncertainty:
An interval-based algorithm,” Int. J. of Robotics Research, vol. 30, no. 7,
pp. 936–953, 2011.

[10] ——, “Large-scale multi-robot task allocation via dynamic partitioning
and distribution,” Autonomous Robots, vol. 33, pp. 291–307, 2012.

[11] C.-J. Lin and U.-P. Wen, “Sensitivity analysis of the optimal assign-
ment,” European J. of Operational Research, vol. 149, pp. 35–46, 2003.

[12] M. Otte and N. Correll, “The any-com approach to multi-robot coor-
dination,” in IEEE Int. Conf. on Robotics and Automation: Network
Science and Systems Issues in Multi-Robot Autonomy, 2010.

[13] T. Gal and J. Nedoma, “Multiparametric linear programming,” Man-
agement Science, vol. 18, pp. 406–422, 1972.

[14] C. Filippi, “A fresh view on the tolerance approach to sensitivity analysis
in linear programming,” European J. of Operational Research, vol. 167,
pp. 1–19, 2005.

[15] Google, “The Google Directions API,” https://developers.google.com/
maps/documentation/directions/, 2013.

[16] H. Greenberg, “An analysis of degeneracy,” Naval Research Logistics
Quarterly, vol. 33, pp. 635–655, 1986.

[17] T. Gal, H.-J. Kruse, and P. Zörnig, Survey of solved and open problems
in the degeneracy phenomenon. Springer, 1988.

https://developers.google.com/maps/documentation/directions/
https://developers.google.com/maps/documentation/directions/

	Introduction
	Related Work
	Problem Description
	MRTA with Changeable Cost
	Background: Applying Sensitivity Analysis to MRTA
	Problem Statement
	An Example

	Algorithms
	Computing (X*)
	An exact method
	An anytime algorithm

	Factorizing a Team of Robots
	Choosing to Persist with the Initial Assignment
	Incremental Communication
	Complexity Analysis

	Experiments
	Computing (X*)
	An exact method
	An anytime algorithm

	Reducing Futile Effort
	Factorizing a Team of Robots
	Persisting with an Initial Assignment
	Incremental Communication

	Conclusion

