
1

On the design of minimal robots that can solve
planning problems

Dylan A. Shell, Jason M. O’Kane, and Fatemeh Zahra Saberifar

Abstract—This article examines the selection of a robot’s
actuation and sensing hardware to minimize the cost of that
design, while ensuring that the robot is capable of carrying out a
plan to complete a task. Its primary contribution is in the study of
the hardness of reasonable formal models for that minimization
problem. Specifically, for the case in which sensing hardware
is held fixed, we show that this algorithmic design problem is
NP-hard even for particularly simple classes of cost functions,
confirming what many perhaps have suspected about this sort of
design-time optimization. We also introduce a formalism, based
on the notion of label maps, for the broader problem in which the
design space encompasses choices for both actuation and sensing
components. As a result, for several questions of interest, having
both optimality and efficiency of solution is unlikely. However,
we also show that, for some specific types of cost functions, the
problem is either polynomial time solvable or fixed-parameter
tractable.

Note to Practitioners—Despite the primary results being
theoretical and, further, taking the form of bad news, this paper
still has considerable value to practitioners. Specifically, assuming
one has been employing heuristic or approximate solutions to
robot design problems, the paper serves as a justification for
doing so. Moreover, it delineates some circumstances in which
one can, in a sense, do better and achieve genuine optima with
practical algorithms.

Index Terms—Primary Topics: Planning, Design
Secondary Topic Keywords: Computational Complexity, Hard-
ness

I. INTRODUCTION

Research on autonomous robots is entering a phase of
maturation: already there is general agreement on the centrality
of estimation and planning problems and there is broad con-
sensus on basic representations and algorithms to address the
underlying problems; the last decade has seen the emergence
of (open source) software infrastructure with adoption that is
increasingly widespread; and an inchoate industry is pursuing
profitable applications. Some academic researchers have begun
to move away from questions concerning how to program a
given robot, turning to questions of the form: Given some
resources and a collection of resource constraints, what is the
ideal robot, considering that design choices influence feasible
behavior?

Evidence for this growing interest can be seen in recently
held workshops with titles such as ‘Minimality and Design

D. A. Shell (dshell@tamu.edu) is with the Department of Computer
Science and Engineering at Texas A&M University, College Station, TX,
USA. J. M. O’Kane (jokane@cse.sc.edu) is with the Department of
Computer Science and Engineering at the University of South Carolina,
Columbia, SC, USA. F. Z. Saberifar (fz.saberifar@modares.ac.ir)
is with the Department of Computer Science, Tarbiat Modares University,
Tehran, Iran.

Master Bedroom

Children's
Bedroom

Lounge &
Dining Area

Bath

Bath

Kitchen

Pantry

Playroom

Yard

Puddles

Spills

Fig. 1. A motivating example that illustrates how, for an otherwise simple
planning problem, straightforward design constraints can quickly lead to
considerations that are quite complex. [top] Suppose we want to design a
cleaning robot that is able to navigate to any room in the house. [bottom] The
robot’s ability to navigate spills, puddles, and toys depends on the particular
way it is equipped. Among other things, design involves choosing this
equipment by reasoning about resources and their interactions in the context
of the robot’s task.

Automation’ (RSS’16), ‘Minimality and Trade-offs in Au-
tomated Robot Design’ (RSS’17), and ‘Autonomous Robot
Design’ (ICRA’18).1 Naturally enough, the research is focused
on the development of algorithmic tools to help answer such
design questions. Several ideas have been proffered as useful
ways to tackle robot design problems. They display great and
refreshing variety, including angles on the problem that em-
phasize fabrication, prototyping and manufacturability [7], [9],
[13], [18], [19]; formal methods for (controller and hardware)
synthesis of robots [14], [19], [20], [27], [31]; simulators and
methods for interactive design [11]; compositional frameworks
along with catalogs of components [2], [3], [26]; software for
fault tracking and component-based identification [34]; and so
on.

The present paper deals with design problems that we
believe many already suspect to be difficult problems, but
for which actual hardness results have not appeared in the
literature. (Somewhat surprisingly, at least to us!) Though
many aspects of the hardness of planning have been exam-
ined, prior work has tended consider costs such as time or

1For a report drawing on and summarizing aspects of the first two
workshops, which was presented at the third, see [22].

2

energy consumption which are associated with plan execution
and which often bear little relation to the cost of realizing
the particular robot design. It is surprising that even rather
immediate questions about robot design lack formal analysis
from the complexity theoretic point of view. Thus, we begin
to remedy this fact.

To help make matters concrete, consider the example il-
lustrated in Figure 1. We are interested in designing a home
cleaning robot and, to be effective, the robot must be able to
navigate from region to region within the environment. The
ability to navigate depends on the actuators that the robot
is equipped with and their ability depends on the particular
assortment of clutter that is encountered: ‘spills’ and ‘puddles’
and ‘toys’. The cheapest wheels are w0 which, though inex-
pensive, can’t surmount any of these three. Wheel w1, while
operating fine in wet conditions, still fails with toys. The third
option, w2, can convey the robot over all three, but requires
a heavier duty motor (m1) than the standard one (m0). If any
robot is equipped with a scoop s0, it is no longer hindered by
dry detritus, though the scoop is ineffective with liquids. And,
alas, the chassis we have available can’t support both s0 and
m1 simultaneously.

Our task requirements dictate that the cleaning robot ought
to be able move from any room to any other, the morning
following a lively party, that is, under worst-case conditions.
Here, multiple designs satisfy these task requirements while
also respecting the component limitations (e.g., the chassis
weight requirement). Even if identifying that set of designs
doesn’t seem too onerous, the fact that the solutions in our
example seem to need, at a glance, to satisfy distinct discrete
constraints (overcome wet, or dry obstacles, or both), and may
do so in multiple ways, suggests that the solution set has a non-
trivial combinatorial structure. Beyond this single example, in
problems with greater varieties of available components, one
might imagine that the complexity of this structure may scale
exponentially. (We revisit, formalize, and solve this particular
example in Section III-D.)

We are interested in minimizing some cost, typically over
the set of all useful designs. Suppose we are given some
reasonable cost function that assigns a cost to every set of
resources—where, for now, intuitive properties such as non-
negativity make up ‘reasonableness’. Perhaps, in a mood of
generosity, we opt to simplify things (ignoring bulk purchase
pricing breaks and economies of scale) and assume mono-
tonicity in costs. Can one find the cheapest design efficiently
then?

This paper formalizes questions about certain robot design
choices and their effect on the resulting robot’s ability to
plan and achieve goals. The work contributes hardness results
primarily, but the purpose and import of such analyses is not
merely to underscore that we expect to have to forgo overall
global optimality, but also to help understand whether thinking
about such problems is fundamentally impractical or whether
there is hope for good approximation algorithms.

An interesting (even novel) aspect of the approach taken
in this paper is to think about design problems as planning
problems, but with special sorts of cost functions. Because

planning involves choosing actions, this point of view will
perpetuate the distinction between actions and observations —
the former having to do with design choices for actuators, the
latter choices for sensors— in a way that may, at least initially,
appear unnatural. In the penultimate section of the paper, both
types of design choices are unified through the introduction of
another concept, that of a label map. This concept will also
forge a connection to some existing work.

After a review of related work (Section II), this paper
contributes a formalization of the design cost minimization
problem for actuators (Section III), a hardness result for that
problem in general (Section IV), polynomial-time algorithms
for certain natural special cases (Section V), and a generaliza-
tion of the approach to enable design choices over sensors as
well (Section VI).

A preliminary version of this work appeared at
WAFR 2018 [30]. Substantial new results in this version
include a treatment of the gadget selection cost in Section III-D
and a generalization in Section VI to problems that include
sensor design cost.

II. RELATED WORK

Having already provided broad context for robot design
questions, here we draw attention to particular threads bear-
ing an especially close relationship to this paper. Detailed
connection to the authors’ own prior work is postponed until
Section VII, after presentation of the technical results.

Censi [2], [3] introduced a theory of co-design, which
adopts a poset-based optimization point of view in order to
relate functionality, implementations, and resources to each
another. He demonstrates his methodology by applying it
to questions about the minimal resources required to realize
some functionality. This question, in various forms, has a rich
history (cf. [6], [23], [24], [32]). An especially noteworthy
aspect of Censi’s theory is how monotone properties enable
efficient optimization; his work contrasts with the present
work—here monotonicity offers only a limited salve. More
recently, work [1] has examined co-design without the mono-
tone property.

In contrast to that theory’s formulation, the present paper
emphasizes that choosing to include some gadget within a
robot design may unlock some choices—but whether they are
needed or not depends on sequential and conditional aspects of
what the robot needs to do. When what it ‘needs to do’ looks
like executing a plan that came from solving some planning
problem, then that multi-stage interaction between the various
design-time options is a planning problem itself—which hints
at the likely difficulty of ensuring optimality.

In the examples that follow, we provide an illustrative
instance where determining whether a set of resources yields
a feasible design or not is expensive to compute (cf. Sec-
tion III-D). Significantly, however, the hardness results do not
depend on this source of complexity: even when the feasibility
of a design is trivial to compute, and a preference over designs
is cheap to evaluate, still optimization of designs remains
challenging. This contrasts with the papers cited above.

It is also worth pointing out the influential work of
Hauser [12] who examined a variant on motion planning

3

where, starting with an infeasible problem, he seeks the
minimal set of constraints to be removed to make the problem
solvable. In a sense, this is the inverse of the problem we
examine: we ask not about removing challenging elements
from the problem, but rather about the addition of capabilities
to the robot.

III. DEFINITIONS AND PROBLEM FORMULATION

This section presents some definitions necessary to intro-
duce the algorithmic problem addressed in the balance of the
paper.

A. Planning problems and plans

We are interested in reasoning about the ability of robots
equipped with varying action capabilities to complete certain
tasks. Following our earlier work [29], we model both planning
problems and the plans that solve them using procrustean
graphs.

Definition 1: A procrustean graph (or p-graph) is a bipartite
directed graph G = (V0, V, E, lu, ly, U, Y) in which:

1) The finite set of states V contains two disjoint kinds of
states called action states Vu and observation states Vy,
with V = Vu ∪ Vy.

2) The multiset of edges E = Eu ∪ Ey is composed of
action edges Eu and observation edges Ey.

3) Each action edge e ∈ Eu goes from an action state to an
observation state, and is labeled with a finite nonempty
set of actions lu(e) drawn from the action space U .

4) Likewise, each observation edge e ∈ Ey goes from an
observation state to an action state, and is labeled with
a finite nonempty set of observations ly(e) drawn from
an observation space Y .

5) The set V0 ⊆ V represents a nonempty set of initial
states. All states V0 should be of the same kind: either
V0 ⊆ Vu or V0 ⊆ Vy.

The interpretation is that a p-graph describes a set of event
sequences that alternate between actions and observations. We
say that an event sequence —that is, a sequence of actions
and observations— is an execution on a p-graph if there exists
some start state in the p-graph from which we can trace
the sequence, following edges whose labels include each
successive event in the sequence. For two p-graphs G1 and
G2, we say that an event sequence is a joint execution if it is
an execution for both G1 and G2.

For simplicity, this paper focuses on state-determined p-
graphs, which are those where, for any given state, the labels
on the edges departing that state are mutually disjoint, and
where V0 is a singleton. In such p-graphs, any execution can
be traced in no more than one way.

We can use p-graphs to model both planning problems and
plans.

Definition 2: A planning problem is a p-graph G with a goal
region Vgoal ⊆ V (G). A plan is a p-graph P with termination
region Pterm ⊆ V (P).

We direct the reader again to the example in Figure 1. It
is clear, certainly, how a planning problem involving motion
from one particular room to another —when both rooms are

given— can be posed as a p-graph with a goal region. See
Figure 2. A relatively straightforward extension, leveraging
the ability to designate multiple states as start states, can
express the problem of being able to transit from any room to
any other. Specifically, one would combine the individual p-
graphs for each specific start and goal pair, and then perform
an expansion of this combined graph to a state-determined
presentation.

Informally, we say that a plan is safe on a planning problem,
if the plan has observation edges for any observation that
might be generated by the planning problem at any reachable
state pair, and likewise the planning problem has action edges
for any action that might be generated by the plan. We say
that a plan is finite on a planning problem if there is some
upper bound on the length of all joint executions. We omit
the complete formal definitions of safe and of finite, which
are somewhat tedious, referring the reader instead to [29].

Now we can define the notion of a plan solving a planning
problem.

Definition 3: A plan (P, Pterm) with at least one execution
solves a planning problem (W,Vgoal) if P is finite and safe
on W , and every joint-execution e1 · · · ek of P on W either
reaches a vertex in Pterm, or is a prefix of some execution
that does and, moreover, all the e1 · · · ek that reach a vertex
v ∈ V (P) with v ∈ Pterm, reach a vertex w ∈ V (W) with
w ∈ Vgoal.

The intuition here is that a plan solves a planning problem
when every possible joint execution eventually terminates in
the goal region.

B. Design costs

To simplify the exposition, we attend first to plans that
minimize a design cost function which depends on which
actions are utilized in a plan. (We defer questions about cost
minimization associated to observations until Section VI.)
Note that we are concerned here only with each action’s
presence in (or absence from) the plan in question —we are
not concerned with how many times an action is carried out
on any particular execution of a plan. The next two definitions
formalize this idea.

Definition 4: For an action set U , a cost function c : 2U →
R∪{∞} assigns an extended real number cost to each subset
of U .

Definition 5: For any plan (P, Pterm) that solves planning
problem (W,Vgoal), we write A(P,W) ⊆ U to denote the set
of actions that appear in any joint execution of P on W . We
then define the design cost of P on W as c(A(P,W)).

When the planning problem W is clear from the context, we
overload the notation slightly by writing A(P) for A(P,W)
and likewise c(P), instead of c(A(P,W)).

The essential idea entailed by Definitions 4 and 5 is that
c is a measure of the cost of a plan that depends only upon
which actions are used by the plan, rather than upon how
frequently those actions are used when the plan is executed.
The intent is to establish a dependence between c(P) and the
cost of constructing a robot that is capable of executing each
action in A(P). Finding a plan that minimizes this design cost

4

can give some insight into the simplest robots, in the sense of
actuator complexity, that can solve the planning problem.

Some example cost functions, intended to illustrate the
expressive flexibility of the definitions, follow.

Example 1 (counter design cost): Given a plan P , consider
the design cost c(P) = |A(P)|. This cost function simply
counts number of actions utilized by P . By minimizing this
counter design cost, we minimize the number of distinct
actions used in the plan.

Example 2 (weighted sum design cost): We can general-
ize the counter design cost by defining a weight function
w : U → R that assigns a specific cost to each action, and
then defining c(P) =

∑
u∈A(P) w(u).

Example 3 (binary design cost): Suppose we are given a
set of actions A′ that a robot designer would prefer to use, if
possible. Define cA′ : 2U → {0, 1} as

cA′(P) =

{
0 if A(P) ⊆ A′

1 otherwise
.

For a given set of actions A′ and a plan P , design cost cA′ ,
called a binary design cost, gives a value of 0 if all actions
used to carry out P are from the preferred set A′, and a value
of 1 if any additional action, not in A′, is used.

Example 4 (ordered actions): Suppose we have a choice
of options for which actuators to include, each of which
subsumes its predecessors, both in ability and in expense. We
would like to identify which of these options is the simplest
that suffices to solve a particular planning problem. We can
model this kind of situation by assuming that U is a finite
ordered set U = {u1, . . . , un}, and defining

c(P) = max{i | ui ∈ A(P)}.

Example 5 (monotone cost functions): Another natural class
of cost functions are those that are monotone, in the following
sense: A cost function is monotone if, for any sets U1 ⊆ U
and U2 ⊆ U , we have

U1 ⊆ U2 =⇒ c(U1) ≤ c(U2).

Monotone cost functions are interesting because they capture
the eminently sensible idea that adding additional abilities to
the robot should not decrease the cost. Notice in particular
that the counter design cost (Example 1), binary design
cost (Example 3), and ordered action design cost functions
(Example 4) are all monotone.

C. Design cost minimization

We can now state the main algorithmic problem. Follow-
ing the standard pattern, we consider both optimization and
decision versions of the problem.

Decision Problem: Design minimization (DECDM)
Input: A planning problem (G,Vgoal), where G is state-

determined, a cost function c, and a real number k.
Output: YES if there is a plan (P, Pterm) that solves

(G,Vgoal), with design cost c(A(P,W)) ≤ k.
NO otherwise.

Optimization Problem: Design minimization (OPTDM)
Input: A planning problem (G,Vgoal) with state-

determined G, and cost function c.
Output: A plan (P, Pterm) that can solve (G,Vgoal) such

that c(A(P,W)) is minimal, or NONE indicating
that no solutions exist.

We can also form specialized versions of each of these
problems by placing restrictions on the design cost function c.
Our objective, in the following sections, is to classify the types
of design cost functions for which this problem can be solved
efficiently, and the types for which these problems are hard.

D. A more practical example: Gadget selection

Though the example cost functions thus far have been rela-
tively abstract, we emphasize that our formalism is sufficiently
expressive to encode practical robot design problems. As a
concrete illustration, recall the example shown in Figure 1.
The context there is to select, from a catalog of available
components —called gadgets here because the letter g is
unused in our notation so far— that satisfies some physical
constraints and suffices to solve the planning problem, while
minimizing the total cost of the selected gadgets.

In that spirit, suppose a roboticist needs to solve a planning
problem (W,Vgoal). Our hero would like to select, from a finite
catalog of choices G = {g1, . . . , gm}, a subset of gadgets with
which to equip the robot. We might formalize that problem,
including the costs of each gadget, the constraints on the
overall design, and the ability each gadget to enable the robot
to execute various actions, by defining:

1) A map from gadgets to their solo costs cg : G →
R ∪ {∞}. This map models the cost of each individual
gadget.

2) A Boolean formula Ψ in which the gadget symbols from
G appear as variables. The intended interpretation is that
gi = True if and only if gadget gi is included in the
design. The formula Ψ models the constraints on which
sets of gadgets are physically realizable. That is, Ψ is
satisfied if and only if a given selection of gadgets is
valid, in the sense of satisfying any relevant constraints.
For convenience, we use the streamlined notation Ψ(X)
to refer to a Boolean value that indicates, for any X ⊆
G, whether gadget set X is valid according to Ψ.

3) For each action u in the action space U of the planning
problem p-graph W , a Boolean formula Λu over those
same variables. Each such formula Λu should be satis-
fied for exactly those gadget sets that would enable the
robot to execute action u. As with Ψ, we write Λu(X)
for the Boolean value that indicates whether a robot
equipped with gadget set X can execute action u.

In this setting, we can express the valid subsets of G for which
a plan p-graph P is executable as

G(P) =

{
S ⊆ G

∣∣∣∣∣Ψ(S) ∧
∧
u∈U

Λu(S)

}
. (1)

Thus, we can define a gadget-selection cost function that
depends on G, Ψ, and collection of Λu formulae, that captures

5

Fig. 2. A model of the environment from Figure 1 as a p-graph.

the notion of selecting gadgets that enable a set of actions
sufficient to solve the planning problem, while minimizing the
total cost and obeying the global constraints in Ψ:

cG,Ψ,{Λu}(P) = min
S∈G(P)

∑
s∈S

cg(s). (2)

That is, the cost of a plan is determined by the total cost of
the set of gadgets that both enable the plan to execute and
satisfy the global constraints.

Let us now return to the specific example in Fig-
ure 1 and solve it by minimizing a suitable gadget selec-
tion cost function. There are six available gadgets G =
{w0, w1, w2,m0,m1, s0}. A portion of the p-graph model
of this environment appears in Figure 2, in which actions
direct the robot to move directly between adjacent rooms. The
actions shown are colored according to the hazards the robot
must overcome to complete each action: black for unobstructed
actions, red for actions that force the robot to traverse toys, and
blue for actions that direct the robot through puddles or spills.
Recall that the objective is for our robot to be able to traverse
reliably between any pair of locations in this environment,
so the full planning problem p-graph would consist of a
number of distinct copies of the fragment shown here, each
contributing one state to the combined set of initial states and
one state to the overall goal region.

We have several constraints on which sets of gadgets can
be realized into a working robot, including the robot’s need
for both wheels and a motor, the dependence of w2 on m1,
and the incompatibility of s0 and m1. Thus, we have:

Ψ = (w0 ∨ w1 ∨ w2) ∧ (m0 ∨m1)

∧ (¬w2 ∨m1) ∧ (¬s0 ∨ ¬m1).

Each action u has for its Λu one of three distinct action-
enablement formulae:

1) Actions with neither toys nor wetness (black in Figure 2)
have no additional requirements. For these actions, we
use the trivial formula Λu = True.

2) Actions that cross toys (red in Figure 2) can be executed
only by robots with either the top-of-the-line wheels
(w2) or the scoop (s0). Thus, for these actions we set
Λu = w2 ∨ s0.

3) Actions that cross puddles or spills cannot be executed
by robots using the weakest wheels (w0). For these
actions, we set Λu = ¬w0.

Finally, we assign individual gadget costs to each gadget. If,
for example, we choose cg(w0) = 2, cg(w1) = 4, cg(w2) = 6,
cg(m0) = 5, cg(m1) = 10, cg(s0) = 7, then the optimal
gadget set is {w1,m0}, with total cost 9. This selection enables
actions that cross the normal and wet transitions, which in
this scenario is sufficient to solve the planning problem, i.e.
to navigate between any pair of locations.

Note, however, that changes to either the structure of the
environment —for example, the addition of toys between the
children’s bedroom and their bath— or to the individual costs
of each gadget would alter this solution. This highlights a
central feature of the contribution of this paper, namely that
the design optimization problem we consider can account for
both general resource availability and component costs, as
well as the spatial or temporal factors that determine which
components suffice for the robot to complete its task.

The reader may also note that the cost function introduced
in (2) depends, via (1), on enumerating satisfying assignments
to Ψ. In light of the Cook-Levin theorem [4], [16], this implies
that merely evaluating the cost of a design in this context is a
hard algorithmic problem. This is perhaps not a surprise: The
sorts of overlapping and interacting constraints that govern the
validity of robot designs and the actions they enable are, in
an informal sense, the essence of what makes problems NP-
Complete. Nonetheless, the results in the next section remain
interesting in part because they demonstrate that the design
problem remains hard in cases where it is extremely simple,
or trivial even, to determine the validity of, and preferences
between, designs.

IV. HARDNESS OF DESIGN COST MINIMIZATION

In this section, we prove that the decision version of the
design cost minimization problem is NP-complete.

A. The General Case

Our proof proceeds by reduction from the standard set cover
problem, which is known to be NP-complete [15]:

Decision Problem: SETCOVER
Input: A universe set R with n elements, a set T com-

prised of m sets T1, . . . , Tm such that
⋃m
i=1 Ti =

R, and an integer k.
Output: YES if there is some set I ⊆ T such that I covers

all elements of R and the size of I is at most k.
NO otherwise.

Given an instance (R, T, k) of SETCOVER, we construct a
problem instance of (G,Vgoal, c, k

′) of DECDM as follows:
1) Begin with an empty p-graph G. Choose U =
{u1, . . . , um}, with one action for each of the sets in
T , for its action space. Choose Y = {�}, a singleton
set containing a dummy observation, for its observation
space.

6

Vgoal

SetCover instance

DecDM instance

R = {1, 2, 3, 4}

T1 = {2, 3, 4}

T2 = {1, 3}

T3 = {2, 4}

T4 = {1, 2}

q5

q1

o1

q2

o2

q3

o3

q4

o4

{u2, u4}

{u1, u2}

{u1, u3, u4}

{u1, u3}

{u2, u4}

{�}{�}

{�}{�}

{�}{�}

{�}

Fig. 3. An example of the construction of a DECDM instance from a
SETCOVER instance. Given a set cover instance with R = {1, 2, 3, 4},
T = {{2, 3, 4}, {1, 3}, {2, 4}, {1, 2}} and k = 2, we construct the planning
problem shown on the left. Every subset of T that covers R corresponds to
a plan that can reach Vgoal from the initial state. For this example, we can
cover R in the SETCOVER instance by choosing {1, 3} and {2, 4}; likewise
one can solve the planning problem using only the actions u2 and u3.

2) For each element xi ∈ R of the universe R, add to G an
action state qi and an observation state oi. In addition,
insert an extra action state qn+1 into G.

3) From each action state qi, except qn+1, connect the
corresponding observation state oi by a directed edge ei.
Determine the label lu(ei) as follows: The label for edge
ei includes action uj if and only if the set Tj contains
xi. That is, we set lu(ei) = {uj | xi ∈ Tj}.

4) Connect each observation state oi to the subsequent
action state qi+1 with a directed edge e′i, labeled with
the sole observation �, so that ly(e′i) = {�}.

5) Designate V0 = {q1} as the only initial state of G.
6) Designate Vgoal = {qn+1} as the goal region of the

planning problem.
7) For design cost function, choose a counter design cost

function,
c(P) = |A(P)|.

8) Select k′ = k.

Figure 3 shows an example of this construction. Note that the
time needed for this construction is polynomial in the input
size.

Fig. 4. The plan that solves the planning problem arising from the construction
shown in Figure 3. It uses u2 and u3, each corresponding to T2 = {1, 3}
and T3 = {2, 4}, respectively.

Next, we prove that this construction is indeed a reduction
from SETCOVER to DECDM. The intuition is that each action
state in the constructed planning problem acts as a sort of
‘gate’ to check whether a certain element has been covered. If
some choice of elements selected from T is adequate to fully
cover R, then the corresponding plan will be able to transition
through each of these gates to the goal. If not, not. The next
two lemmas make this idea more precise.

Lemma 1: For any instance (R, T, k) of SETCOVER, con-
sider the DECDM instance (G,Vgoal, c, k

′) constructed as
described above. If there exists a subset of T of size at most
k that covers R, then there exists a plan (P, Pterm) that solves
(G,Vgoal), for which c(P) ≤ k.

Proof: Let I ⊆ T denote a coverage set for R, which has
|I| ≤ k. To produce a plan (P, Pterm), we start with a copy
of the constructed planning problem (G,Vgoal), and remove
from G all action labels that do not correspond to elements
of I . That is, for any i for which Ti /∈ I , we remove ui from
P . Note that Vgoal = Pterm = {qn+1}. (Figure 4 shows our
running example.) Clearly c(P) = |I| ≤ k. So it remains only
to show that (P, Pterm) solves (G,Vgoal).

First, we prove that P is finite and safe on G. Since the
construction yields a linear chain of events in both G and
P then there are joint-executions with lengths from 0 to at
most 2n. Thus, P is finite on G. Note also that, according to
the construction of G and P , we can conclude that for every
joint-execution e1 · · · ek on P and G that leads to v ∈ P and
w ∈ G, if v is an action state then the label set of action edge
e, originating at v, is a subset of label set of action edge e′,
originating at w. We also know that P and G have the same
single observation label � for each of their observation states.
Therefore, P is safe on G.

Because of the shared linear chain form of both G and P
and existence of only one initial state and one goal state, there
is one unique joint execution that reaches Vterm in P , which by
construction also reaches Vgoal in G. The linear chain structure
also ensures that every other joint execution is a prefix of this
one, which implies that every joint-execution e1 · · · ek on P
and G either leads to the goal state qn+1 or is a prefix of
some execution that leads to qn+1, as required by Definition 3.
Therefore, (P, Vterm) solves (G,Vgoal). �

Lemma 2: For any instance (R, T, k) of SETCOVER, con-
sider the DECDM instance (G,Vgoal, c, k) constructed as
described above. If there exists a plan (P, Pterm) that solves
(G,Vgoal), for which c(P) ≤ k, then there exists a subset of
T of size at most k that covers R.

Proof: Let (P, Pterm) be some plan with c(P) ≤ k that
solves (G,Vgoal). Consider some execution e1 · · · em on P .
We may assume it reaches a vertex in Pterm without sacrificing
generality for, if it does not, it is certainly the prefix of some
execution which does, according to Definition 3. Thus, when

7

em arrives at a vertex in Pterm ⊆ V (P), it must be that
e1 · · · em reaches a vertex in Vgoal ⊆ V (W). But, by construc-
tion of G, that means e1 · · · em = ui1 �ui2 �. . . uin�, and we
see that n = |R|. Define I =

{
Tj ∈ T | j ∈ {i1, i2, . . . , in}

}
where j is taken over the set simply collecting the indices
of the actions in the execution. Clearly I ⊆ T and, because
Tx 7→ ux corresponds elements of I with A(P) in a one-to-
one fashion, |I| = |A(P)| = c(P) ≤ k.

All that remains is to show that I covers R. Reach-
ing the goal state requires transiting, linearly, through
q1o1q2 . . . onqn+1. So, for any w ∈ R, the action uiw was
used to transition from action vertex qiw to observation vertex
oiw en route to qn+1. That means Tiw ∈ I and, since uiw
is a feasible action from qiw , the construction ensures that
w ∈ Tiw . �

These two lemmas lead directly to the following result.
Theorem 1: DECDM is NP-complete.
Proof: We need to show that DECDM is in both NP and

NP-hard. For the former, we must be able to verify that a
given instance of DECDM is a YES instance efficiently. For
any positive instance, there is a solution no larger than W via
Theorem 27 of [10], the argument therein carrying over when
considering plans subject to some design cost c(P) ≤ k. Such
a plan, which is itself state-determined, can be used as a certifi-
cate. Confirming that this plan does indeed solve the planning
problem is straightforward via backchaining and, since both
the plan and W are state-determined, this takes polynomial
time. For the latter, we must show a polynomial-time reduction
from a known NP-complete problem to DECDM. Part 6 of
Karp’s ‘Main Theorem’ [15] establishes that SETCOVER is
NP-complete, and Lemmas 1 and 2 show that the construction
described above is indeed a reduction. �

B. Special cases that are also hard

Given the kind of hardness result expressed in Theorem 1,
one reasonable follow-up question is to consider various kinds
of restrictions to the problem, in hope that some natural or
interesting special cases may yet be efficiently solvable.

However, notice that the cost function c used in the reduc-
tion is the counter design cost (recall Example 1). This leads
immediately to several stronger results.

Corollary 1: DECDM, restricted to weighted sum cost
functions (Example 2), is NP-complete.

Proof: Use the same reduction as in Theorem 1, but replace
the counter design cost c with a weighted sum cost function
in which each action has weight 1. �

Corollary 2: DECDM, restricted to monotone design cost
functions (Example 5), is NP-complete.

Proof: The reduction in Theorem 1 uses counter design cost,
which happens to be monotone. �

The reader will note that we have not yet referred back to
Example 3 nor to Example 4; we revisit these in Section V.

C. Hardness of approximation

Another avenue of attack for hard problems is to try to
find efficient approximation algorithms that can guarantee

to provide solutions close to the optimal. Unfortunately, we
can show that design cost minimization is hard even to
approximate.

Theorem 2: For every ε > 0, OPTDM is NP-hard to
approximate to within ratio (1− ε) lnn.

Proof: Let ε > 0. Suppose, a contrario, that there
exists a polynomial time approximation algorithm A that
solves OPTDM with ratio (1 − ε) lnn. For a given instance
(G,Vgoal, c) of OPTDM, let OPT(G,Vgoal, c) denote the
smallest cost, according to c, for a plan that solves (G,Vgoal).
Similarly, let A(G,Vgoal, c) denote the cost of the output
plan generated by algorithm A. By construction, we have
A(G,Vgoal, c) ≤ (1− ε) lnn OPT(G,Vgoal, c).

Under this assumption, we introduce the following
polynomial-time approximation algorithm, called B, for SET-
COVER.

1) For a given instance (R, T) of SETCOVER, we con-
struct a planning problem using the construction in
Section IV-A.

2) We choose counter design cost for c, and execute algo-
rithm A to find a plan whose design cost is within an
(1− ε) lnn factor of optimal.

3) Then, using Lemma 2, we extract a set cover for R from
the plan.

We write B(R, T) for the size of the set cover generated by
algorithm B and OPT(R, T) for the minimum coverage set
size. Note that the size of this set cover is equal to the design
cost for the plan, so that B(R, T) = A(G,Vgoal, c). We know
also know, from Lemmas 1 and 2, that OPT(G,Vgoal, c) =
OPT(R, T).

Thus, for sufficiently large n, we have

B(R, T) = A(G,Vgoal, c)

≤ (1− ε) lnnOPT(G,Vgoal, c)

= (1− ε) lnnOPT(R, T).

Therefore, we have a polynomial-time approximation algo-
rithm B for SETCOVER with approximation ratio (1−ε) lnn.
Unless P = NP , this contradicts the known inapproximability
result for SETCOVER due to Dinur and Steurer [5]. �

This proof also carries over to narrower classes of cost
functions, just as the basic hardness proof in Section IV-B
does, thus:

Corollary 3: For every ε > 0, OPTDM is NP-hard to
approximate to within ratio (1−ε) lnn, even when the design
cost function is restricted to weighted sums (Example 2), or
to monotone functions (Example 5).

D. Fixed parameter hardness

Another general way to cope with NP-hard problems is the
fixed-parameter tractability (fpt) approach. The intuition of the
approach is to try to identify features called parameters of an
input instance, other than the problem size, that govern the
hardness of a problem. Specifically, an NP-hard problem is
fpt if there exists an algorithm to solve it in time f(k)nO(1),
in which f(·) is some computable function and k is some
parameter of the input instance [8], [21]. There is bad news
on this front as well.

8

Lemma 3: DECDM, restricted to the counter design cost,
and parameterized by the cost of the output plan, is not FPT
under commonly held complexity-theoretic assumptions.2

Proof: Consider the construction in Section IV-A, denoted
by Γ. We show that Γ is an fpt-reduction from SETCOVER,
parameterized by the size of cover set, to DECDM, param-
eterized by the cost of output plan. The definition of fpt-
reduction [8] has three conditions:

1) For all x, x is a positive instance of parameterized
SETCOVER if and only if Γ(x) is an positive instance
of parameterized DECDM.

2) The construction Γ is computable by an fpt algorithm.
3) There exists a computable function from the value of

parameter k to the value of parameter k′, such that for
any instance x of parameterized SETCOVER, the value
of parameter k′ in the instance outputted by Γ is less or
equal to the value of parameter k in the instance x.

Lemma 1 and Lemma 2 confirm that the first condition is
satisfied. In Section IV-A, we mentioned that the construction
Γ takes polynomial time with respect to the input size, which is
time f(c)nO(1), for some constant-valued function f and some
constant c. Thus, the second condition is satisfied. Finally,
according to Lemma 1 and Lemma 2, the value of parameter
k is equal to the value of parameter k′. The identity function
is obviously computable, so the third condition is satisfied.
Thus, construction Γ is a fpt-reduction.

Then, suppose that DECDM parameterized by the size of
counter design cost of output plan is FPT . We know that
FPT is closed under fpt-reductions. That is, if a parameterized
problem Q with parameter k, denoted by (Q, k), is reducible
to a parameterized problem (Q′, k′) and (Q′, k′) ∈ FPT ,
then (Q, k) ∈ FPT [8]. So, our supposition implies that
SETCOVER parameterized by size of coverage set is in FPT ,
which is a contradiction—unless the entire fixed parameter
hierarchy collapses [8]. �

Corollary 4: DECDM, parameterized by the design cost, is
not FPT even when restricted to weighted sum cost functions
(Example 2) or to monotone cost functions (Example 5), under
common assumptions.2

V. DESIGN COST MINIMIZATION IN POLYNOMIAL TIME

Section IV presented hardness results of various kinds for
several variations of the design cost minimization problem.
Now we present a modicum of good news, in the form of
results that show certain versions of the problem can indeed
be solved in polynomial time, or are fixed parameter tractable.

A. Binary design and ordered action costs are efficiently
solvable

It is useful to identify a class of cost functions which are
amenable to a particular sort of decomposition.

Definition 6: A cost function c is n-partition orderable if
there exists a partition of the action set U into mutually dis-
joint sets U1, U2, . . . , Un which form an increasing sequence

2The particular assumption being that W [2] 6= FPT .

of costs, where c
(⋃

i∈{1,...,m}Ui

)
< c

(⋃
i∈{1,...,m+1}Ui

)
for

1 ≤ m < n, and ∀x ∈ Ui+1, c(Ui) < c(Ui ∪ {x}).
The intuition is that one must be able to split U into ordered

level-sets with respect to costs. These allow easy solution.
Lemma 4: DECDM, restricted to n-partition orderable cost

functions, can be solved in time O(n |U | |V (G)|).
Proof: For a planning problem (G,Vgoal) with an n-partition

orderable cost function c(P) there are n+1 possible outcomes.
A straightforward procedure determines which: apply standard
backchaining to (G,Vgoal), but restricting consideration only
to actions within U1; if a solution is found it has cost c(U1)
and this minimizes the cost. If no plan has been found at
this point, backchaining can be continued, but now permitting
actions from U2 as well. A solution found at this juncture has
cost c(U1 ∪ U2), which must minimize the cost. Otherwise,
this procedure is repeated, adding Ui+1 only after the search
with Ui fails. If after Un has been added no solution has been
found, then no plan solves (G,Vgoal). Since (G,Vgoal) is state-
determined, there are no more than O(|U | |V (G)|) edges that
one need examine. �

We now turn to the particular cost functions mentioned in
Examples 3 and 4.

Corollary 5: DECDM, restricted to binary design cost
functions (Example 3) is in P.

Proof: A binary design cost function cA′(·) is a 2-partition
orderable cost function with U1 = A′ and U2 = U\A′. �

Corollary 6: DECDM, restricted to ordered design cost
functions (Example 4) is in P.

Proof: An ordered cost function is an |U |-partition orderable
cost function with Ui = {ui}, i ∈ {1, . . . , n}. �

B. Fixed parameter tractability of counter design cost

Though counter design cost (the cost of Example 1), is not
n-partition orderable, nor is it FPT with respect to output plan
cost (Lemma 3), we need not be inconsolably bleak.

Lemma 5: DECDM, with counter design cost, parameterized
by size of the action space is in FPT .

Proof: Let (W,Vgoal) be the given planning problem, and
let λ = |U |, i.e., let it denote the size of action space of the
problem. Consider the following simple algorithm: Enumerate
2U . Then, for each subset of Ui ∈ 2U , construct a planning
problem with only actions from Ui. Checking whether each
of these new planning problems can be solved or not with
c(PUi

) ≤ k, which takes polynomial time in V (W) because
W is state-determined. Thus, this algorithm is FPT , because
its running time is 2λnO(1). �

VI. AN ALTERNATIVE FORMULATION VIA LABEL MAPS

The preceding has examined a concept of cost functions
that model, via the set of actions that make an appearance
in some plan, design choices concerned with actuators for
robots executing that plan. Of course, the designer of a robot
must select other resources as well and may make choices to
balance or trade between a variety of factors. Most obviously
one might ask about sensors also. Since planning problems
described as p-graphs already possess observation edges to

9

describe sensing transitions (i.e., observations from the set Y),
this seems a fitting place to start. Unfortunately it is not
meaningful to proceed along lines directly analogous to our
foregoing treatment of actions because the model requires the
robot’s plan be ready to respond to whatever observations the
world provides (N.B. the definition of ‘safe’ above); we cannot
simply omit observations from our robot’s plan.

One effective way to model choices of sensors is to presume
that the observations specified as part of the planning problem
describe the intrinsic ceiling for what could be perceived in
that setting, rather than what the robot perceives in particular.
Then a specific robot’s sensors can be viewed as degradations
of those observations. Thus, a description of a sensor might
describe transformation of the set Y to deteriorate those ideal
observations. Then the design-time sensor choice becomes a
question of committing to a particular transformation. Pre-
viously in [10], we formalized the idea of these kinds of
transformations that operate on the sets of labels borne by
observation edges by introducing the notion of observation
maps:

Definition 7 (observation map): An observation map is a
function hy : Y → 2Y

′ \ {∅} mapping from an observation
space Y to a non-empty set of observations in a different
observation space Y ′.

By defining these as mappings from individual observa-
tions to sets of observations, some aspects of sensors can
be expressed very directly. For instance, if sensor s cannot
distinguish observations o1 and o2, we construct h(s) with

o1
h(s)

7→ {o1, o2} and o2
h(s)

7→ {o1, o2}. (Here, to help develop in-
tuition, we have taken the simple special case where Y ′ = Y .)

The preceding begs the question of whether the same map-
based perspective might not be generalized to be employed for
actions as well. The idea is that, in so doing, sensor and actu-
ator selection could both fit within the same scheme. Indeed,
in what follows, we first adopt a map-oriented perspective but
extend it to planning problems and then, by introducing an
appropriate notion of cost, connect this with results established
in the earlier sections. The process of generalization, starting
with Definition 7, leads to the following two definitions:

Definition 8 (action map): An action map is a function hu :
U → 2U

′ \ {∅} mapping from an action space U to a non-
empty set of actions in a different action space U ′.

Definition 9 (label map): Now form a conglomerate, so that
a label map, h : U ∪ Y → (2U

′ ∪ 2Y
′
) \ {∅}, combines an

action map hu and a sensor map hy , thus:

h(`) =

{
hu(`) if ` ∈ U
hy(`) if ` ∈ Y

.

Given a p-graph G and label map h, then by h(G) we mean
the p-graph constructed from G but, where previously an edge
was carrying a set of elements X in G, it now has the set⋃
x∈X h(x). It is in this sense that a label map is applied

to a p-graph, mapping both actions and observation labels to
different ones. Then, next, we can pose a design minimization
problem in terms of a cost function that applies, not to actions
or to plan length, but to the label map. Let F denote the space
of all label maps, then we have that:

Definition 10: A label map design cost, or map cost for
short, is simply a function c` : F → R ∪ {∞}.

Notice that map costs produce a value dependent on a label
map, and label maps are applied globally across the entire
graph. If a map cost measures the cardinality of the map’s
image, say, then it bounds the complexity of the resources
used—for, as the cost is driven down and the bound becomes
tight, those actions or sensing conditions that are never utilized
will not be distinguished, so do not ‘consume’ unique values
in the output. In cases such as these, the following problems
model the robot designer’s dilemma:

Decision Problem: Label map design minimization (LM-
DECDM)

Input: A planning problem (G,Vgoal), where G is state-
determined, a map cost function c`, and a real
number k.

Output: YES if there is a plan (P, Pterm) and a label map
h such that (P, Pterm) solves (h(G), Vgoal) and
c`(h) ≤ k. NO otherwise.

Optimization Problem: Label map design minimization
(LM-OPTDM)

Input: A planning problem (G,Vgoal), where G is state-
determined, and a map cost function c`.

Output: A label map h and a plan (P, Pterm) such that
the latter solves (h(G), Vgoal) and so that c`(h)
is minimal, or NONE indicating that no solutions
exist.

The next theorem connects the map-based point of view
with the earlier one, via the notion of monotone design
costs. (For brevity, this is presented directly in terms of
the optimization versions of the problems; it could also be
expressed for decision variants.)

Theorem 3: Given any design minimization problem
OPTDM[(G,Vgoal), c] where c : 2U → R∪{∞} is a monotone
cost function, there exists a label map design minimization
problem, LM-OPTDM[(G′, Vgoal), c

c
`] with label map cost

function c c` : F → R ∪ {∞}, so that any output from the
latter is either

(i) a solution h? that attains an optimum equal to that
for the solution of the former problem, i.e., c c` (h?) =
c(A(P ?, G)); or

(ii) is NONE, and corresponds to the former problem having
no solution (i.e., NONE).

Proof: We give an explicit construction. First, create a
planning problem (G′, Vgoal) from (G,Vgoal) by

1) including a new action, ufail, in the action space;
2) adding an additional observation state vcrash to Vy;
3) connecting every v ∈ Vu to vcrash with an action edge

labeled {ufail}.
No plan that executes ufail at any point reaches a state in
Vgoal. Furthermore, any label map applied to G′ that conflates
actions with ufail ensures that plans using those actions cannot
be solutions.

10

If we denote the action space of G′ by U ′ = U∪{ufail}, then
we specifically consider label maps U∪Y → (2U

′∪2Y)\{∅}
next. Let us say that any such label map is conformant if (1) it
maps all elements y ∈ Y to {y} and, further, (2) for each
element u ∈ U , maps u to {u} or {ufail}. Conformant label
maps leave the observations alone and may effectively disable
some subset of actions.

Now, using the given c, construct a label map design cost
function as follows:

c c` (h) =

{
c
(
h−1 [U]

)
if h is conformant

∞ otherwise
,

with U = {{u} | u ∈ U}, and where we have used the brackets
and −1 superscript to denote the preimage. The set-builder
expression defines set U to have all the elements of U , but so
that every element u is replaced by its form as a singleton {u}.
Observe that the original cost is invoked on all non-disabled
actions because the preimage does not pullback ufail.

Suppose that P ? is a solution to (G,Vgoal) and the value it
attains, c(A(P ?, G)), is minimal. Then it never uses actions
U \ A(P ?, G), so a conformant label map, h1 say, sending
those actions to ufail produces a planning problem that P ?

will solve as well. But c(h−1
1 [U]) = c(h−1

1 [A(P ?, G)]). And
thus, c c` (h?) ≤ c c` (h1) = c(A(P ?, G)).

Now, if conformant label map h disables some actions
when applied to a planning problem, any solution to that
problem only makes effective use of some of the non-disabled
ones. So if P solves the planning problem (h(G′), Vgoal),
then it must be that h−1[U] ⊇ A(P, h(G′)). Because c
is monotone, c c` (h) ≥ c(A(P, h(G′))) and, since apply-
ing label map h only potentially disqualifies some actions,
c(A(P, h(G′))) ≥ c(A(P ?, G)). The preceding, being true
for all conformant label maps, holds for h? in particular. So
c(A(P ?, G)) ≤ c c` (h?) ≤ c(A(P ?, G)), yielding the desired
result.

All that remains is the edge case when there is no solution:
especially since ∞ is part of the construction of c c` , to
ensure a solution with value of ∞ is never produced when
it ought not to be. If the OPTDM[(G,Vgoal), c] problem has
no solution then all conformant label maps never have a
solution. Consider the identity label map. It is conformant and
there is no solution under it, as (id(G′), Vgoal) = (G′, Vgoal)
which just corresponds to (G,Vgoal). So, we must show that
no non-conformant label map leads to a solvable planning
problem. But this fact follows because conflating either actions
or observations only makes the robot less capable. �

Lest the preceding should appear obvious, or a trivial trick
with pushing the constraints around, or merely the usual
objective/constraints duality, we make one point of clarifi-
cation. For an OPTDM instance, the planning problem is
fixed; the work of optimizing is searching over the space of
plans to solve that single constant planning problem. But for
LM-OPTDM, the planning problems themselves are altered
(potentially becoming non-state-determined) and one asks for
the existence of some plan on that new planning problem.
That existential quantifier is, in a sense, absent from the
OPTDM problem. Intuitively, what occurs is that the label

map optimization problem hems in the set of actions that can
be selected, and gradually tightens this confinement. It is able
to do this because any slack from a particular label map, in
the form of excess elements in the preimage set, either has no
effect on the objective value (because the costs are the same
under c with or without the excess), or they will be driven
out by the optimization (i.e., by sending them to {ufail}). The
latter aspect hinges on the monotone property inherited from c.

One aspect of the p-graph formalism is that plans and
planning problems appear to be very similar objects; in the past
we have even suggested that this may be seen as a virtue, but in
the case of the preceding theorem, this similarity unfortunately
camouflages some of the game.

The upshot of Theorem 3 is that, since LM-DECDM
subsumes DECDM, the hardness results from Section IV carry
over to this new setting.

Corollary 7: LM-DECDM is NP-hard.
Proof: Combine Theorem 1 with Theorem 3, noting that

the construction in the proof of Theorem 3 requires only
polynomial time. �

Corollary 8: For every ε > 0, LM-OPTDM is NP-hard to
approximate to within ratio (1− ε) lnn.

Proof: Combine Theorem 2 with Theorem 3, noting once
again that the construction takes polynomial time, and that it
increases the problem size by only a constant. �

VII. DISCUSSION

This paper complements the authors’ previous papers; it
is worth discussing why those papers, some of which also
describe the hardness of aspects related to plans, do not quite
capture an appropriate notion of design cost, the subject of
this work.
States: In [25], motivated by memory constraints, we examine

the hardness of a problem termed ‘concise planning’, which
minimizes the number of states in a plan that solves some
planning problem. The cardinality of the set of states is
distinct from the total number of actions or, indeed, any
function of A(P,W), though, minimization turns out to be
difficult nevertheless.

Observations: The first paper to consider label map-like op-
timization, with a connection to sensor selection, was [28].
Therein we introduce representations and algorithms for ex-
amining whether some specific deterioration of an idealized
sensor is destructive to task achievement. In that article
we consider filters under application of observation maps;
filters can be thought of as (junior) siblings of plans. Filters
process streams of observations from the world but, unlike
plans, they are passive in that there is no consideration of
choices which may then influence subsequent observations.
A filter maps sequences of observations to sequences of
equivalence classes over observation sequences—here the
phrase ‘equivalence classes over observation sequences’ is
expressed conventionally, and more concisely, with the word
‘state’.

For an observation map from Y to Y ′ and a filter on Y ,
we might ask whether one can construct a new filter that
behaves indistinguishably from the given one, but operating

11

on Y ′ instead, with each observation transported under the
map. Indistinguishable behavior means here that, given the
same inputs, it produces the same outputs. If the observation
map characterizes a sensor, then naturally we would be
interested in the following optimization question: what is
the simplest sensor that preserves the desired behavior? The
decision form of this problem—where simplicity is measured
via the cardinality of the observation map’s image set—was
established to be NP-hard in Theorem 5.5 of [29]. Corol-
lary 7 in the current paper is, in a sense, a parallel result for
planning to that prior result on filters. Though this discussion
about filters hasn’t provided hope for practical design-time
optimization, still, it indicates that thinking about label maps
provides an alternative direction from which to approach
these sorts of problems. Indeed, a recent paper adopting this
point of view is [33].

State determined forms: The idea of a state-determined form
was developed in [28] and [10]. Its importance, prior to the
present paper, had been mainly abstract and conceptual. The
requirement of a state-determined planning problem, directly
in the definition of DECDM, is important for the proof of
the completeness result in Theorem 1. Note, though, that
without that requirement, the proof of containment within
NP-hard is preserved.

VIII. PROSPECTS

In light of the results presented, it seems likely that future
computational tools to help the practical roboticist solve design
problems ought not to aim at optimality, even in merely
approximate terms. Indeed, as was emphasized in [22], there
are several ways in which interactive tools might help guide
a person in thinking about robot design problems, including
approaches that can leverage the strength of people in bringing
insights even to poorly framed or incompletely specified
problems. These are, in the authors’ view, important directions
where, as yet, the little work that has been attempted remains
preliminary and tentative.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Awards IIS-1526862, IIS-1527436,
and IIS-1453652.

REFERENCES

[1] L. Carlone and C. Pinciroli, “Robot Co-design: Beyond the Monotone
Case,” in Proceedings of IEEE International Conference on Robotics
and Automation, Montreal, Canada, May 2019.

[2] A. Censi, “A Class of Co-Design Problems With Cyclic Constraints and
Their Solution,” IEEE Robotics and Automation Letters, vol. 2, no. 1,
pp. 96–103, Jan. 2017.

[3] ——, “Uncertainty in Monotone Co-Design Problems,” IEEE Robotics
and Automation Letters, vol. 2, no. 3, pp. 1556–1563, Feb. 2017.

[4] S. A. Cook, “The complexity of theorem-proving procedures,” in Pro-
ceedings of ACM Symposium on Theory of Computing, Shaker Heights,
OH., May 1971, pp. 151–158.

[5] I. Dinur and D. Steurer, “Analytical approach to parallel repetition,” in
Proceedings of ACM Symposium on Theory of Computing, New York,
NY., May 2014.

[6] B. R. Donald, “On Information Invariants in Robotics,” Artificial Intelli-
gence — Special Volume on Computational Research on Interaction and
Agency, Part 1, vol. 72, no. 1–2, pp. 217–304, Jan. 1995.

[7] I. Fitzner, Y. Sun, V. Sachdeva, and S. Revzen, “Rapidly prototyping
robots: Using plates and reinforced flexures,” IEEE Robotics & Automa-
tion Magazine, vol. 24, no. 1, pp. 41–47, Mar. 2017.

[8] J. Flum and M. Grohe, Parameterized Complexity Theory. Berlin
Heidelberg New York: Springer, 1998.

[9] S. Fuller, E. Wilhelm, and J. Jacobson, “Ink-jet printed nanoparticle
microelectromechanical systems,” Journal of Microelectromechanical
Systems, vol. 11, no. 1, pp. 54–60, Feb. 2002.

[10] S. Ghasemlou, F. Z. Saberifar, J. M. O’Kane, and D. Shell, “Beyond the
planning potpourri: reasoning about label transformations on procrustean
graphs,” in Proceedings of Workshop on the Algorithmic Foundations of
Robotics, San Francisco, CA, Dec. 2016.

[11] S. Ha, S. Coros, A. Alspach, J. M. Bern, J. Kim, and K. Yamane,
“Computational design of robotic devices from high-level motion speci-
fications,” IEEE Transactions on Robotics, vol. 34, no. 5, pp. 1240–1251,
Oct. 2018.

[12] K. Hauser, “The minimum constraint removal problem with three
robotics applications,” International Journal of Robotics Research,
vol. 33, no. 1, pp. 5–17, 2014.

[13] A. M. Hoover and R. S. Fearing, “Fast scale prototyping for folded mil-
lirobots,” in Proceedings of IEEE International Conference on Robotics
and Automation, Pasadena, CA, May 2008.

[14] G. Jing, T. Tosun, M. Yim, and H. Kress-Gazit, “Accomplishing high-
level tasks with modular robots,” Autonomous Robots, vol. 42, no. 7,
pp. 1337–1354, Oct. 2018.

[15] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-
ity of computer computations. Springer, 1972, pp. 85–103.

[16] L. A. Levin, “Universal search problems,” Problemy Peredachi Infor-
matsii, vol. 9, no. 3, pp. 115–116, 1973, in Russian. Reprinted in [17].

[17] ——, “Universal search problems,” Annals of the History of Computing,
vol. 6, no. 4, pp. 384–400, 1984, English translation of [16] by B. A.
Trakhtenbrot.

[18] K. S. Luck, J. Campbell, M. Jansen, D. Aukes, and H. B. Amor, “From
the lab to the desert: Fast prototyping and learning of robot locomotion,”
in Proceedings of Robotics: Science and Systems, Cambridge, MA, Jul.
2017.

[19] A. Mehta, N. Bezzo, P. Gebhard, B. An, V. Kumar, I. Lee, and D. Rus,
“A design environment for the rapid specification and fabrication of
printable robots,” in Springer Tracts in Advanced Robotics, 2015, pp.
435–449.

[20] A. M. Mehta, J. DelPreto, K. W. Wong, S. Hamill, H. Kress-Gazit, and
D. Rus, “Robot creation from functional specifications,” in Springer
Proceedings in Advanced Robotics, Nov. 2018, pp. 631–648.

[21] R. Niedermeier, Invitation to Fixed-Parameter Algorithms. New York:
Oxford University Press, 2006.

[22] A. Q. Nilles, D. A. Shell, and J. M. O’Kane, “Robot Design: Formalisms,
Representations, and the Role of the Designer,” in IEEE ICRA Workshop
on Autonomous Robot Design, Brisbane, Australia, May 2018, https:
//arxiv.org/abs/1806.05157.

[23] J. M. O’Kane, “A theory for comparing robot systems,” Ph.D. disserta-
tion, University of Illinois, Oct. 2007.

[24] J. M. O’Kane and S. M. LaValle, “On comparing the power of robots,”
International Journal of Robotics Research, vol. 27, no. 1, pp. 5–23,
Jan. 2008.

[25] J. M. O’Kane and D. Shell, “Concise planning and filtering: hardness
and algorithms,” IEEE Transactions on Automation Science and Engi-
neering, vol. 14, no. 4, pp. 1666–1681, Oct. 2017.

[26] L. Paull, G. Severac, G. Raffo, J. Angel, H. Boley, P. Durst, W. Gray,
M. Habib, B. Nguyen, S. V. Ragavan, S. Saeedi, R. Sanz, M. Seto,
A. Stefanovski, M. Trentini, and H. Li, “Towards an ontology for au-
tonomous robots,” in Proceedings of IEEE/RSJ International Conference
on Intelligent Robots and Systems, Algarve, Portugal, Oct. 2012, pp.
1359–1364.

[27] V. Raman and H. Kress-Gazit, “Towards minimal explanations of
unsynthesizability for high-level robot behaviors,” in Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Tokyo, Japan, Nov. 2013.

[28] F. Z. Saberifar, S. Ghasemlou, J. M. O’Kane, and D. Shell, “Set-labelled
filters and sensor transformations,” in Proceedings of Robotics: Science
and Systems, AnnArbor, Michigan, Jun. 2016.

[29] F. Z. Saberifar, S. Ghasemlou, D. A. Shell, and J. M. O’Kane, “Toward a
language-theoretic foundation for planning and filtering,” International
Journal of Robotics Research, vol. 38, no. 2, pp. 236–259, Mar. 2019.

[30] F. Z. Saberifar, J. M. O’Kane, and D. A. Shell, “The hardness of
minimizing design cost subject to planning problems,” in Proceedings of
Workshop on the Algorithmic Foundations of Robotics, Mérida, México,
Dec. 2018.

http://nsf.gov/awardsearch/showAward?AWD_ID=1526862
http://nsf.gov/awardsearch/showAward?AWD_ID=1527436
http://nsf.gov/awardsearch/showAward?AWD_ID=1453652
https://arxiv.org/abs/1806.05157
https://arxiv.org/abs/1806.05157

12

[31] A. Schulz, C. Sung, A. Spielberg, W. Zhao, R. Cheng, E. Grinspun,
D. Rus, and W. Matusik, “Interactive robogami: An end-to-end system
for design of robots with ground locomotion,” The International Journal
of Robotics Research, vol. 36, no. 10, pp. 1131–1147, 2017.

[32] B. Tovar, “Minimalist models and methods for visibility-based tasks,”
Ph.D. dissertation, University of Illinois at Urbana Champaign, 2009.

[33] Y. Zhang and D. A. Shell, “Abstractions for computing all robotic
sensors that suffice to solve a planning problem,” in Proceedings of IEEE
International Conference on Robotics and Automation, Paris, France,
May 2020.

[34] J. Ziglar, R. Williams, and A. Wicks, “Context-aware system synthesis,
task assignment, and routing,” 2017, arXiv:1706.04580.

Jason M. O’Kane Dr. O’Kane is Professor and Director of the Center
for Computational Robotics in the Department of Computer Science and
Engineering at the University of South Carolina. He holds the Ph.D. (2007)
and M.S. (2005) degrees from the University of Illinois and the B.S. (2001)
degree from Taylor University (Upland, Indiana, USA), all in Computer
Science. His research interests span sensor-based algorithmic robotics and
related areas, including planning under uncertainty, artificial intelligence,
computational geometry, sensor networks, and motion planning.

Dylan A. Shell Dr. Shell is an Associate Professor of Computer Science
at Texas A&M University. He holds a Ph.D. in Computer Science from the
University of Southern California. He has published papers on multi-robot
task allocation, robotics for emergency scenarios, and biologically inspired
multiple robot systems.

Fatemeh Zahra Saberifar Dr. Saberifar is an Assistant Professor at the
Faculty of Mathematical Sciences, with the Department of Computer Sci-
ence, at Tarbiat Modares University. She holds the Ph.D. (2018) and M.Sc.
(2010) degrees in Mathematics and Computer Science from the Amirkabir
University of Technology, Tehran. Her interests include algorithmic robotics
and computational geometry.

	I Introduction
	II Related Work
	III Definitions and Problem Formulation
	III-A Planning problems and plans
	III-B Design costs
	III-C Design cost minimization
	III-D A more practical example: Gadget selection

	IV Hardness of Design Cost Minimization
	IV-A The General Case
	IV-B Special cases that are also hard
	IV-C Hardness of approximation
	IV-D Fixed parameter hardness

	V Design cost minimization in polynomial time
	V-A Binary design and ordered action costs are efficiently solvable
	V-B Fixed parameter tractability of counter design cost

	VI An alternative formulation via label maps
	VII Discussion
	VIII Prospects
	References
	Biographies
	Jason M. O'Kane
	Dylan A. Shell
	Fatemeh Zahra Saberifar

