
Assignment Algorithms for Modeling Resource Contention in
Multi-Robot Task Allocation

Changjoo Nam, Student Member, IEEE, and Dylan A. Shell, Member, IEEE

Abstract—We consider a multi-robot task allocation (MRTA)
problem where costs of performing tasks are interrelated so that
the overall performance of the team need not be a standard sum-
of-costs (or utilities) model. The generalized optimization form
we introduce allows for additional costs incurred by resource
contention to be treated straightforwardly. In this variant, a
team of networked robots may choose one of a set of shared
resources to perform a task (e.g., several routes to reach a
destination, or use of other shared resources), and interference
may be modeled as occurring when multiple robots use the same
resource. We show that the general problem is an NP-hard
optimization problem, and investigate specialized sub-instances
where the interrelations between costs that are linear or convex
functions.

We propose an exact algorithm for the general problem
and, turning to the more specialized sub-instances, introduce
an optimal polynomial-time algorithm and an approximation
polynomial-time algorithm for the others. The exact algorithm
finds an optimal assignment in a reasonable time on small
instances. The other two algorithms find an optimal assignment in
a short time even if a problem is of considerable size (e.g., in the
linear case, 0.5786 sec for 100 robots) and a high-quality solution
quickly (e.g., in the convex case, 0.8462 sec), respectively. In
contrast to conventional approximation methods, our algorithm
provides the performance guarantee.

Note to Practitioners—Practical operation of a team of robots
requires that one address an idealization made in the vast major-
ity of the literature on task allocation: namely the presumption of
task independence. In reality, tasks are not performed in perfect
isolation and this paper shows that computing task costs inde-
pendently, although a prevalent modeling simplification, may be
detrimental. Whenever robots use shared resources (e.g., narrow
passages, limited communication bandwidth), resource contention
and physical interference may cause performance to degrade.
These aspects can be thought of as interrelationships between
tasks costs and this article introduces an augmented model
that expresses such interrelationships by capturing resource-
based interactions among robots that change task execution
costs. The model is open-ended so that the better a particular
deployment of robots is understood, the greater practical domain
knowledge can be brought to bear in constructing a precise
model of task costs and their interdependencies. This paper
describes optimization methods which incorporate the additional
costs incurred by resource contention, allowing different types of
model (e.g., linear or convex) giving the practitioner flexibility
in selecting the model most suited for their specific application.
Generally, the algorithms described are fast enough to be applied
to real-time applications, but the experimental data also enable
an understanding of modelling complexity vs. running-time.

Index Terms—Multi-robot task allocation, assignment algo-
rithm, resource contention, interference

This paper is an extended version of [1].
Both authors are with the Department of Computer Science and Engineering

at Texas A&M University, College Station, Texas, USA.
E-mail: {cjnam, dshell} at cse.tamu.edu

Manuscript received August 1, 2014.

I. INTRODUCTION

MULTI-ROBOT systems are becoming popular in real-
world applications owing in part to the advances

in computation power and sensor/communication technol-
ogy. Representative applications, in which multiple networked
robots have demonstrated their advantages over single robots,
include environmental monitoring [2], object clustering [3],
search and rescue [4], warehouse automation (e.g., Kiva
systems), and aerial vehicle delivery (e.g., Amazon). Many
problems are identified in various applications such as multi-
robot control, human-robot/swarm interaction, communication
protocol, and task allocation. Among them, multi-robot task
allocation (MRTA) is one of the fundamental problems to be
solved in multi-robot coordination, which is independent from
the domains where applications are situated.

MRTA addresses optimization of collective performance
by reasoning about which robots in a team should perform
which tasks. Even starting with the classical work, many
different approaches have been proposed, such as behavior-
based [5], [6] and market-based [7], [8], [9] task allocation. Al-
though resource contention and physical interference have
long been known to limit performance [10], [11], [12], the
vast majority of MRTA work considers settings for which
interference is treated as negligible (cf. review in [13]). This
limits the applicability of these methods and computing a task
assignment under assumptions of noninterference may produce
suboptimal behavior even if the algorithm solves the assign-
ment problem optimally. Several authors have proposed task
allocation approaches that model or avoid interference (usually
physical interference), see for example, [14], [15], [16], [17] (a
summary is shown in Table I.). These works, however, do
not set out to achieve global optimality, or understand the
computational consequences of a model of interference.

In this paper, following the lead of early and practical work,
we assume a networked system in which all information is
known by at least one robot that is responsible for optimizing
task allocation. In practice, this robot can be dynamically
elected robot from amongst the team. We also assume that
a robot can perform only one task at a time, each task
requires only one robot to execute it, and that the allocation
of tasks to robots need consider only current (instantaneously
available) information and need not hedge against future
plans. This problem falls into single-task robots (ST), single-
robot tasks (SR) and instantaneous assignment (IA) axes [13].
The ST-SR-IA MRTA problem can be posed as an Optimal
Assignment Problem (OAP), which is well-studied, and can
be cast as an integral linear program which is in complexity
class P. This conventional MRTA problem does not specify
how robots use resources so it is unable for it to account for

TABLE I: A summary of algorithms that consider interference among robots.

Authors & paper Way to deal with interference Poly-time? Optimal?
Dahl et al. [14] Use reinforcement learning to distribute resources to robots No No
Guerrero and Oliver [15] Include the effect of interference in the utility function of the auction method No (deadline) No

Choi et al. [16] Use a market-based distributed agreement protocol that guarantees a conflict-free Yes No (provably
assignment good solution)

Pini et al. [17] Spatially partition tasks to reduce interference No No

(a) Physical space

Node 1: 1Mbps

Node 2: 800Kbps

(b) Communication bandwidth

Fig. 1: Two examples of resources with limited capacities that must be shared
in most practical contexts. Both communication and space contention cause
performance to scale sub-linearly with the number of robots.

interference incurred by sharing resources. Instead, it assumes
that resources are individually allocated to robots or, if shared,
that they impose no limits.

In our problem, however, robots may have to choose be-
tween resources used to perform tasks (e.g., several routes
to reach a destination), as shown in Fig. 1, and the costs of
performing the tasks may vary depending on the choice. If
several robots use the same resource (reflected in a relationship
between their choices), we allow interference between them to
be modeled. Inter-agent interference (as described in Fig. 2)
is treated mathematically as a penalization to the cost of
performing that task. In this manner, we can model shared
resources and generalize the conventional MRTA problem
formulation to include resource contention. The result is an
optimization problem for finding the minimum-cost solution
including the interference induced penalization cost. We term
this the multiple-choice assignment problem with penalization
(mAPwP). The model we introduce allows a robot to make
a selection from among multiple means by which it could
perform a task. Naturally, the penalization depends on the
particular selection.

In general, there are many ways penalization costs could be
estimated. When evaluation of the interference is polynomial-
time computable, we call this the mAPwP problem with
polynomial-time computable penalization function (P-type
mAPwP). Even with a cheaply computable penalization func-
tion, we show that the P-type problem is NP-hard1. We also
investigate two other problems that have particular forms of
penalization functions: linear and general convex penalization

1Adding the notion of multiple choices does not change the complexity
class, which is P. However, introducing the penalization function makes the
problem hard.

Sarah
Connor

Assassinate
Sarah Connor

Do the laundry
Shortest
path

Longer path

Fig. 2: A specific example of resource contention: two robots choose the
shortest path to perform their tasks, they should compute their paths to avoid
interaction with each other. When the right robot chooses the longer path via
the door on the far right, the sum of distances is larger, but it minimizes cost
when resource contention is considered.

functions. We show that the two problems are in P and NP-
hard, respectively. We provide an exact algorithm and two
polynomial-time algorithms for the problems. The algorithms
are domain-independent so that it can be used for many multi-
agent scenarios that have quantifiable interference between
agents.

The remainder of this paper is organized as follows. Sec-
tion II discusses the related literature on optimization methods
for MRTA. Section III defines the problem mathematically,
and Section IV describes the NP-hardness results. Section V
presents algorithms, and Section VI extends the suggested
modeling method of resource contention to another interrelated
costs. Section VII describes experiments, and the final section
concludes.

II. RELATED WORK

Recent studies dealing with limited shared resources in
multi-robot systems are mainly focused on the multi-robot
path planning (MPP) problem: Alonso-Mora et al. [18] em-
ploy a mixed-integer quadratic programming methods to op-
timize trajectories of robots while avoiding collisions; Yu
and LaValle [19] propose an integer linear programming
method to find collision-free paths for multiple robots; He and
van den Berg [20] suggest an MPP algorithm that consists
of macro-, micro-, and meso-scale planners. Their meso-
scale planner considers groups of other robots as a coherent
moving obstacle while the micro-scale planner locally avoids
individual obstacles. Those methods quickly find high-quality
solutions. However, their approaches are domain-specific so
not appropriate for general problems where robots contend
for arbitrary shared resources, not necessarily only physical

space. Moreover, resources modeled in [19] are able to accom-
modate only one robot at each time step, which is restrictive
to model real-world applications. In [20], the micro-scale
collision avoidance is based on local observations, and it does
not achieve global optimality. We are not aware of previous
hardness results with respect to resource sharing in multi-robot
systems.

The equivalence of the classical assignment problem by a
network flow problem has been well known for decades. This
may lead to the suggestion that one can prevent interference
by imposing additional constraints in the form of capacity
constraints in the flow formulation. This can be solved by
a centralized manner [21] or a distributed manner [22], [23].
However, that approach models interference as a binary penal-
ization, which is zero or infinite, whereas incurred by resource
contention are more widely applicable if the interference is
modeled as a continuous function that increases proportionally
to the amount of interference. (See, for example, our use of
published and validated traffic models in Section VII.)

The approach of imposing constraints to restrict robots from
using shared resources is used in many MRTA algorithms such
as [24], [25], [26], [27], [28], [29]. This approach is widely
used because of its simplicity since the constraints can be
constructed once restrictions on resources are identified (e.g.,
the maximum number of robots using a shared resource).
However, such constraints satisfy some models of shared
resource, but the models are not adequately rich to describe
the problem precisely. For example, if a capacity constraint
is imposed for a shared resource, an allocation that violates
the constraint cannot be considered at all. However, a shared
resource can be used without a capacity limit but with some
additional costs as more robots use the resource. Inversely,
there could be additional costs even though the number of
robots using a shared resource is less than a capacity. In
addition, [30], [31] also consider MRTA problems where tasks
have dependencies. The inter-task dependencies are caused by
precedence or deadline of tasks. The dependencies are handled
by imposing constraints. Again, this approach may not be
describes some problems precisely. For example, a shipping
task could miss its deadline if a penalty is paid for not fulfilling
the due date.

An alternative is for the P-type problem can be cast as
a linearly constrained 0-1 programming problem, with the
penalization function incorporated into the objective function
with the cost sum. The objective function is optimized over
a polytope defined by the mutual exclusion and integral
constraints. The results in this paper suggest that one can have
an optimal solution in polynomial time if the penalization
function is linear. When the penalization is more complex,
a common method to solve the problem is enumeration, for
example using the branch-and-bound method, but its time
complexity in the worst case is as bad as that of an exhaustive
search; rather more insight is gained by employing the method
we introduce in this paper. Many practical algorithms [32],
[33], [34] are suggested in the literature, but they also have
exponential running time in the worst case. Linearizing the
complex penalization function could be an alternative to have
polynomial running time but has no performance guarantee.

TABLE II: Nomenclature.

G(R, T,E)
a bipartite multigraph consisting of two disjoining sets
R and T and a collection of edges E;

L the bit length of input variables of an instance;
NΠ the number of all assignments;
Q(·) the penalization function;
Ql the penalization function of the l-th resource;
Qs the penalization of s-th assignment;
X∗ the optimal assignment;
Xs−/+ the s-th assignment before/after penalization;

cijk
the cost of performing the j-th task by the i-th robot in
the k-th manner;

c∗ the cost sum of the optimal assignment;

cs−/+ the cost sum of the s-th assignment before/after
penalization;

d the length of a road;
i the index of vertices in R (robots);
j the index of vertices in T (tasks);
k the index of edges in E (choice);
n the number of vertices in R (robots);
nl the number of robots on the l-th resource;
m the number of vertices in T (tasks);
pij the number of choices between ri ∈ R and tj ∈ T ;

xijk
the binary variable that indicates that the i-th robot
performs the j-th task in the k-th manner;

s the s-th best assignment in terms of optimality;
vf the traffic flow speed of a road;
β the coefficients of a penalization function;

η
the ratio of an approximated solution to an optimal
solution (η = c′∗/c∗);

λ the slope of the headway-speed curve;
ρ the traffic density of a road;
ρj the jam density of a traffic road;

Lastly, Roughgarden [35] introduces noncooperative routing
games in which each agent chooses a complete route between a
source and a sink in a network in congestion-sensitive manner.
Routing games have the objective of minimizing the sum
of traffic costs including additional costs from congestion,
which is same with the multi-vehicle traffic problem used in
the experiments (Section VII-C). It is interesting that selfish
agents are able to find an optimal set of routes. However,
routing games confine their applications to routing problems
on physical resources (e.g., roads) so they are limited to deal
with general resource contention.

III. PROBLEM FORMULATION

A. Bipartite Multigraph

The mAPwP problem can be expressed as a bipartite multi-
graph. Let G = (R, T,E) be a bipartite multigraph consisting
of two independent sets of vertices R and T , where |R| = n
and |T | = m, and a collection of edges E. An edge is a set
of two distinct vertices denoted (i, j) and incident to i and j.
Each edge in G is incident to both a vertex in R and a vertex
in T , and pij is the number of edges between two vertices.
The vertices in R and T can be interpreted as n robots and
m tasks, respectively. An edge is a way in which a robot
may use resources, for which it expected to select one among
pij choices for a given task. The precise interaction between
resources is modeled via penalization function, described next.

B. Multiple-Choice Assignment Problem with Penalization
(mAPwP)

Given n robots and m tasks, the robots should be allocated
to tasks with the minimum cost. Each allocation of a robot to
a task can be done via one of the pij choices where i and j are
indices of the robots and the tasks, respectively. Each of the
pij choices represents some set of resources used by a robot
to achieve a task. The multiple choices indicate the resources
can be used in many ways. We assume we are given cijk,
the interference-free cost of the i-th robot performing the j-th
task through the k-th choice. Let xijk be a binary variable
that equals to 0 or 1, where xijk = 1 indicates that the i-th
robot performs the j-th task in the k-th manner. Otherwise,
xijk = 0.

In problem domains where multiple robots share resources,
use of the same limited resource will typically incur a cost.
We model this via a function which corrects the interference-
free assignment cost (i.e., the linear sum of costs) by including
the additional cost of the effects of resource contention (Q(·)
in Eq. 1)2. We assume that the cost and the penalization are
nonnegative real numbers. We also permit the cost to positive
infinity when interference is catastrophic (or, for example, only
one robot is permitted to use the resource). We assume n =
m. If n 6= m, dummy robots or tasks would be inserted to
make n = m. Then a mathematical description of the mAPwP
problem is

min

n∑
i=1

m∑
j=1

pij∑
k=1

xijkcijk

+Q(x111, x112, . . . , x11p11
, . . . , xnmpnm),

(1)

subject to
m∑
j=1

pij∑
k=1

xijk = 1 ∀i, (2)

n∑
i=1

pij∑
k=1

xijk = 1 ∀j, (3)

0 ≤ xijk ≤ 1 ∀{i, j, k}, (4)
xijk ∈ Z+ ∀{i, j, k}. (5)

We note that Eq. 5 is superfluous if no penalization function
is considered or Q(·) is linear, because the constraint ma-
trix satisfies the property of totally unimodular (TU) matrix.
Specifically, an optimization problem with a linear objective
function has only integer solutions if its constraint matrix
satisfies totally unimodularity [36], so the integral constraint
is not necessary.3

C. Penalization

The penalization function maps a particular assignment
to the additional cost associated with the interference. In

2The formal definition of Q(·) will be shown in Section III-C.
3The standard treatment of the Optimal Assignment problem without a

penalization factor for task allocation (e.g., in [13]) considers only a bipartite
graph (i.e., ∀i∀jpij = 1). Although TU is well-known for the problem, we
believe this to be the first recognition of this fact for the problem above.

TABLE III: A summary of the mAP problems.

Problem Description
mAPwP The multi-choice assignment problem with penalization

P-type The mAPwP problem with any penalization functions
that are polynomial-time computable

DP-type The decision version of the P-type problem
C-type The mAPwP problem with convex penalization functions
L-type The mAPwP problem with linear penalization functions

the formulation of mAPwP earlier, Q(·) denotes the penal-
ization function in most general terms. If the mAPwP is
with a polynomial-time computable Q(·), it is the P-type
problem. The input domain for Q has ∼ O(max{n,m}! ·
(max{pij})min{n,m}) elements; in most cases a penalization
function is more conveniently written in some factorized form.
One example is if one is concerned only with the number
of robots using a resource, not precisely the identities of the
robots that are. If Ql(nl) is the penalization function of the
l-th choice where nl is the number of robots for that choice,
then the total penalization could be written as:

Q(x111, x112, . . . , x11p11
, . . . , xnmpnm)

= Q1(n1) +Q2(n2) + . . .+Qq(nq)

=

q∑
l=1

Ql(nl).

(6)

where q is the total number of choices in an environment. If
the robots are homogeneous, nl is the same as the number
of robots on the l-th choice. Otherwise, each robot has a
weight that represents the occupancy of the robot. The P-type
problem is a general problem that Q(·) can be any form of
function. If Q(·) is convex, the mAP becomes the mAP with
convex penalization function (C-type mAPwP). Especially, it
comes to be the mAP with linear penalization function (L-type
mAPwP) if Q(·) is linear. The descriptions of the problems
are summarized in Table III.

D. Examples

An example of the mAPwP is shown in Fig. 3(a). The
goal is to minimize the total traveling time by distributing
robots (R1, R2 and R3) to three destinations (T1, T2 and T3).
R1 and R2 can use all the paths, but R3 cannot use the
passage p2 because R3 is wider than the passage. A weighted
bipartite multigraph that is equivalent to the example is shown
in Fig. 3(b). The graph has |R| = |T | = 3 vertices, and every
pair of vertices has 2 edges except for p31 = p32 = p33 = 1.
There will be interference, for example, if both R1 and R2 try
to reach destinations on p1, so a time delay is incurred which
must be added to the total traveling time.

Types of shared resources need not be limited to physical
space. A family of cooperative information collecting missions
could have resource contention on shared communication
channels. The mission is collecting information, such as pic-
tures, depth information, or audio source, from environments
and transmitting them to a central repository while minimizing
the sum of completion time. Each robot is required to choose
one of the locations in an environment and transmit collected

(a) An example of the mAPwP. (b) The equivalent graph repre-
sentation.

Fig. 3: An example of the mAPwP and its graph representation. (a) Robots
have a choice between routes to reach their destinations, but interference
will occur if a passageway is shared (e.g., if both R1 and R2 try to reach
destinations via p1.) (b) A weighted bipartite multigraph representation for
this example. An edge between ri and tj represents the use of a resource
to perform the j-th task by the i-th robot, and its weight (cijk) is a cost
associated with performing the task by the robot. xijk is a binary variable
that indicates allocation of a robot to a task through a resource (the variables
are omitted for clarity).

data through one of several private wireless networks that have
different bandwidth.4 Data transmission time depends on the
size of the chosen channel’s throughput and the data size,
but additional transmission time occurs if the traffic exceeds
the bandwidth. This example of network congestion can be
formulated similarly with the physical space case.

IV. NP-HARDNESS OF MAPWP PROBLEMS

In this section, we show the P-type and C-type problems are
NP-hard optimization problems, and the L-type problem is in
P. We prove the corresponding decision version of the P-type
(DP-type) is NP-complete to prove the P-type problem is an
NP-hard optimization problem [37]. Then we briefly describe
the L-type problem is in P and show the C-type problem is
NP-hard.

A. The P-type problem is NP-hard

Theorem 4.1 The DP-type problem is in NP.
Proof. The DP-type problem simply asks whether an assign-
ment has cost less than a given threshold.
Input: n robots, m tasks, pij choices, a polynomial-time
computable penalization function Q, and costs of edges cijk,
a constant α.
Question: Is the penalized cost of a given assignment less than
α?
Certificate: An arbitrary assignment xijk.
Algorithm:

1 Check whether the assignment violates any constraints
2 Calculate the total cost of the assignment
3 Penalize the cost by the penalization function
4 Check whether the penalized cost is less than α

4To simplify the problem, we assume that the time for approaching to a
location and transmitting data dominates the time for other tasks such as data
acquisition. We also assume that physical space is enough to perform tasks
without interference among robots.

This is polynomial-time checkable so that the DP-type prob-
lem is in NP. �

Theorem 4.2 The DP-type problem is NP-hard.
Claim. The proof is based on relation to the classic boolean
satisfiability problem. The 3-CNF-SAT problem asks whether
a given 3-CNF formula is satisfiable or not. It is a well-known
NP-complete problem. If 3-CNF-SAT ≤P DP-type, then the
DP-type problem is NP-hard.

Proof. The reduction algorithm begins with an instance of 3-
CNF-SAT. Let Φ = C1 ∧ C2 ∧ ... ∧ Ck be a 3-CNF boolean
formula with k clauses over n variables, and each clause has
exactly three distinct literals. We shall construct an instance
of the DP-type problem where pij = 1 (i = 1, ..., n and j =
1, ..., 2n) such that Φ is satisfiable if and only if the solution of
the instance of DP-type problem has cost less than a constant
α.

We construct a bipartite multigraph G = (R, T,E) as
follows. We place n nodes r1, r2, ..., rn ∈ R for n variables
and 2n nodes t1, f1, t2, f2, ..., tn, fn ∈ T for truth values (true
and false) of the variables. For i = 1, ..., n and j = 1, ..., 2n,
we put edges (ri, ti) ∈ E and (ri, fi) ∈ E where ti and
fi ∈ T . The costs of the edges are given by cij . In addition,
we construct an assignment by assigning vertex i in R to vertex
j in T only when xij = 1 for i = 1, ..., n and j = 1, ..., 2n.
(Note that xij ∈ {0, 1}.)

Now, we construct a function ΦJ as follows. Each clause
in Φ is transformed to a sum of terms in parentheses so that
the terms correspond to the three literals in the clause. For a
positive literal, we put xij where i is equal to the index of the
literal and j = 2i − 1 whereas j = 2i for a negative literal.
Disjunctions of clauses are transformed to multiplications. A
penalization of an assignment is defined as

Q =

{
0 ΦJ > 0
N otherwise, (7)

where N is a large number. If ΦJ has a solution which makes
ΦJ > 0, the penalization is zero. Therefore, the cost of the
assignment is

∑
i,j cijxij and Q = 0 so the assignment has the

total cost
∑

i,j cijxij . Otherwise, it will have a large nonzero
penalization such as N. We can easily construct Q from Φ in
polynomial time.

As an example, consider the construction if we have

Φ = (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ x4 ∨ ¬x5)

∧ (x3 ∨ ¬x1 ∨ ¬x2),
(8)

then the transformation is shown in Fig. 4. Φ has five variables
so five nodes and ten nodes are placed in R and T , respec-
tively. The nodes in R and T which have the same subscripts
are connected. We produce function:

ΦJ =(x11 + x23 + x48) · (x23 + x47 + x5·10)

· (x35 + x12 + x24),
(9)

and its penalization will be 0 or N depending on the assign-
ment.

We show that this transformation is a reduction in a little
more detail. First, suppose that Φ has a satisfying assignment.
Then each clause contains at least one literal that true is

t1

r1

f1 t2

r2

f2 t3

r3

f3 t4

r4

f4 t5

r5

f5

x11 x12 x23 x24 x35 x36 x47 x48 x59 x5·10

Fig. 4: The DP-type problem derived from the 3-CNF formula
Φ = (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ x4 ∨ ¬x5) ∧ (x3 ∨ ¬x1 ∨ ¬x2). A satisfy-
ing assignment of Φ has x1 = 1, x2 = 1, x3 = 1, and x4, x5 either 0 or
1. Corresponding assignment is that x11 = 1, x12 = 0, x23 = 1, x24 =
0, x35 = 1, x36 = 0. The values of other elements do not affect the
satisfiability of Φ. This assignment makes ΦJ > 0.

assigned, and each such literal corresponds to a matching of
ri and ti. On the contrary, a literal assigned false corresponds
to a matching of ri and fi. Thus, assigning truth values to
the literals to make Φ satisfied yields matchings between R
and T . We claim that the matchings are an assignment which
makes ΦJ > 0. The assignment makes each sum of three terms
(in parentheses) at least 1 so that ΦJ, a multiplication of the
parenthesized terms, is greater than or equal to 1. Therefore,
by the construction, we can get the total cost of the assignment
and answer whether the cost is less than α.

Conversely, suppose that the DP-type problem has an as-
signment that makes ΦJ > 0. We can assign truth assignments
to the literals corresponding to the matchings between R and
T so that each clause has at least one variable which is true.
Since each clause is satisfied, Φ is satisfied. Therefore, 3-CNF-
SAT ≤P DP-type.5 �

In the example of Fig. 4, a satisfying assignment of Φ
has x1 = 1, x2 = 1, x3 = 1, and x4, x5 either 0 or 1.
Corresponding matchings in DP-type are that r1 and t1, r2

and t2, r3 and t3 while r4 is matched to either t4 or f4. Also,
r5 is matched to either t5 or f5. Therefore, the assignment is
x11 = 1, x12 = 0, x23 = 1, x24 = 0, x35 = 1, x36 = 0. The
values of other elements do not affect the satisfiability of Φ.
This assignment makes ΦJ > 0.
Corollary 4.3 By Theorem 4.1 and 4.2, the DP-type problem
is NP-complete. Therefore, the P-type problem is an NP-hard
optimization problem.

B. The L-type problem is in P

Mathematically, the L-type problem can be cast as an integer
linear programming problem whose constraint matrix satisfies
the property of totally unimodularity. This problem can be
solved in polynomial time as described in [36, Corollary 2.2].
Therefore, the L-type problem is in P.

C. The C-type problem is NP-hard

The mAP with a convex quadratic penalization function
(CQ-type) is a proper subset of the C-type problem, and is
a natural next step after examining L-type problem. The CQ-
type problem has the form

min {xTHx+ cx : Ax ≤ b, x ∈ {0, 1}} (10)

5There can be a simplification of the reduction. We can construct a function
ΦJ from any of the 3-CNF-SAT problem Φ. We define a polynomial-time
penalization function Q as Eq. 7. Then solving the DP-type problem solves
the corresponding instance of the 3-CNF-SAT problem.

where H is positive semidefinite and symmetric, c is nonneg-
ative, A is TU, and b is integer.

The following binary quadratic programming (BQP) is an
NP-hard problem [38, Theorem 4.1]. The BQP problem is

min {yTMy + dy : A′y ≤ b′, y ∈ {0, 1}} (11)

where M = LTDL, D = I , d = 0, L is TU and nonsingular,
A′ is TU, and b′ is integer.
Theorem 4.4 The CQ-type problem is NP-hard.
Claim. If M is symmetric and positive semidefinite, we can
reduce any BQP to an instance of the CQ-type problem.
Namely, BQP ≤P CQ-type.
Proof. Since D = I , M = LTL. Then (LTL)T =
(L)T (LT)T = (LTL). Thus, M is symmetric.

For any column vector v, vTLTLv = (Lv)TLv = (Lv) ·
(Lv) ≥ 0. Thus, LTL is positive semidefinite. Therefore,
BQP ≤P CQ-type as we claimed. �

Lemma 4.5 CQ-type (C-type.
Corollary 4.6 By Theorem 4.4 and Lemma 4.5, the C-type
problem is NP-hard.

D. A Polynomial-time Solvable Class of the C-type problem

The C-type problem is a nonseparable convex optimization
problem. If a C-type problem can be converted to a separable
convex optimization problem without breaking the totally
unimodularity of the constraint matrix, the problem is solvable
in polynomial time [39] and Alg. 4.2 in [39] is an optimal
algorithm for these cases. Note that a nonseparable problem
can be transformed to a separable problem by substituting non-
separable dependent polynomials with additional independent
variables and imposing additional constraints6 (see [40, Table
13.1] and the appendix for more detail and an example). Since
the cost sum part of the objective function in Eq. 1 is separable
in itself, only the penalization function is subject to conversion.
A constraint matrix after the conversion is

ASP =

[
A 0
AN −I

]
(12)

where A is the original TU constraint matrix, and [AN − I]
are newly imposed constraints. A is n×mp, AN is w ×mp,
0 is n × w, and I is w × w matrix where w is the number
of newly added variables. According to the properties of TU
matrix, we have the following properties of ASP:

- [A 0] is TU.
- If AN is TU, [AN − I] is also TU.
- Joining two arbitrary TU matrices is not guaranteed to

make a TU matrix. Thus, ASP may not be TU although
both of [A 0] and [AN − I] are TU.

- If AN is not TU, then ASP is not TU.
Since a TU AN could make ASP either TU or non–TU, the
totally unimodularity of ASP should be checked. The definition
of TU (i.e., the determinant of every square submatrix has
value -1, 0, or 1) or a necessary and sufficient condition

6Theoretically, any optimization problem can be restated as a separable
program, but this is of limited practically as the number of the additional
variables and constraints is large [40].

described in [41] can be used to check the totally unimodu-
larity. However, using those methods for the entire ASP could
be computationally expensive for large-sized problems. We
suggest a preliminary test to see if a transformation breaks
the totally unimodularity of the original problem.

Theorem 4.7 Separable convex integer optimization problem,
whose constraint matrix is not TU, is NP-hard.

Proof. Separable integer linear programming (ILP) problem is
a special case of the separable convex integer programming
problem. An ILP, whose constraint matrix is not TU, is
NP-hard [42] regardless of whether it is separable or not.
Therefore, the separable convex integer optimization problem,
whose constraint matrix is not TU, is NP-hard. �

Thus, a non–TU AN makes the C-type problem NP-hard by
Theorem 4.7. A preliminary test that is checking the totally
unimodularity of AN before checking the entire ASP may save
time, because ASP needs not to be checked if AN is not TU.
However, ASP shall be checked if AN is TU since a non–TU
AN is a sufficient condition, but not a necessary condition, to
make non–TU ASP.

E. Remark on the hardness results

There is a significance in the NP-completeness (not merely
the NP-hardness) result of the DP-type problem when the
penalization function is polynomial-time computable. The
problem with polynomial-time solvable penalization functions
has a spectrum of the hardness from P to NP-complete; the
upper bound is perhaps surprising. Many MRTA problems be-
come NP-hard when richer and more precise descriptions (e.g.,
additional constraints) are added to the problem formulation
[13]. While the problem is not expected to be polynomial-time
solvable, even if some polynomial-time algorithms did solve
all NP-complete problems, the NP-hard ones might remain.
If a problem has a non-polynomial-time-solvable penalization
function, the problem becomes NP-hard. The spectrum is a
concise visualization of understanding how hard the problem
is depending on the form of the penalization function.

V. ALGORITHMS FOR MAP PROBLEMS

In this section, we devise algorithms for mAP problems.
The exact algorithm for the P-type problem recursively enu-
merates unpenalized assignments and their costs from the best
assignment in terms of optimality, by calling a combinatorial
optimization algorithm for each iteration. However, no enu-
meration and optimization algorithm exists for multigraphs,
so we must extend Murty’s ranking algorithm [43] and the
Hungarian method [44] to the weighted bipartite multigraphs.
The extension does not change the complexity class of the
problem since the problem’s coefficient matrix is still totally
unimodular even with a bipartite multigraph [45]. We term the
algorithms the Multiple-Choice (MC) Hungarian and Multiple-
Choice (MC) Murty’s ranking algorithm.

Then we suggest polynomial-time algorithms for the L-
type and C-type problems. For brevity, we denote them by
the (optimal) L-type algorithm and the (approximate) C-type
algorithm, respectively. The algorithms consist of two phases:

the optimization phase and the rounding phase. In the first
phase, we relax the integral constraint Eq. 5 so that a solution
can be obtained in polynomial time, but it can be fractional.
Thus, the second phase rounds a fractional solution to ensure
the integrality of the assignment. We use an interior point
method (IPM) in the first phase and the MC Hungarian method
in the second phase. The L-type algorithm is optimal, and the
C-type algorithm is near-optimal. We provide the performance
guarantee of the C-type algorithm.

A. The Multiple-Choice Hungarian Method

We generalize the Hungarian method to allow multiple
choices of performing tasks. Fig. 5 shows the differences in
input and output between the original Hungarian method and
the MC Hungarian method. For implementation, we modify
the labeling operations (the initialization and the update oper-
ations) and the path augmentation from the original Hungarian
method. The labeling operations include all pij edges incident
to i and j. In the path augmentation step, the minimum-
weighted edge among pij is selected as the path between i and
j. The pseudocode is given in Alg. 1. The time complexity of
this algorithm is O(p2(max{n,m})3).

Algorithm 1 The Multiple-Choice (MC) Hungarian method

Input: An n × mp cost matrix which is equivalent to a
weighted bipartite multigraph G = (R, T,E) where |R| =
n, |T | = m and pij = p, ∀{i, j}.
Output: An optimal assignment M∗ and its cost c∗.

1. Generate initial labeling l(i) = min1≤j≤m{cijk},
∀i ∈ [1, n] and l(j) = 0,∀j ∈ [1,m] and matching M .

2. If M perfect, stop. Otherwise, pick an unmatched vertex
r ∈ R. Set A = {r}, B = ∅.

3. If N(A) = B, update labels by
l(r) = l(r)− δ r ∈ A
l(t) = l(t) + δ t ∈ B

where δ = maxr∈R,t∈T−B{l(r) + l(t) + cijk}.
4. If N(A) 6= B, pick t ∈ N(A) \B.
4a. If t unmatched, u→ t is an augmenting path, then

augment M and go to step 2.
4b. If t is matched to z, extend alternating tree by

A = A
⋃
{z}, B = B

⋃
{t}, and go to step 3.

Note: N(r) = {t|(r, t) ∈ Ge}, where Ge is the equality graph, and
N(A) =

⋃
∀r∈A N(r).

B. The Multiple-Choice Murty’s Ranking Algorithm

We modify the partitioning part of the original ranking
algorithm. The set of all matchings is partitioned into subsets
by removing each vertex and edges of s-th matching. After
finding an optimal solution of each subset by Alg. 1, the
vertices and the edges of the optimal solution are recovered.
In the removing and recovering procedures, pij edges are
removed and recovered all together. The other parts are same
as the original version. The time complexity of this algorithm
is O(sp2(max{n,m})4).

(a) The Hungarian method solves the problems
that have only single choice.

(b) The MC Hungarian method allows multiple choice of per-
forming tasks.

Fig. 5: A comparison between the Hungarian and the MC Hungarian methods. Their input cost matrices with output assignments (shaded squares) and
corresponding graphs are shown. A bold line indicates an allocation of a robot to a task. The second summation in Eq. 2 and Eq. 3 ensures a task to be
performed through only one resource if pij > 1.

C. Exact Algorithm for the P-type problem

1) Algorithm Description: The pseudocode is given in
Alg. 2. We denote the s-th assignment before/after penalization
as Xs−/+ and its cost is cs−/+. Similarly, Qs refers the
penalization of the s-th assignment. In the first iteration (i.e.,
s = 1), the algorithm computes the best assignment without
penalization (c1−). The penalization of the best assignment
(Q1) is computed and added to the cost of the best as-
signment (c1+ = c1− + Q1). Then, the algorithm computes
the next-best assignment and compares its unpenalized cost
(cs−) with the minimum penalized cost to the previous step
(min{c1+, ..., c(s−1)+}). The MC Murty’s ranking algorithm
enables recursive computation of the next-best assignment
(line 3). The algorithm repeats each iteration until either of
the following conditions are met: when an unpenalized cost
is greater or equal to the minimum penalized cost so that
min{c1+, ..., c(s−1)+} ≤ cs−, or the algorithm has enumerated
all assignments (NΠ = mPn ×Πn,m

i,j pij).
Fig. 6 illustrates the terminating condition of the algorithm.

The algorithm computes the best (s = 1) assignment and
its unpenalized cost. Once an assignment is determined,
its penalization is computed and added to the unpenalized
cost. The algorithm enumerates assignments iteratively and
terminates when an unpenalized cost is larger than the current
minimum cost including penalization. In the figure, the fourth
assignment has a larger unpenalized cost than the cost of the
second (current minimum) assignment. Thus, the algorithm
terminates after it computes the unpenalized cost of the
fourth assignment. Even without penalizations, all subsequent
assignments have larger unpenalized costs than the minimum
cost. The exact algorithm guarantees optimality but has
potentially impractical running-time, as it may enumerate
factorial numbers (NΠ) of iterations in the worst case.

D. Optimal Algorithm for the L-type problem

The first phase uses an interior point method (IPM) for
linear programming (LP). LP has the optimal solution on a
vertex of a polytope. All vertices of a polytope defined by
a TU matrix are integer. However, an IPM may produce a
fractional solution in which a problem has multiple optimal
solutions [36]. In this case, all optimal solutions form an

Algorithm 2 Exact algorithm

Input: An n × mp cost matrix which is equivalent to a
weighted bipartite multigraph G = (R, T,E) where |R| =
n, |T | = m and pij = p, ∀{i, j}, and penalization functions
Ql for all l.
Output: An optimal assignment X∗ and its cost c∗.
1 Initialize s = 1
2 while s < NΠ

3 Compute Xs and cs− /∗MC Murty’s ranking algo-
rithm ∗/
4 if s = 1
5 Compute Qs and cs+ = cs− +Qs

6 s = s+ 1
7 else
8 if (cs− ≥ min{c1+, ..., c(s−1)+})
9 X∗ = Xs−1 and c∗ = min{c1+, ..., c(s−1)+}
10 return X∗, c∗

11 else
12 Compute Qs and cs+ = cs− +Qs

13 s = s+ 1
14 end if
15 end if
16 end while
17 X∗ = Xs and c∗ = min{c1+, ..., cs+}
18 return X∗, c∗

Fig. 6: An illustration of the exact algorithm’s terminating condition. When
an unpenalized cost is larger than the current minimum cost (including a
penalization), at s = 4, the algorithm terminates because all subsequent
assignments cost more than the minimum cost even without penalizations.

optimal face of the polytope [46]. It is then likely that an IPM
converges to an interior point of this optimal face, which is
not integer. By using an IPM, we obtain a polynomial running
time7 but lose the integrality of the solution.

If the solution from the first phase is fractional, we use the
MC Hungarian method to choose one of the multiple optimal
solutions which is integer. The fractional matrix from the first
phase is doubly stochastic: the sum of each value in a row and
a column is equal to one (e.g.,

(
0.9 0.1
0.1 0.9

)
). A doubly stochastic

matrix must be produced because the assignment satisfies the
mutual exclusion constraint (Eq. 2 - 3), which is same with
the definition of the doubly stochastic matrix. Owing to the
combinatorial structure of the fractional assignment matrix,
each value of the assignment variables can be interpreted
as a weight of the likelihood where the variable has the
value of one. We use the MC Hungarian method where the
input matrix (i.e., cost matrix) is the fractional assignment
matrix. The MC Hungarian method for rounding outputs an
integer assignment matrix (satisfying the mutual exclusion and
the integral constraints) whose cost sum is the maximum.
Therefore, the fractional matrix is combinatorially rounded
(e.g.,

(
1 0
0 1

)
). The pseudocode of the L-type algorithm is not

given due to the space limit but same with Alg. 3 except Line
1: it uses an IPM for LP.

The time complexity of the IPM for LP that we used
is O((max{2n, nmp})3L) [47]8 where L is the bit length
of input variables. The Multiple-Choice Hungarian method
has O(p2(max{n,m})3) complexity. Thus, the overall time
complexity is O((max{2n, nmp})3L). We use MOSEK op-
timization toolbox for MATLAB [49], particularly msklopt
function.

E. Approximation Algorithm for the C-type problem

The pseudocode is given in Alg. 3. The first phase uses
an IPM for a convex optimization problem. The objective
function must be twice differentiable to use the IPM. In
convex programming, the solution could be fractional because
not only are there multiple optimal solutions but also it is
the unique optimal fractional solution. We also use the MC
Hungarian method to round fractional solutions. Since the
rounded solution may not be an optimal integer assignment,
we provide its performance guarantee.

Theorem 5.1 The performance guarantee of the C-type algo-
rithm is max {Q1,...,NΠ

} −min {Q1,...,NΠ
}.

Proof. Let P1,...,NΠ be assignments of an C-type problem
instance and Q1,...,NΠ be the penalizations of the assignments.
Let K be the upper bound of unpenalized costs, so all assign-
ments can have their unpenalized costs up to K. Without loss
of generality, all P1,...,NΠ

have the unpenalized cost K because
there can be multiple assignments that have the same cost sum.
Let J be the largest integer solution among P1,...,NΠ−1 and

7The simplex method does not produce a fractional solution because it
visits only vertices which lie on integer points. However, the simplex method
is not a polynomial-time algorithm because it could visit exponentially many
vertices.

8The state of the art is [48] whose complexity is O(
max(2n,nmp)3

ln max(2n,nmp)
L).

PNΠ
be the optimal assignment whose cost is J∗. Then

J = K + max {Q1,...,NΠ−1
},

and we define
J∗ = K + ε+QNΠ

where ε is a nonnegative real number.
Since J ≥ J∗, max{Q1,...,NΠ−1

} ≥ QNΠ
which means

QNΠ
= min{Q1,...,NΠ

}. Then

J − J∗ = J − (K + ε+QNΠ
) = J − K− ε−QNΠ

≤ J − K−QNΠ
= max {Q1,...,NΠ−1

} −QNΠ

= max {Q1,...,NΠ−1
} −min{Q1,...,NΠ

}.

Since max {Q1,...,NΠ
} ≥ max {Q1,...,NΠ−1

},

J − J∗ ≤ max {Q1,...,NΠ
} −min {Q1,...,NΠ

}.

�
The significance of the performance guarantee can differ

depending on the viewpoint. Clearly, the importance of the
performance guarantee depends on the precise form (and the
value) of the penalization function. Thus, the guarantee is less
important when its particular value is very large. However, the
guarantee is significant in the sense of its independence from
assignments. Regardless of which assignment is computed,
the guarantee solely depends on the penalization function. We
have seen that the hardness of the problem has a spectrum
depending on the form of the penalization function (in Section
IV-E). Likewise, the importance of the guarantee also has a
spectrum depending on the form of the penalization function.
If a penalization function has bounded changes with respect
to its input, the difference between an approximation and an
optimal value would not be very large, so the (practical) impor-
tance of the guarantee is more significant. We may construct
a penalization function that satisfies a certain condition (e.g.,
limiting the function’s change), and increase the significance
of the performance guarantee.

The time complexity of an IPM for a convex optimization
problem is O((max{2n, nmp})3.5L) [50]. Thus, the overall
time complexity is O((max{2n, nmp})3.5L). We use MOSEK
mskscopt function for the optimization phase. Table IV
summarizes the problems and algorithms.

Algorithm 3 The C-type algorithm

Input: An n × mp cost matrix which is equivalent to a
weighted bipartite multigraph G = (R, T,E) where |R| =
n, |T | = m, pij = p,∀{i, j}, and convex penalization
functions Ql for all l.
Output: An optimal assignment X∗ and its cost c∗.

1 Compute X∗R+ and c∗R+ /∗ IPM for CP ∗/
2 Compute X̂∗Z+ and ĉ∗Z+ /∗ MC Hungarian method ∗/
3 X∗ = X̂∗Z+ , c∗ = ĉ∗Z+

4 return X∗, c∗

VI. EXTENSION: MODELING SYNERGIES

The modeling method presented in this paper also can be
applied to modeling negative penalization, namely synergies.

TABLE IV: A summary of the problems and algorithms.

Problem: P-type C-type L-type

Objective function Polynomial-time Convex Linearcomputable
Complexity class NP-hard NP-hard P

Algorithm Step I Iterative method Linear programming Convex optimization
(Ranking alg. + (IPM) (IPM)

Step II MC Hungarian) Rounding (MC Hungarian method)
Overall complexity O(mPn ×Πn,m

i,j pij) O((max{2n, nmp})3.5L) O((max{2n, nmp})3L)

Performance Optimal max {Q1,...,NΠ} Optimalguarantee −min {Q1,...,NΠ}

R2

R3

T2

T3

T1 p2

p1

R1

Fig. 7: An example in which both synergy and resource contention occur while
robots perform individual tasks. Tasks are inside of the cluttered disaster site,
and each robot can choose one path between p1 and p2 to reach the tasks.
The robots who choose the same path become to push debris together.

Some synergistic effects make interrelations among costs and
can be modeled by a concise representation like Q(·) in Eq. 1.
Fig. 7 shows an example. Robots are located outside of a
cluttered disaster site (e.g., a collapsed building or an explo-
sion site). The robots have individual tasks (e.g., monitoring
survivors until assistance arrives) inside of the site. There are
multiple paths to reach the tasks, but they are covered with
debris. Robots should push their ways through the debris. The
goal is to minimize the total traveling time to reach their
destinations. Even though the robots perform their own tasks,
there can be collaborations among robots on the same resource
such as pushing debris together on the same path. Robots
are neither tightly coupled to make coalitions nor required to
have pre-coordination. Collaborations make synergistic effects,
but more robots on the same resource produce more resource
contention so the number of robots on shared resources is
needed be determined optimally. Note that the exact algorithm
is not applicable when negative costs may be incurred by
synergistic effects. In this case, the negative costs could make
any subsequent penalized cost cs+ less than the current optimal
assignment c∗, so the algorithm is not able to decide whether
to terminate before it enumerates all assignments. However,
the other two algorithms are still applicable when synergistic
effects are modeled as a linear or a convex function.

Applications are not limited to physical interactions. When
robots explore to search for their individual targets, one robot
can connect to a network and tell other robots in the network
what it detects if the detected target is not the robot’s target.

The collaboration reduces searching time and its effectiveness
is amplified as more robots participate by connecting to
the same network. However, this synergistic effect would be
deteriorated as more robots connect to the same network
because the communication bandwidth is limited.

VII. EXPERIMENTS

We demonstrate that the exact algorithm works well and
returns a result in reasonable time for practically sized cost
matrices. The L-type and C-type algorithms produce solutions
quickly for even larger matrices. We implemented all the
algorithms in MATLAB. The solution quality is measured by
a ratio of an approximated solution to an optimal solution
η = c′∗

c∗ ≥ 1. We assume that n = m and pij = p, ∀{i.j}
for all the experiments. If the pijs are not identical, then we
add dummy edges with infinite cost. As we detail next, both
randomly generated problem instances and instances based
on real-world scenarios were used to validate the algorithms.
Also, they are demonstrated with physical robots in small-
scale experiments in our laboratory. First, we provide some
detail on the particular penalization models used.

A. Penalization Functions

A penalization function models the interference incurred
in a particular environment, and should consider the specific
aspects of the robots and environment. Simple examples based
on a factorization that adds costs as a function of the number
of robots utilizing a resource, include models in the form of
linear and an convex quadratic functions. Following the form
in Eq. 6, let those penalization models for use of the l-th
resource be

Ql(nl) =

{
βLnl + β′L nl ≥ 1
0 otherwise, (13)

and

Ql(nl) =

{
βCn

2
l + β′Cnl + β′′C nl ≥ 1

0 otherwise, (14)

where βL, β
′
L, βC, β

′
C, and β′′C are constants.

For the multi-vehicle transportation scenario, we used the
classic flow model developed by domain experts to quantify
traffic congestion [51]. Many models have been proposed in
the literature that compute a traffic speed v (m/s) according
to traffic density ρ (vehicle/m). We let ρ = nl because we

only consider an instantaneous assignment problem. We use
an exponential model for our application that travel time (sec)
is used as cost

Ql(nl) =

dl

vf

[
1−exp

{
− λ
vf

(
1
nl
− 1
ρj

)}] ρj ≥ nl

+∞ otherwise,
(15)

where vf is the free flow speed (when nl = 0), ρj is the jam
density, and λ is the slope of the headway-speed curve9 at
v = 0, and dl is the length of a resource that could be shared
with other robots such as a passage.

We also suggest an idea of designing wireless network
congestion models. Throughput of per client (Mbps) with
respect to the number of client (n) is shown in [52, Figure
4 and Table 4]. From the data, a quadratic convex function is
fitted where the function represents the relationship between
the number of clients (robots) and the unit transmission time
(reciprocal of throughput). This is a rough modeling based on
the data sheet, and domain experts may build more accurate
models. The network congestion example suggested in Section
III-D can use this model to minimize the total completion time
including data transmission time.

B. Random Problem Instances

A uniform cost distribution (U(0, 60)) is used to test the
algorithms. The penalization function Eq. 14 is used for the
exact and C-type algorithms, and Eq. 13 is used for the L-
type algorithm (βL = βC = 1 and β′L = β′C = β′′C = 0). With
fixed p = 5, the size of the cost matrix (n) increases from
5 to 100 at intervals of 5 (10 iterations for each n). Fig. 8
and Table V show running times and solution qualities of our
algorithms. We also compare them with conventional methods
such as branch and bound (BB) and randomized rounding. 10

We do not report results for the BB method on the C-type
because the running-time is impractical and prohibitive even
when the instance size is small (e.g., n = 10). We display
results in multiples of 10, owing to the space limitations.

The exact algorithm finds an optimal assignment in a
reasonable time on small instances (n ≤ 8); even a small
problem has a huge search space (e.g., NΠ = 375, 000 when
n = 5 and p = 5). The L-type and C-type algorithms
quickly find solutions even if n is large. Our methods are
faster than the BB methods and similar to the randomized
rounding methods. However, the methods we propose are the
only to have polynomial running time. The solution qualities
of the C-type is better than the BB method (also the proposed
algorithms have a performance guarantee). The BB methods
find an optimal solution but have exponential worst-case time
complexity. These properties are shown in the results: the
running time is longer but the solution quality is optimal

9The ratio of (infinitesimal) velocity change over (infinitesimal) headway
change.

10If a penalization function is linear, network flow algorithms can have
a better bound (e.g., O(pn3)) than the L-type algorithm. For convex pe-
nalization functions, network flow algorithms have no way to deal with
nonlinear objective functions [53]. One of the possible ways that leads to
global optimality for the problems with nonlinear objective functions is to
use a nonlinear programming formulation. However, the formulation may not
produce integer solutions so BB and randomized rounding are used.

Fig. 9: Robots and tasks are
located across five bridges.
n robots and tasks are uni-
formly distributed in the up-
per and lower boxes, respec-
tively.

(η = 1). The randomized rounding methods are faster because
they have a single random-rounding step, but the randomness
makes their solution quality bad.

C. Multi-Vehicle Traffic Transportation Problems

A multi-vehicle transportation problem is used as a repre-
sentative real-world application for our algorithms. We assume
that n homogeneous robots and n tasks are distributed across
p bridges in an urban area as shown in Fig. 9. The robots
and the tasks are uniformly distributed within the boundaries.
Distances from the robots to the tasks though the bridges are
collected by using the Google Directions API [54]. The raw
data are in meters (m) but converted to time (sec) according
to vf. Thus, the cost is travel time without congestion and
penalized by the increased time owing to congestion. With
fixed p = 5, n increases from 5 to 50 (3 to 9 for the exact
algorithm). Other parameters are set as follows:

vf = 16.67 m/s,
dl = {500, 300, 250, 400, 200} m,
ρj l = {120, 80, 70, 90, 80} robot/choice
λl = {0.1389, 0.1667, 0.1528, 0.1944, 0.1389} s−1

where l = 1, ..., 5. The parameters reflect the characteristics
of the real-world multi-vehicle transportation problem.

We use Eq. 15 for the exact algorithm. However, our
implementations for Alg. 3 do not allow a complex exponential
objective function like Eq. 15. Thus, we approximate Eq. 15
with a linear and a convex quadratic function such as Eq. 13
and 14. An example of the approximations is shown in
Fig. 10(a). The quality of the approximation is measured by the
sum of squared residuals. Table VI shows the approximation
results of all penalization functions of the five bridges.

TABLE VI: Penalization function approximation results of the five bridges.

Residuals
Fitting type Bridge 1 Bridge 2 Bridge 3 Bridge 4 Bridge 5

Linear 301.2 408.8 531.1 389.6 283.8
Convex 22.92 70.61 124.1 52.28 49.21

The Fig. 10(b) shows solution qualities when the approxi-
mated functions are used. For each instance, we compute an
optimal assignment with the exact algorithm when the original

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

Running time (Uniform costs)

Input size (n)

Ti
m

e
(s

ec
)

Exact
B&B: LP
Rounding: CP
mAPwCP
Rounding: LP
mAPwLP

(a) Running times

0 20 40 60 80 100

1

1.2

1.4

1.6

1.8

2

2.2
Solution quality (Uniform costs)

Input size (n)

R
at

io
 (η

 =
 c

/c
*)

B&B: LP
Rounding: CP
mAPwCP
Rounding: LP
mAPwLP

(b) Solution qualities

Fig. 8: Running time and solution quality of random instance. (a) The L-type and C-type algorithms are slightly faster than the rounding method whose worst
case running time is exponential. (b) The C-type has better solution quality than the rounding method.

TABLE V: Running time and solution quality of random instances.

(a) The exact algorithm.

n 3 4 5 6 7 8 9
Running Mean 0.0041 0.0115 0.0208 0.0894 0.3324 3.8327 95.1580

time (sec) Std. dev. 0.0043 0.0047 0.0144 0.0721 0.2467 2.6072 93.7848

(b) The L-type and C-type algorithms and existing methods.

n 10 20 30 40 50 60 70 80 90 100

L
-t

yp
e

Running Mean 0.2689 0.2743 0.2812 0.3003 0.3127 0.3406 0.3848 0.4333 0.5029 0.5786
time (sec) Std. dev. 0.0040 0.0091 0.0037 0.0064 0.0062 0.0046 0.0059 0.0081 0.0091 0.0067

Quality Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
(η) Std. dev. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

C
-t

yp
e

Running Mean 0.2296 0.2421 0.2546 0.2898 0.3354 0.4005 0.4908 0.5835 0.7094 0.8462
time (sec) Std. dev. 0.0051 0.0068 0.0055 0.0044 0.0071 0.0116 0.0101 0.0150 0.0187 0.0311

Quality Mean η 1.0537 1.0314 1.0093 1.0092 1.0076 1.0104 1.0074 1.0067 1.0020 1.0030
(η) Std. dev. 0.0282 0.0353 0.0086 0.0078 0.0042 0.0105 0.0089 0.0100 0.0016 0.0020

B
&

B
:

L
P

Running Mean 0.2688 0.2787 0.3235 0.4121 0.5442 0.7207 1.0080 1.4342 2.0219 2.7971
time (sec) Std. dev. 0.0160 0.0084 0.0040 0.0054 0.0162 0.0037 0.0070 0.0137 0.0080 0.0277

Quality Mean η 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
(η) Std. dev. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

R
ou

nd
in

g:
L

P

Running Mean 0.2972 0.2662 0.2644 0.2797 0.3051 0.3598 0.4173 0.4392 0.5186 0.6446
time (sec) Std. dev. 0.0386 0.0146 0.0072 0.0053 0.0067 0.0619 0.0305 0.0121 0.0295 0.0706

Quality Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
(η) Std. dev. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

R
ou

nd
in

g:
C

P

Running Mean 0.2477 0.2841 0.2538 0.2816 0.3310 0.4203 0.4930 0.6485 0.7368 0.8602
time (sec) Std. dev. 0.0208 0.0266 0.0150 0.0041 0.0075 0.0164 0.0104 0.0564 0.0398 0.0249

Quality Mean η 1.5435 1.6424 1.2960 1.2140 1.1957 1.1746 1.1448 1.1075 1.1332 1.0651
(η) Std. dev. 0.6057 0.5695 0.3391 0.1603 0.2342 0.0614 0.0731 0.0342 0.0630 0.0342

model is used. Then we compare it to the assignments when
the approximated functions are used. As a result, the solution
qualities are good (less than 1.024) so those approximations
are acceptable.

We compare our method with the optimal assignment prob-
lem formulation that does not include additional costs incurred
by resource contention (but the additional costs occur when
robots perform tasks). We use Alg. 3 with the convex quadratic
penalization function that we approximated from Eq. 15. For
the comparison, we use the Hungarian method to compute
an optimal assignment without considering penalization. Once
an assignment is obtained, we use the same convex quadratic

penalization function to the additional costs associated with the
assignment. Table VII show the results (10 iterations for each
n). The results show that incorporating resource contention
into this transportation problem is crucial to achieve global
optimality.

Next, we compare our algorithms with the existing methods
that use our models. Fig. 11 and Table VIII show the results
(10 iterations for each n). The results are similar to the random
instance case. This experiment shows that our algorithms can
model realistic scenarios of robotic applications.

TABLE VII: Differences of the total cost sums between the C-type and the Hungarian method in the multi-vehicle transportation problem.

n 5 10 15 20 25 30 35 40 45 50
Cost difference (sec) 5.5311 15.7429 14.0122 20.4954 21.3051 40.0226 45.8332 49.9823 61.9301 83.9979

TABLE VIII: Running time and solution quality of the multi-vehicle transportation problem.

(a) The exact algorithm.

n 3 4 5 6 7 8 9
Running Mean 0.0044 0.0088 0.0395 0.1298 0.5913 4.2897 126.0774

time (sec) Std. dev. 0.0015 0.0045 0.0290 0.1171 0.8772 6.8811 202.1757

(b) The L-type and C-type algorithms.

n 5 10 15 20 25 30 35 40 45 50

L
-t

yp
e

Running Mean 0.2634 0.2627 0.2678 0.2710 0.2753 0.2855 0.2846 0.2935 0.3017 0.3118
time (sec) Std. dev. 0.0069 0.0054 0.0054 0.0073 0.0032 0.0108 0.0072 0.0037 0.0024 0.0033

Quality Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
(η) Std. dev. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

C
-t

yp
e

Running Mean 0.2293 0.2232 0.2307 0.2417 0.2496 0.2589 0.2779 0.2976 0.3170 0.3515
time (sec) Std. dev. 0.0159 0.0034 0.0059 0.0058 0.0081 0.0056 0.0076 0.0133 0.0045 0.0040

Quality Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
(η) Std. dev. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 20 30 40 50

100

200

300

400

of robots (n)

P
en

al
iz

at
io

n
(s

ec
)

Exponential traffic model approximation: Bridge 5

Residuals
Linear: 283.8153
Convex: 49.2053

Original
Linear
Convex

(a) An example of approximations

10 20 30 40 50
0.99

1

1.01

1.02

1.03

Input size (n)

R
at

io
 (

η
=

 c
/c

*)

Approximation quality with respect to the original exponential model

Linear
Convex

(b) Solution quality
Fig. 10: Approximations of a complex nonlinear function to simple functions
for practical implementations. (a) We approximate a complex exponential
function with a linear and a convex quadratic function. (b) Solution qualities
when the approximated functions are used for all five bridges.

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Running time (Uniformly distributed robots/tasks)

Input size (n)

Ti
m

e
(s

ec
)

Exact
mAPwCP
mAPwLP

(a) Running times

0 10 20 30 40 50
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1
Solution quality (Uniformly distributed robots/tasks)

Input size (n)

R
at

io
 (η

 =
 c

/c
*)

mAPwCP
mAPwLP

(b) Solution qualities

Fig. 11: Running time and solution quality of the multi-vehicle transportation
problem. (a) The L-type and C-type algorithms quickly produce solutions. (b)
The qualities are close to one for both algorithms.

(a) Both R1 and R2 use p1. (b) R1 uses p1, and R2 uses p2.

Fig. 12: Two cases of resource use by two mobile robots. (a) Robots use
the same resource so that interference is occurred. (b) Robots use different
resources to avoid the interference.

D. Physical Robot Experiment

We demonstrate that our method achieves global optimality
even interference is not negligible. Fig. 12 shows the exper-
imental setting. Two iRobot Creates (R1 and R2) have tasks
of visiting the other robot’s position on the opposite side of
environment (T1 and T2). There are two passages to reach
their destinations (shown as p1 and p2 in the figure). We use
travel time as the cost and Eq. 15 as the penalization function.
We compute the assignment with Alg. 2. We assume that R1

and R2 are identical. Space constraints and the data from the
previous experiments forced us to omit reporting quantitative
results.

When the robots move through the shortest path to the desti-
nation to attain the minimum travel time, they choose the same
passage p1 (Fig. 12a). However, this choice incurs interference
between the robots. When the assignment is penalized, the best
assignment is changed to the other assignment: R1 uses p1 and
R2 uses p2 (Fig. 12b). When the robots use the same resource
p1, it takes 102 seconds to complete the tasks whereas the
interference-free assignment takes 87 seconds.

VIII. CONCLUSION

In this paper, we define the mAPwP problems and show that
the P-type and C-type problems are NP-hard, and the L-type
problem is in P. We develop the Multiple-Choice Hungarian
method, which is a generalization of the original method, to
allow multiple choices of performing tasks. We present an
exact algorithm that generalizes Murty’s ranking algorithm to
solve the multiple-choice problem, which employs the MC
Hungarian method as a subroutine. In addition, we propose
two polynomial-time algorithms for the L-type and C-type
problems. The L-type algorithm produces an optimal assign-
ment, and the C-type algorithm computes a solution with
bounded quality. In the experiments, we model interference
among robots by introducing several penalization functions;
the results show that the exact algorithm finds an optimal solu-
tion, and the L-type and C-type algorithms produce an optimal
and a high-quality solution quickly. We also conduct physical
robot experiments to show how resource contention aggravates
optimality in practice and that the proposed algorithm achieves
global optimality when an interference model is included.

Since the algorithms use the centralized approach where a
central unit computes an optimal assignment and distributes
the assignment to other robots, their use could be restrictive
if central computation and global communication are not
possible or the expense of central computation and global
communication is prohibitive. We are interested in developing
decentralized versions of the algorithms along with modeling
contention on other types of (e.g., non-physical) resources.

APPENDIX

Here, we show the transformation of a nonseparable C-type
problem to a separable problem, and show how to check the
totally unimodularity of the transformed problem.

Suppose that n = m = 3, pij = 2,∀{i, j}, and a convex
quadratic penalization function Q(·) in Eq. 1 is

Q(x111, x112, . . . , x331, x332)

= (x111 + x121 + x131 + x211 + x221 + x231

+ x311 + x321 + x331)2 + (x112 + x122 + x132

+ x212 + x222 + x232 + x312 + x322 + x332)2

(16)

which is Eq. 14 where βC = 1 and β′C = β′′C = 0. Eq. 16 can
be written as

Q(·) = y1
2 + y2

2 (17)

where

y1 = x111 + x121 + . . .+ x321 + x331,

y2 = x112 + x122 + . . .+ x322 + x332.

Thus, additional constraints

x111 + x121 + . . .+ x321 + x331 − y1 = 0,

x112 + x122 + . . .+ x322 + x332 − y2 = 0

are added to Eq. 2–5. Therefore, AN in Eq. 12 is

AN =

[
1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0

]
,

and this is TU by definition. Since a TU AN does not always
guarantee a TU ASP, ASP also has to be checked. ASP is not
TU because at least one of its submatrix has a determinant
other than -1, 0, or 1 (e.g., det([1 1 0; 1 0 1; 0 1 1]) = −2).
Therefore, this C-type problem instance does not belong to
the polynomial-time solvable class of the C-type problem.

ACKNOWLEDGMENT

This work was supported by National Science Foundation
(award numbers CMMI-1100579 and IIS-1302393).

REFERENCES

[1] C. Nam and D. A. Shell, “Assignment algorithms for modeling resource
contention and interference in multi-robot task-allocation,” in Proc. of
IEEE Int. Conf. on Robotics and Automation, 2014.

[2] K. Low, J. Dolan, and P. Khosla, “Adaptive multi-robot wide-area
exploration and mapping,” in Proc. of Int. Joint Conf. on Autonomous
Agents and Multiagent Systems-Volume 1, 2008, pp. 23–30.

[3] S. Kazadi, A. Abdul-Khaliq, and R. Goodman, “On the convergence of
puck clustering systems,” Robotics and Autonomous Systems, vol. 38,
no. 2, pp. 93–117, 2002.

[4] B. Duncan and R. Murphy, “Autonomous capabilities for small un-
manned aerial systems conducting radiological response: Findings from
a high-fidelity discovery experiment,” Journal of Field Robotics, 2014.

[5] L. Parker, “Alliance: an architecture for fault tolerant multirobot coop-
eration,” IEEE Trans. on Robotics, vol. 14, pp. 220–240, 1998.

[6] B. Werger and M. Matarić, “Broadcast of local eligibility for multi-target
observation,” Dist. Autonomous Robotic Syst. 4, pp. 347–356, 2001.

[7] S. Botelho and R. Alami, “M+: a scheme for multirobot cooperation
through negotiated task allocation and achievement,” in Proc. of IEEE
Int. Conf. on Robotics and Automation, 1999, pp. 1234–1239.

[8] M. B. Dias, “Traderbots: A new paradigm for robust and efficient
multirobot coordination in dynamic environments,” Ph.D. dissertation,
Carnegie Mellon University, 2004.

[9] B. Gerkey and M. Matarić, “Sold!: Auction methods for multi-robot
coordination,” IEEE Trans. on Robotics, vol. 18, pp. 758–768, 2002.

[10] D. Goldberg and M. Matarić, “Interference as a Tool for Designing and
Evaluating Multi-Robot Controllers,” in Proc. of AAAI Nat. Conf. on
Artificial Intell., 1997, pp. 637–642.

[11] D. Goldberg, “Evaluating the dynamics of agent-environment interac-
tion,” Ph.D. dissertation, University of Southern California, 2001.

[12] D. Shell and M. Matarić, “On foraging strategies for large-scale multi-
robot systems,” in Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots
and Syst., 2006, pp. 2717–2723.

[13] B. Gerkey and M. Matarić, “A formal analysis and taxonomy of task
allocation in multi-robot systems,” Int. J. of Robotics Research, vol. 23,
pp. 939–954, Sept. 2004.

[14] T. Dahl, M. Matarić, and G. Sukhatme, “Multi-robot task-allocation
through vacancy chains,” in Proc. of IEEE Int. Conf. on Robotics and
Automation, 2003, pp. 2293–2298.

[15] J. Guerrero and G. Oliver, “Physical interference impact in multi-robot
task allocation auction methods,” in Proc. of IEEE Workshop on Dist.
Intell. Syst.: Collective Intell. and Its Apps., 2006, pp. 19–24.

[16] H. Choi, L. Brunet, and J. How, “Consensus-based decentralized auc-
tions for robust task allocation,” IEEE Trans. on Robotics, vol. 25, no. 4,
pp. 912–926, 2009.

[17] G. Pini, A. Brutschy, M. Birattari, and M. Dorigo, “Interference reduc-
tion through task partitioning in a robotic swarm,” in In Proc. of Int.
Conf. on Informatics in Control, Automation and Robotics, 2009, pp.
52–59.

[18] J. Alonso-Mora, M. Rufli, R. Siegwart, and P. Beardsley, “Collision
avoidance for multiple agents with joint utility maximization,” in Proc.
of IEEE Int. Conf. on Robotics and Automation, 2013, pp. 2833–2838.

[19] J. Yu and S. LaValle, “Planning optimal paths for multiple robots on
graphs,” in Proc. of IEEE Int. Conf. on Robotics and Automation, 2013,
pp. 3612–3617.

[20] L. He and J. van den Berg, “Meso-scale planning for multi-agent
navigation,” in Proc. of IEEE Int. Conf. on Robotics and Automation,
2013, pp. 2839–2844.

[21] T. Du, E. Li, and A.-P. Chang, “Mobile agents in distributed network
management,” Commun. of the ACM, vol. 46, pp. 127–132, 2003.

[22] A. Kumar, B. Faltings, and A. Petcu, “Distributed constraint optimiza-
tion with structured resource constraints,” in Proc. of Int. Conf. on
Autonomous Agents and Multiagent Syst., 2009, pp. 923–930.

[23] T. Matsui, H. Matsuo, M. Silaghi, K. Hirayama, and M. Yokoo,
“Resource constrained distributed constraint optimization with virtual
variables,” in Proc. of AAAI Conf. on Artificial Intell., 2008, pp. 120–
125.

[24] F. Tang and L. Parker, “A complete methodology for generating multi-
robot task solutions using asymtre-d and market-based task allocation,”
in Proc. of IEEE Int. Conf. on Robotics and Automation.

[25] S. Sariel, T. Balch, and N. Erdogan, “Incremental multi-robot task
selection for resource constrained and interrelated tasks,” in Proc. of
IEEE/RSJ Int. Conf. on Intelligent Robots and Syst.

[26] P. Shiroma and M. F. M. Campos, “Comutar: A framework for multi-
robot coordination and task allocation,” in Proc. of IEEE/RSJ Int. Conf.
on Intelligent Robots and Syst.

[27] Y. Zhang and L. Parker, “Considering inter-task resource constraints in
task allocation,” Autonomous Agents and Multi-Agent Systems, vol. 26,
pp. 389–419, 2013.

[28] S. Chien, A. Barrett, T. Estlin, and G. Rabideau, “A comparison of co-
ordinated planning methods for cooperating rovers,” in the International
Conference on Autonomous Agents, 2000, pp. 100–101.

[29] S. A. Hong and G. Gordon, “Decomposition-based optimal market-based
planning for multi-agent systems with shared resources,” in International
Conference on Artificial Intelligence and Statistics, vol. 15, 2011, pp.
351–360.

[30] L. Luo, N. Chakraborty, and K. Sycara, “Multi-robot assignment algo-
rithm for tasks with set precedence constraints,” in Proc. of IEEE Int.
Conf. on Robotics and Automation.

[31] ——, “Distributed algorithm design for multi-robot task assignment
with deadlines for tasks,” in Proc. of IEEE Int. Conf. on Robotics and
Automation, 2013, pp. 3007–3013.

[32] H. Lenstra, “Integer programming with a fixed number of variables,”
Math. of Operations Research, pp. 538–548, 1983.

[33] R. Kannan, “Minkowski’s convex body theorem and integer program-
ming,” Math. of Operations Research, vol. 12, no. 3, pp. 415–440, 1987.

[34] D. Dadush, C. Peikert, and S. Vempala, “Enumerative lattice algorithms
in any norm via m-ellipsoid coverings,” in Proc. of IEEE Annu. Symp.
on Found. of Comput. Sci., 2011, pp. 580–589.

[35] T. Roughgarden, “Routing games,” Algorithmic game theory, vol. 18,
2007.

[36] T. Dey, A. Hirani, and B. Krishnamoorthy, “Optimal homologous cycles,
total unimodularity, and linear programming,” SIAM J. on Computing,
vol. 40, no. 4, pp. 1026–1044, 2011.

[37] V. Kann, “On the approximability of np-complete optimization prob-
lems,” Ph.D. dissertation, Royal Institute of Technology, 1992.

[38] R. Baldick, “A unified approach to polynomially solvable cases of
integer “non-separable” quadratic optimization,” Discrete Appl. Math.,
vol. 61, no. 3, pp. 195–212, 1995.

[39] D. Hochbaum and J. Shanthikumar, “Convex separable optimization is
not much harder than linear optimization,” J. of the ACM, vol. 37, no. 4,
pp. 843–862, 1990.

[40] S. Bradley, A. Hax, and T. Magnanti, Applied mathematical program-
ming. Addison Wesley, 1977.

[41] P. Camion, “Characterization of totally unimodular matrices,” Proc. of
American Mathematical Society, vol. 16, pp. 1068–1073, 1965.

[42] R. Karp, Reducibility among combinatorial problems. Springer, 1972.
[43] K. Murty, “An algorithm for ranking all the assignments in order of

increasing cost,” Operations Research, vol. 16, pp. 682–687, 1968.
[44] H. Kuhn, “The hungarian method for the assignment problem,” Naval

Research Logistic Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.
[45] R. Brualdi and H. Ryser, Combinatorial matrix theory. Cambridge

University Press, 1991, vol. 39.
[46] L.-H. Zhang, W. Yang, and L.-Z. Liao, “On an efficient implementation

of the face algorithm for linear programming,” J. of Computational
Math., vol. 31, no. 4, pp. 335–354, 2013.

[47] C. Gonzaga, An algorithm for solving linear programming problems in
O(n3L) operations. Springer, 1989.

[48] K. Anstreicher, “Linear programming in o([n3

lnn]l) operations,” SIAM J.
on Optimization, vol. 9, no. 4, pp. 803–812, 1999.

[49] Mosek, “The mosek optimization software version 6,” Online at
http://www.mosek.com, 2009.

[50] Y. Nesterov, A. Nemirovskii, and Y. Ye, Interior-point polynomial
algorithms in convex programming. SIAM, 1994, vol. 13.

[51] G. Newell, “Nonlinear effects in the dynamics of car following,”
Operations Research, vol. 9, no. 2, pp. 209–229, 1961.

[52] J. Florwick, J. Whiteaker, A. Amrod, and J. Woodhams, “Wireless lan
design guide for high density client environments in higher education,”
in Design guide. Cisco Systems, 2013.

[53] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear programming and
network flows. John Wiley & Sons, 2011.

[54] Google, “The Google Directions API,” https://developers.google.com/
maps/documentation/directions/, 2013.

Changjoo Nam is a Ph.D. student in the De-
partment of Computer Science and Engineering at
Texas A&M University since Fall 2011. He received
his M.S. and B.S. in Electrical Engineering from
Korea University. Before starting his study at Texas
A&M, he worked at Korea Institute of Science and
Technology as a researcher. His current research
interest includes multi-robot task allocation (MRTA)
problems in dynamic and uncertain environments, as
well as mobile robot navigation.

Dylan A. Shell is an assistant professor in the
Department of Computer Science and Engineering
at Texas A&M University in College Station, Texas.
He received his B.Sc. degree in computational &
applied mathematics and computer science from
the University of the Witwatersrand, South Africa,
and his M.S. and Ph.D. in Computer Science from
the University of Southern California. He took a
position as Postdoctoral Research Associate in the
USC Interaction lab in 2008, before joining Texas
A&M. His research aims to synthesize and analyze

complex, intelligent behavior in distributed systems that exploit their physical
embedding to interact with the physical world.

https://developers.google.com/maps/documentation/directions/
https://developers.google.com/maps/documentation/directions/

	Introduction
	Related Work
	Problem Formulation
	Bipartite Multigraph
	Multiple-Choice Assignment Problem with Penalization (mAPwP)
	Penalization
	Examples

	NP-Hardness of mAPwP Problems
	The P-type problem is NP-hard
	The L-type problem is in P
	The C-type problem is NP-hard
	A Polynomial-time Solvable Class of the C-type problem
	Remark on the hardness results

	Algorithms for mAP Problems
	The Multiple-Choice Hungarian Method
	The Multiple-Choice Murty's Ranking Algorithm
	Exact Algorithm for the P-type problem
	Algorithm Description

	Optimal Algorithm for the L-type problem
	Approximation Algorithm for the C-type problem

	Extension: Modeling Synergies
	Experiments
	Penalization Functions
	Random Problem Instances
	Multi-Vehicle Traffic Transportation Problems
	Physical Robot Experiment

	Conclusion
	References
	Biographies
	Changjoo Nam
	Dylan A. Shell

