
ANABSTRACTTHEORYOF SENSOR
EVENTIFICATION

Overview
Event cameras measure intensity changes and report differences.
What’s necessary for other sensors to admit eventified versions
which provide adequate information despite outputting changes?

Q: For any sensor of type 𝑋 ∈ {compasses, LiDARs,
IMUs, . . . }, is there a useful “event 𝑋” version?

This work contributes theory and algorithms (plus a hardness result)
along with elementary robot examples.

The answer depends upon the signal space and its structure:
• the interplay of the robot and its environment,
• the input–output computation needed to achieve its task,
• access mode: synchronous, asynchronous, polled, triggered.

Example 1—Space of changes

An iRobot Create drives down a corridor its wall sensor 𝑤 generating
output values as it proceeds. As it does this, the infrared wall sensor
on its port side generates a series of binary readings.

w

A direct transducer passing through the signal detected has this form:
{0}

{1}

{1}

{0}

A sensori‐computational device
𝐹wall, with 𝑌 (𝐹wall) = {0, 1}; within
the vertices, white encodes {0},
and azure {1}.

0 1
0 ⊥ ⊤
1 ⊤ ⊥

For a space of ‘changes’, we introduce a set, 𝐷2 = {⊥,⊤},
and ternary relation written in the form of a table as
(row, entry, column) ∈ S𝐷2 ⊆ {0, 1} × 𝐷2 × {0, 1}.

{1}{0}

{⊥} {⊥}

{⊤}

{⊤}

A small device that is 𝐹wall’s
derivative, viz. it is capable
of output simulating 𝐹wall
modulo the delta relation
∇
��𝐷2
𝐹wall

defined for 𝐷2.

Delta relation
Definition 1 (delta relation). For relation S𝐷 ⊆ 𝑌 × 𝐷 ×𝑌 , and device
𝐹, the associated delta relation, ∇

��𝐷
𝐹 ⊆ L(𝐹) × ({𝜖} ∪ (𝑌 (𝐹) · 𝐷∗)), is :

0) 𝜖∇
��𝐷
𝐹𝜖 , and

1) 𝑦0∇
��𝐷
𝐹𝑦0, for all 𝑦0 ∈ 𝑌 (𝐹) ∩ L(𝐹), and

2) 𝑦0𝑦1 . . . 𝑦𝑚∇
��𝐷
𝐹𝑦0𝑑1𝑑2 . . . 𝑑𝑚, where (𝑦𝑘−1, 𝑑𝑘 , 𝑦𝑘) ∈ S𝐷.

Question 1. For any sensori‐computational device 𝐹 with
(𝐷, S𝐷), is it ∇

��𝐷
𝐹‐simulatable?

Revisiting Ex. 1—Compositionality

Recall Example 1’s iRobot Create. These robots also have left and
right bump sensors. As these are both binary streams, just like the
wall sensor, they can each be transformed with (𝐷2 = {⊥,⊤}, S𝐷2)
that tracks bit flips. And to track both, one constructs {⊥,⊤}×{⊥,⊤}.
In this way, a 𝑑𝑖 = (⊥,⊥) would indicate that neither bump sensor’s
state has changed since previously.

Example 2—Action‐related signals

A Boston Dynamics Minispot
quadraped is equipped with a
compass to give its heading. To
simplify control, it is equipped
with motion primitives that,
when activated, execute a gait
cycle allowing it to move forward
a step, move backward a step, or

turn in place ±45◦, without losing its footing. Starting facing North,
after each motion primitive terminates, the Minispot’s heading will
be one of 8 directions (the 4 cardinal plus 4 intercardinal ones).
If the raw measurements are 𝑥 ∈ {↑,↗,→,↘, ↓,↙,←,↖}, then an
useful variator might employ 𝐷3 = {−,Ø, +}.

Revisiting Ex. 2—Polling via pump

Reconsider the 45◦ Minispot with a derivative compass for changes
𝐷3 = {−,Ø, +}. Suppose that whenever a downstream consumer
of the change‐in‐bearing information queries, an element of 𝐷3 is
produced. If it polls fast enough, we expect that it would contain a
large number of Ø values. Doubling the rate would (roughly) double
the quantity of Ø values. At high frequencies, there would be long
sequences of Øs and those computations on the input stream that
are invariant to the rate of sampling would be P{Ø} ‐simulatable.

Pump relation

Definition 2 (pump relation). Given 𝐿 ⊆ Σ∗ and N ⊆ Σ, then the N‐
pump is the relation PN ⊆ 𝐿 × Σ∗ defined as follows: ∀(𝑠1 . . . 𝑠𝑚) ∈ 𝐿,
0) 𝜖 PN 𝜖 ,
1) (𝑠1 . . . 𝑠𝑚) PN (𝑠1 . . . 𝑠𝑚),
2) ∀𝑏 ∈ N, 𝑘 ∈ {1, . . . , ℓ},
(𝑠1. . . 𝑠𝑚)PN(𝑡1. . . 𝑡ℓ) =⇒ (𝑠1. . . 𝑠𝑚)PN(𝑡1. . . 𝑡𝑘 𝑏 𝑡𝑘+1. . . 𝑡ℓ).

Question 2. For device 𝐹 and N ⊆ 𝑌 (𝐹), is 𝐹 PN ‐simulatable?

Main ideas
The sensor and basic information processing form a unit: a sensori‐(Y0 Y1 Y2 Y3 Y4 Y5 Y6

Y0 δY1 δY2 δY3 δY4 δY5 δY6

?

…

…
=

)
≈ R

()computational device with
finitely many states. The core
notion of behavioral equality is
through the lens of a relation.

Definition 3 (output simulation modulo a binary relation). Given
sensori‐computational devices 𝐹 and 𝐹′, and relation R ⊆ 𝐴 × 𝐵
we say that 𝐹′ output simulates 𝐹 modulo R if ∀𝑠 ∈ L(𝐹):
1. ∃𝑡0 ∈ L(𝐹′) such that 𝑠R 𝑡0;
2. ∀𝑡 ∈ 𝐵 such that 𝑠R 𝑡, 𝑡 ∈ L(𝐹′) and C(𝐹, 𝑠) ⊇ C(𝐹′, 𝑡).

(Notice that, as 𝑡0 ∈ L(𝐹′), C(𝐹′, 𝑡0) ≠ ∅, hence C(𝐹, 𝑠) ≠ ∅.)

Example 4: Arithmetic changes

A self‐driving car, shown below, moves on a highway and is equipped
with on‐board sensors to detect the vehicle’s current lane 𝑖 ∈ {0, 1, 2}.

To construct a sensor reporting a change in lane, consider the space
𝐷3‐lane = { LEFT , NULL , RIGHT } and, treat the following function as
a ternary relation: S𝐷3‐lane(𝑖, 𝑑) = min(max(𝑖 + 𝑣(𝑑)), 0), 2), where
𝑣(LEFT) = +1, 𝑣(NULL) = 0, and 𝑣(RIGHT) = −1.
Then, this transforms any sequence of lane occupancies into unique
lane‐change signals in a 3‐lane road.

Revisiting Ex. 4—Nonexistence of a useful monoid

Example 4 introduced 𝐷3‐lane = { LEFT , NULL , RIGHT }. As there are 3
lanes, one might wish to combine, say, two RIGHT actions, one after
the other. With only three elements, two RIGHT actions might map
to a RIGHT (as that seems less wrong than LEFT or NULL), giving:

⊕1 LEFT NULL RIGHT
LEFT LEFT LEFT NULL
NULL LEFT NULL RIGHT
RIGHT NULL RIGHT RIGHT

But ⊕1 fails to be a monoid operator as since associativity is violated:
(LEFT ⊕1 LEFT) ⊕1 RIGHT ≠ LEFT ⊕1 (LEFT ⊕1 RIGHT).

An alternative that does yield a valid operator, although it is still hard
to give it a consistent interpretation:

⊕2 LEFT NULL RIGHT
LEFT RIGHT LEFT NULL
NULL LEFT NULL RIGHT
RIGHT NULL RIGHT LEFT

Now the right action on 𝑌 causes difficulty. While NULL must map 0,
1 and 2, each to themselves, the form of ⊕2 requires that the action
treat RIGHT ⊕2 RIGHT identically with LEFT . This fails to describe
lanes 0, 1 and 2, in a consistent fashion. The lanes do not seem to
admit any monoidal variator.

Revisiting Ex. 1, again—Change‐triggered sensing via shrink

Example 1’s wall sensor produces a stream of 0s and 1s. For change
space 𝐷2 = {⊥,⊤}, a derivative exists that produces a stream of
⊥s and ⊤s, the former occurring when there is no change in the
presence/absence of a wall, and latter when there is.
The derivative under the {⊥}‐shrink relation considers whether the
desired output can be obtained merely on a sequence of ⊤s. If
the output depends on a count of ⊤s, (like even‐ vs odd‐numbered
doorways), then this is possible. If it depends on a count of⊥s, or the
interleaving of ⊤s and ⊥s then it can not.
If some derivative, 𝐹′ say, is 𝜋{⊥} ‐simulatable, then it can operate
effectively even if it is notified onlywhen thewall‐presence condition
changes. In this sense that such 𝐹′s are change‐triggered.

Example 3—Additional action‐related signals

Suppose Example 2’s Minispot is enhanced so its motion library
includes primitive allowing it to turn in place by ±90◦. Now, after
each motion terminates, the compass signal can include changes for
which 𝐷3 is inadequate. When Definition 1 is followed to define
∇
��𝐷3
𝐹 , those sequences involving 90◦ changes fail to find any 𝑑𝑘 ∈ 𝐷3,

and the relation is not left‐total =⇒ there can be no derivative.
A more sophisticated choice does allow a derivative.

Revisiting Ex. 3—Monoidal structure

In Example 3, suppose we encode {↑,↗, . . . ↖} with headings as
integers {0, 45, . . . , 315}. For the triple relation take the usual addition
on integers, + : Z × Z → Z, but restricted so the first and third slots
only have elements within {0, 45, . . . , 315}. This is, Z8, the cyclic group
of order eight.

Shrink relation
Definition 4 (shrink relation). Given 𝐿 ⊆ Σ∗ and N ⊆ Σ, the N‐shrink
is the single‐valued, total function 𝜋N defined recursively as follows:

𝜋N : 𝐿 → (Σ \N)∗,
𝜖 ↦→ 𝜖,

𝑠1 . . . 𝑠𝑚 ↦→ 𝑠1 . . . 𝑠𝑚 if ∀ 𝑗 ∈ {1, . . . , 𝑚}, 𝑠 𝑗 ∉ N,
𝑠1 . . . 𝑠𝑖 . . . 𝑠𝑚 ↦→ 𝜋N (𝑠1 . . . 𝑠𝑖−1𝑠𝑖+1 . . . 𝑠𝑚) when 𝑠𝑖 ∈ N.

Question 3. For device 𝐹 and N ⊆ 𝑌 (𝐹), is 𝐹 𝜋N ‐simulatable?

Example 5—Stability and chatter‐free behavior
A Syma X9 Quadcopter Car, capable of both flight and wheeled
locomotion, monitors a home environment. The robot is equipped
with a single‐pixel camera. It must fly to avoid grass outdoors (F and
Y) and liquids in the pantry (P); in the bedroom (B), it should drive to
minimize noise.

Front
Garden

(F)

Back Yard
(Y)

Bedroom (B)

Kitchen (K)
Pantry (P)

Living
Room

(L)

The robot is initially located in either the front garden (F) or the living
room (L). To determine its state, the robot uses its single‐pixel camera,
which is capable of discerning just three different ambient light levels
(Bright (𝐵), Moderate (𝑀), Dark (𝐷)). The following four sensori‐
computational devices process light readings as input, and output the
appropriate mode (driving or flying).

{M}

{B}
{B}

{M}

{D}

{M}

{M}

{M}

{D}

{M}

{B}

{B}

{+}

{+}

{−}
{+}

{=}

{=}

{=}

{=}

{−}

{−}

{M}

{B}

{=}

{+}

{−}

{=}

{−}

{+}

{=}

{M}

{+}

{B}

{−}

(a) (b) (c)

Here, device (a) works in the original signal space, it is a state diagram
that essentially transcribes the problem, serving as a specification for
acceptable input–output functionality.
The other two, (b) and (c), are derivatives that operate in the space
of changes 𝐷ℓ = {+,−,=}, which uses + to capture the brightness
increases, − for brightness decreases = for brightness equivalence.
Device (c) not only chooses a single output for each vertex but is
output stable.

Shrink and Pump

Theorem. (equivalence of pumping and shrinking)For device 𝐹 and
N ⊆ 𝑌 (𝐹), such that all 𝑠1𝑠2𝑠3 . . . 𝑠𝑘 ∈ L(𝐹) have 𝑠1 ∈ 𝑌 (𝐹) \N:

𝐹 is PN ‐simulatable ⇐⇒ 𝐹 is 𝜋N ‐simulatable

Monoidal variator and disaggregator relation

Definition 5 (monoidal variator). A monoidal variator for observation
set𝑌 is a monoid (𝐷, ⊕, 1𝐷) and a right action of 𝐷 on𝑌 , • : 𝑌×𝐷 → 𝑌 .
That is • is a total function with:
identity: 𝑦 • 1𝐷 = 𝑦;
compatibility: (𝑦 • 𝑑1) • 𝑑2 = 𝑦 • (𝑑1 ⊕ 𝑑2), ∀𝑦 ∈ 𝑌 , and all 𝑑1, 𝑑2 in 𝐷.

Definition 6 (monoid disaggregator). Given the monoid (𝐷, ⊕, 1𝐷)
and observation set 𝑌 , the associated monoid disaggregator is a
relation, 𝜕⊕

��
𝑌
⊆ ({𝜖} ∪ (𝑌 · 𝐷∗)) × ({𝜖} ∪ (𝑌 · 𝐷∗)) defined as:

0) 𝜖𝜕⊕
��
𝑌
𝜖 , and

1) 𝑦0𝜕⊕
��
𝑌
𝑦0 for all 𝑦0 ∈ 𝑌 , and

2) 𝑦0𝑑1𝑑2 . . . 𝑑𝑚𝜕⊕
��
𝑌
𝑦0𝑑
′
1𝑑
′
2 . . . 𝑑

′
𝑛 if 𝑑1⊕ 𝑑2⊕ · · · ⊕ 𝑑𝑚 = 𝑑′1⊕ 𝑑′2⊕ · · · ⊕ 𝑑′𝑛.

Question 4. For device 𝐹 and with monoidal variator
((𝐷, ⊕, 1𝐷), •) on 𝑌 (𝐹), is it

(
∇
��𝐷
𝐹 # 𝜕⊕��

𝑌 (𝐹)

)
‐simulatable?

Example 6—Robot with irrecoverable error
robot on fire?

The delivery robot above has a sensor to detect some irreversible
condition. Once triggered, the sensor retains this status permanently.
Representing the robot’s status by 0 for ‘normal’ and 1 for ‘abnormal’,
we may then use a monoid variator 𝐷2 = {,,/}, with 1𝐷2 is ,, and
the monoid operator ⊕ and the right action • defined here:

⊕ , /, , // / / and
• , /
0 0 1
1 1 1

Bridging via the monoid integrator

Definition 7 (monoid integrator). For observations 𝑌 and monoid
(𝐷, ⊕, 1𝐷), the associated monoid integrator is a function ∫⊕

��
𝑌
is:

∫⊕
��
𝑌

: {𝜖} ∪ (𝑌 · 𝐷∗) → {𝜖} ∪ 𝑌 ∪ (𝑌 · 𝐷)
𝜖 ↦→ 𝜖
𝑦0 ↦→ 𝑦0

𝑦0𝑑1𝑑2 . . . 𝑑𝑚 ↦→ 𝑦0(𝑑1 ⊕ 𝑑2 ⊕ · · · ⊕ 𝑑𝑚).
Theorem. For any device 𝐹 with monoidal variator (𝐷, •), 1𝐷 ∉

𝑌 (𝐹), which is
(
∇
��𝐷
𝐹 # ∫⊕��

𝐹

)
‐simulatable, there exists a single 𝐹′ such

that:
1) 𝐹′ ∼ 𝐹

(
mod∇

��𝐷
𝐹 # 𝜕⊕��

𝑌 (𝐹)

)
,

2) 𝐹′ ∼ 𝐹
(
mod∇

��𝐷
𝐹 # P{1𝐷}

)
,

3) 𝐹′ ∼ 𝐹
(
mod∇

��𝐷
𝐹 # 𝜋{1𝐷}) ,

4) 𝐹′ is vertex stable with respect to {1𝐷}, and
5) 𝐹′ is output stable with respect to {1𝐷}.

Yulin Zhang* and Dylan A. Shell

★ Work prior to joining Amazon Robotics

