
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. JUNE, 2016 1

Using a compliant, unactuated tail to manipulate
objects

Young-Ho Kim and Dylan A. Shell

Abstract—We demonstrate manipulation of objects using the
dynamics of a rope-like structure attached to a mobile robot as
a passive tail. Three challenges arise in modeling and planning:
the physics involved is non-trivial, the tail is underactuated, and
motions of the object are non-deterministic. For such systems,
some actions are well-characterized by a simplified motion model
(e.g., for dragging objects), but we resort to data-driven methods
for others (e.g., striking motions). A sampling-based motion
planner, adapted to deal with non-deterministic object motions, is
used to optimize motion sequences based on a specified preference
over a set of objectives, such as execution time, navigation cost,
or collision likelihood. Experiments show that a robot with a
passive tail can manipulate cylindrical objects with (quasi-static)
dragging, dynamic striking motions, and combinations thereof.
The method produces solutions that suit diverse preferences
effectively, and we analyze the complementary nature of dynamic
and quasi-static motions, showing that there exist regimes where
transitions between the two are indeed desirable, as reflected in
the plans produced.

Index Terms—Manipulation Planning; Motion and Path Plan-
ning; Underactuated Robots; Flexible robots

I. INTRODUCTION

PEOPLE use ropes and rope-like apparatus (e.g., chains,
cords, or lassos) for manipulation in a variety of qualita-

tively different ways. When wrapped around objects, flexible
structures enable their user to exploit constrictional, tensional,
and frictional forces to restrain the object being manipulated,
sometimes also helping control the object by gripping it
statically. In martial-arts cinema portrayals, whipping actions
are most commonly used for reaching and attacking enemies
(e.g., Indiana Jones’ famous bull whip, cowboys with their
lassos, and Spiderman). Those whip-like actions, in contrast to
winding and tying actions, are produced with flexible cords by
exploiting the dynamics of the continuous, compliant structure.
This paper investigates how a robot may use flexible rope-like
structures as tools in diverse ways, demonstrating high-speed
dynamic (e.g., striking) and high-precision quasi-static (e.g.,
dragging) actions, as well as admixtures thereof.

We study a novel robot system with a flexible rope-like
structure attached as a tail (see Fig. 1). Three main chal-
lenges arise in using this system for manipulation. First,

Manuscript received: March 1, 2016; Revised: May 25, 2016; Accepted:
June 26, 2016.

This paper was recommended for publication by Editor Han Ding upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
supported in part by the National Science Foundation as part of Grant IIS-
1302393 and IIS-1453652.

Young-Ho Kim and Dylan A. Shell are with the Department of Computer
Science and Engineering at Texas A&M University, College Station, Texas,
USA. {yhkim, dshell}@cse.tamu.edu

Digital Object Identifier (DOI): see top of this page.

Object being
manipulated

Robot with a compliant tail

A static obstacle

Goal location

Fig. 1. A representa-
tive scenario: our goal is
to manipulate the object
from the initial pose to the
goal pose. A novel idea
is that the robot only em-
ploys its tail to translate
and rotate the object.

the interplay of the object, the robot, and its passive tail
involves mutual influences that warrant non-trivial physics
to describe their interactions, complicating the modeling of
joint states (the object–robot–tail triple) and making their
full description daunting. Secondly, the precision with which
the tail’s configuration can be controlled is limited because
it is underactuated. Thirdly, the object’s state transitions are
governed by the tail, which imposes a level of indirection —the
tail itself being mediated by the robot’s motion— that means
the transitions are non-deterministic. This paper details an
approach that addresses these three challenges.

We began by constructing a set of primitives that, while
parsimonious, possesses sufficient richness to enable useful
manipulation. Associated with each primitive motion is a
forward model that is used to predict the object’s subsequent
position and orientation within the workspace. Finally, a
sequence of primitive motion actions are sought to solve a
given manipulation problem instance. We employ a sampling-
based motion planning technique coupled with a particle-based
representation to find such sequences.

The experiments we report constitute a unique demonstra-
tion of manipulation through the use of an unactuated tail,
providing proof of sufficiency, and showing that though our
approach involves gross simplifications, it nevertheless enables
planning and successful execution of actions to manipulate
objects within the workspace. The work also provides a basis
for exploring the importance of several notions of path cost,
complex preferences between objectives, and how a diverse
portfolio of primitives enables synergy.

II. RELATED WORK

Much closely related research involves modeling of and
planning for flexible structures in tethered mobile robots or
continuum manipulators. Absent from such work is consider-
ation of high-speed motions that exploit the dynamics of the
flexible component, the primary feature of this paper.

Prior efforts addressing manipulation of objects without
special purpose effectors, includes work on pushing [1], [2],

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. JUNE, 2016

caging [3], or striking [4]. First Donald et al. [5], and Bhat-
tacharya et al. [6] more recently, used a system of two robots
connected by a rope to manipulate multiple differently shaped
objects, capitalizing on the ability of the rope to adapt to the
geometry of the objects and environment. Both efforts control
the rope motions kinematically, without consideration of the
masses of the ropes, the forces that lead to the motions, or the
tension induced by accelerations.

Elephants’ trunks and snakes have inspired several contin-
uum mechanisms (theoretically hyper-redundant, but underac-
tuated in practice [7], [8]). The research focuses on the design
and control of such mechanisms with kinematic and dynamic
models [8], [9]. Cowan and Walker [10] suggested possible
dynamic motions for actively controlled continuum robots,
including a flicking action. We are less concerned with specific
models of tails and flexible devices than with dynamic actions
and their potential for interaction with the environment. The
method introduced here allows both dynamic and quasi-static
actions; the dynamic actions are shown to be efficient motions
for some objectives (e.g., object distance per action).

For manipulation, it is non-trivial (or infeasible) to build
analytical models that capture the full complexity of the
object-tool-environment interactions involved. The inevitable
consequence is uncertainty which must be dealt with in some
way. Dogar and Srinivasa [11] reduced the uncertainty of a
pushing action by utilizing the funneling effect of pushing.
Related ideas include that of Meriçli et al. [2] who proposed
an experience-based approach that uses past motions, and
Phillips et al. [12] developed an online motion planning ap-
proach that makes use of information from previous searches.
Berenson et al. [13] who demonstrated repair of paths from the
past-learned paths using the Rapidly-exploring Random Tree
(RRT). We extend the RRT framework using manipulation
primitives and, similar to [14], we propagate motion errors
using a particle-based representation.

Tails have been used in limited ways, primarily to enhance a
robot’s agility (stabilization/maneuverability [15]–[18], turning
speed [19], [20], and dynamic response to disturbances [21]–
[23]). All these prior works use active tails.

III. PRELIMINARIES AND PROBLEM DESCRIPTION

Let Mo, Mr, and Mt represent the mass of the object, the
robot, and the tail, respectively. We consider three coefficients
of friction µo, µr, and µt for the object, robot, and tail, in their
contact with the workspace floor. One additional coefficient
of friction, µo−t is that between the object and tail. For a
tail of length L, the physical system parameters form tuple
p = 〈Mo, µo,Mr, µr,Mt, µt, L, µo−t〉. The object’s state
Xo = (x, y, θ) ∈ χ, has (x, y) as the position of the center of
the object in R2 and θ its orientation. The robot’s state Xr is
defined analogously. We let X̃t be a vector modeling the tail
configuration, either as an approximation via n segments, or
a parametric function. Then the manipulation system can be
treated as a transition function F . Using control u ∈ U , F
makes the transition from X(k) to another state X(k + 1):

X(k + 1) = F (X(k), u(k); p), (1)

where X contains states of Xo, Xr, and X̃t.

A. Simplifying assumptions

Our robot has an inelastic tail that it uses for manipulating
a cylindrical object, and the robot is assumed to be powerful
enough to drag the tail along with the load of the object. Also,
we treat the robot and the object states as observable, while
the tail configurations are not.

B. Problem definition

Let J (X) = (J1(X), . . . , JN (X)) be a vector-valued cost
function, where the integer N ≥ 2 is the number of objec-
tives that describe aspects of the system’s performance. For
instance, Ji could correspond to a measure of path safety, a
measure of path accuracy, execution time, or navigation cost.
Problem: Given U and p, manipulate the object from the
initial pose XS = (xs, ys, θs) to the target pose XG =
(xg, yg, θg), making all state transitions via the robot tail, find-
ing a sequence of motions π∗ = [u∗1, . . . , u

∗
N] that minimize

J (X), constructed as a linear combination of the individual
objectives

J (X, ~α) =

k∑
i=1

αi · Ji(X), (2)

for some given ~α = α1,...,k ∈ R+.
The total cost function for a trajectory [X0, . . . , XN] is

J([X0,...,XN],~α) =

N∑
i=0

J (Xi, ~α). (3)

So the problem is to find
π∗ = argmin

(X0,...,XN)∈χ
J([X0,...,XN],~α), (4)

where ~α expresses preferences over objectives, and N is the
number of waypoints.

The overall system architecture appears in Fig 2.

IV. MODELING MOTION PRIMITIVES

To simplify both the modeling and planning problems, we
use a small set of motion primitives: each represents a simple
and stable activity which is, ideally, helpful in achieving a
goal. We desire a small portfolio of motion primitives, each
contributing some aspect lacking in the others. Additionally,
important factor is each primitive’s amenability to modeling
and, ultimately, its predictability; this is a function of primitive
complexity. Three motion primitives, broadly representative of
three broader classes, are considered: 1) quasi-static motion
primitive — modeled as deterministic, 2) quasi static motion
primitive involving stick-slip frictional transitions — modeled
as non-deterministic, and 3) dynamics-based motion primitive
where the tail strikes the object — which is non-deterministic.

4

Robot

Tail

Object

Overhead
tracking systemSystem (Sec. VI)

Motion Primitives

Multi-objective
optimization

(Sec. IV)

(Sec. III)

Planner (Sec. V)

Fig. 2. An overview of the system showing sections with discussion.

KIM AND SHELL: USING A COMPLIANT, UNACTUATED TAIL TO MANIPULATE OBJECTS 3

From 1) to 3), the tractability and accuracy of modeling
decrease owing to the inherent complexity of the physical
phenomena involved. Our philosophy is to profit from diversi-
fication: we resort to a data-driven approach when the system
is highly non-linear and transitions are too complicated for us
to treat otherwise.

We consider a set of motions, each of which represents
a sequence of controls, u, executed over an interval of
time, which results in a transition between two states in the
continuous state space. Each of these is characterized off-
line, either through analytical models, simulation, or cali-
bration experiments (as will be described below). We also
allow primitives to be parametrized, exploiting regularity and
symmetries in so doing. Let ũ(φ) denote a set of motions,
where we have expressed the fact that they are parameterized
by angle φ, representing the direction in which to move the
object. Then we define a motion primitive Ũ(φ) to be a tuple
〈ũ−(φ), ũ(φ), ũ+(φ)〉, where ũ− represents an initialization
motion, ũ represents a motion moving the object, and ũ+ rep-
resents a termination motion. The following sections discuss
these in further detail.
Additionally, we made two design decisions:

Design Decision 1: We do not represent the tail explicitly.
Rationale: This vastly simplifies the planning and represen-

tation problems. Our approach is to have each motion primitive
Ũ include an ‘initialization’ motion ũ−, which normalizes the
tail configuration, laying the tail out into some predictable
configuration no matter its prior condition. This allows Ũ to
follow any state. In practice Ũ is imperfect so the uncertainty
of the tail configuration is implicitly included in the parame-
terized motion primitives, as discussed later.

Design Decision 2: We assume the robot motion is deter-
ministic, whereas we must treat the object motion as non-
deterministic for any Ũ .

Rationale: The robot state and the object state are coupled
via the tail. It is possible to estimate the robot state relative to
the object state if the robot’s control policy seeks to maximize
this form of information. For example, the robot can stop the
instant the object stops moving. Then, given Ũ , the object
state can be used to help determine the relative location of
the robot, a step which helps reduce planning complexity.
There are small errors in pose estimates in practice, but are
incorporated in the motion primitive model easily.

These two design decisions yield a simplification of Eq. (1)
to give a transition function Fs as

Xo(k + 1) = Fs(Xo(k), Ũ(k), p), (5)

wherein we only need consider the object’s state, because the
robot state is determined by the object state.

A. Robot motion model

The robot has motion constraints that affect the feasible tail
configurations and, ultimately, the object motions. Here we
assume a simple car model for the robot. We generate the
robot trajectories via Dubins curves that allow the shortest
path in obstacle environments [24], ensuring a collision-free
path for the robot. A Dubins curve consists of circular curves

Fig. 3. A free body diagram for the dragging motion.

and linear motions, and all robot motions are treated as such,
including atomic actions in each Ũ .

B. Quasi-static model: simplified analytic model for dragging
motions

First, consider a dragging motion where the tail and object
make contact throughout: The robot approaches the object’s
side, wraps the tail around the object, and moves forward,
resulting in simultaneous rotation and translation of the object.
There is no need for explicit consideration of the tail’s configu-
ration other than basic physical properties such as its mass and
coefficients of friction. The following analysis considers the
quasi-static regime, assuming small inertial forces compared
to the tail’s contact forces.

A free body diagram for this scenario is shown in Fig. 3.
Suppose that the direction of the object’s translation is in the
horizontal x-direction (i.e., for φ = 0). The basic dragging
motion depends on tensions TL and TR, on the left and right
sides of the tail, where the object is taken as the dividing point.
We denote the mass of the left hand side of the tail by MtL ,
and the force induced by the robot by Fr. While dragging,
Fr may increase as MtL increases, causing an increase in
the left side of the tail’s static friction Ft. Still, Fr − Ft
is constant when the robot’s force Fr increases (e.g., via
a feedback controller) to ensure the quasi-static motion is
maintained. Eq. (6) and Eq.(7) are applications of Newton’s
second law, here for translation in the x-direction. When the
right side of the tail is not moving due to friction with the
floor, the operation is identical to the physics of an ideal pulley,
permitting us to write TL = TR in Eq. (7). The object exerts
the total frictional force of TL + TR = 2T , meaning that if
the robot moves distance of 2d, the object moves distance of
d.

TL = Fr − Ft, (6)
TL + TR = Fo. (7)

Ideal pulley physics is only applicable when friction fixes
the right side of the tail. As the robot drags its tail, the
proportion of mass on the right (left) side decreases (increases,
respectively). Eventually TR cannot be sustained; the friction
breaks down when the mass on the tail’s right side is inad-
equate, which is dependant on the length of the tail. Let the
minimum length of the right side of the tail be Lmin, then
there are two distinct frictional phases: 1) the right tail stays
while the left tail moves; 2) the whole tail moves, slipping
over the floor. For the first phase, we can get a closed-form
solution as it is identical with a pulley physics system.

Focusing on this first phase of motion, we call this our fine

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. JUNE, 2016

motion primitive, Ũ0,

Xo(x,y)(k + 1) = dA+Xo(x,y)(k),

Xo(θ)(k + 1) = Xo(θ)(k) +
2d

r
,

Xr(x,y)(k + 1) = 2dA+Xr(x,y)(k),

(8)

where d is a limited distance, depending on L, since the
robot can move distance at most L − Lmin. As before, φ
denotes the direction of motion, but r is the object radius, and
A is [cosφ, sinφ].

The uncertainty in this motion primitive has its origins in
the robot’s motions. The robot executing Ũ0 must ensure that
it operates in the first frictional phase only. This requires that
it stop during the dragging motion and then separate the tail
from the object. This additional step (a termination step, ũ+0)
is fairly complicated, but is the price demanded for a primitive
that realizes such a simple model.

A second more cavalier primitive has the robot simply
continue forward even after the tail and object begin to slip
(in Fig. 3, it keeps going in the positive x-direction). Passing
through the first frictional phase into the second, a highly non-
linear transition from sticking to slipping occurs manifesting
itself as additional uncertainty for this primitive Ũ1.

The second dragging primitive, Ũ1, has a pair of stochastic
state transition functions:

Xo(k + 1) = Xo(k) + ω1, ω1 ∼ N (Xmean1 ,Σ1),

Xr(k + 1) = Xo(k + 1) + ω2, ω2 ∼ N (XL,Σ2),
(9)

where Xmean1 and Σ1 are the mean and variance of the
object state transitions via Ũ1. Here XL and Σ2 describe the
robot’s state error relative to Xo(k + 1), parameterized by φ.
The robot is dragging the object initially, but at some point the
tail begins to slip, and eventually friction causes the object to
come to rest. Our controller ensures that the robot stops then
too. Thus, the robot’s state distribution depends on the object
location, which facilitates planning because the prediction of
the robot state can be determined relative location of the object
(and φ, and the tail length).

C. Dynamic model: high-speed striking

In addition, we investigated a high-speed primitive motion
that has the robot exploiting the dynamics of the tail to lash
the object. The robot approaches the object from an angle
dependent on φ, then drives with constant velocity and at
the maximum steering angle while keeping a short separation
distance. As the tail is moved at high speed, its internal tension
stiffens the rope along its extent, and when the object is struck
both rotation and translation result.

The striking primitive, Ũ2, has state transition function with
a probability distribution:

Xo(k + 1) = Xo(k) + ω3, ω3 ∼ N (Xmean3 ,Σ3),

Xr(k + 1) = Xo(k + 1) + ω4, ω4 ∼ N (Xany,Σ4),
(10)

where Xmean3
and Σ3 are the mean and variance of the

object state transitions via Ũ2. The mean and variance of the
relative robot state is given by Xany and Σ4, which capture
dependency on φ, and intrinsic robot control errors.

Specific values of Xmean1
, Xmean3

, Σ1, Σ2, Σ3, and Σ4

are reported in Appendix A.

D. Recap of motion primitives: initialization

The motion primitives require initialization motions, ũ−,
to ensure the tail is in a well-defined configuration. Some
motion primitives also need additional actions, ũ+, to simplify
the robot’s state estimation. This section reviews the motion
primitives, detailing these additional motions which have not
been described yet. We summarize the set of primitives we
use in Fig. 4: from left to right tractability and accuracy of
modeling decrease because the physical phenomena involved
are complex. Data-driven models are used when the system is
highly non-linear and transitions are too complicated to treat
otherwise. Though not shown, primitive Ũ2, has merit in terms
of the object travel distance per unit of time.

The photos in Fig. 5 show Ũ0 and Ũ1. There are four phases.
The first sets the robot and object some distance (and bearing
φ) apart—shown in Fig. 5(a). Then, the robot executes a pre-
planned path, ũ−, bringing the robot next to the object, as
in Fig. 5(b). Next, in Fig. 5(c), the robot makes a simple
surrounding motion that wraps the object, whereafter the robot
drags the tail for distance of 2 d. For Ũ0, the robot will stop
in Fig. 5(d). For Ũ1, the robot will continue until the object
stops moving in Fig. 5(e).

For Ũ0, the robot reverses over its tail to separate the tail
from the object after the object has stopped. These additional
motions, ũ+0 , involve execution of a pre-planned path. These
are not needed for Ũ1, thus ũ+1 = ∅.

Fig. 6 shows the three phases of Ũ2. Initially, the robot
navigates to the initialization location via ũ−2 , shown in
Fig. 6(a). Second, the robot executes its high-speed motion
with steering at hard lock. The tail configuration is predictable
as it essentially becomes a semi-rigid body—Fig. 6(b). Next
the tail hits the object, shown in Fig. 6(c), and the object
moves. Finally, to be consistent with the model, the robot
moves to a location relative to the object’s resting pose, which
is shown in Fig 6(d). This last motion is ũ+2 .

Motion Primitives

Properties
Quasi-static idealized

& interaction

Quasi-static
involving stick/slip

together
Dynamics-based

Model
Deterministic w/

small variance added
Stochastic

Data-driven
(Stochastic)

4
Portfolio Optimization?
Diversity of motion primitives

Fig. 4. A diverse set of motion primitives are used. From left to right, the
object travel distance per unit of time increases while the model tractability
and model accuracy decrease.

(a) T= 0 (s) (b) T= 6 (s)

(c) T= 12 (s) (d) T= 20 (s) (e) T= 25 (s)

Fig. 5. The initialization motion for ũ−0 and ũ−1 is from (a) to (b). Then,
the robot drags its tail to move the object through (c), (d) and (e). If the robot
wants to execute Ũ0 only, the robot might stop execution as shown in (d). For
Ũ1, the robot keeps dragging until the object stops moving, shown in (e).

KIM AND SHELL: USING A COMPLIANT, UNACTUATED TAIL TO MANIPULATE OBJECTS 5

(a) T= 0 (s) (b) T= 1 (s) (c) T= 1.5 (s) (d) T= 2 (s)

Fig. 6. (a) The initialization,ũ−2 , positions the robot relative to the object.
(b) This shows a high-speed motion. The robot makes a circular motion. (c)
The tail configuration is like a semi-rigid body after first round, and then the
tail hits the object. (d) The robot stops at some location relative to the object
(ũ+2).

9

from to

backup motion

fr
o

m

to

Fig. 7. Motion primitives are sequenced together. The black line shows
segments of motion that the object undergoes. The green lines are the
initialization motions, ũ−, and the orange solid lines are termination motions,
ũ+. The purple lines are portions of the path which move the object. The
broken black lines show points of transition between primitives.

V. PLANNING WITH THE MOTION PRIMITIVES

Having outlined the primitives individually, the next step
is to plan and execute sequences of motion primitives. Fig. 7
provides an illustration: the path consists of the sequence Ũ0,
Ũ1, and Ũ2. First, the robot executes Ũ0. The robot path is
generated via a Dubins curve and the robot follows the green
line as its initialization, ũ−0 . It then makes the motion shown by
the purple line to move the object. At some point, the robot
stops, executes a backing up motion as ũ+0 to separate the
tail from the object. Here a transition from Ũ0 to Ũ1 occurs.
The robot moves along the (green) initialization path as ũ−1
and then the robot executes the dragging motion (purple). The
final transition is from Ũ1 to Ũ2. The robot initializes with ũ−2
and then makes a high-speed circular motion. Once the object
stops moving, the robot goes to its final location via ũ+2 .

How does a planner find such a sequence, especially
since the primitives include motion uncertainty? We use
the Rapidly-exploring Random Tree (RRT) [25] and add a
particle-based representation for uncertainty of the object’s
state transitions. The algorithm operates on a graph describing
the object’s state space. Each vertex has the object’s current
state, Xo and the robot current state Xr, and the belief states
of each object state have a weighted set of N particles,
{(Xo1 , w1), . . . , (XoN , wN)}. Each edge is labeled with the
motion primitive needed to traverse between the associated
vertices for the object and the robot trajectories in Sec. IV-A.

Algorithm 1 RRT PLANNING

1: INPUT: XS , XG, robot initial location Xr0 , initial tree τ0(XS)
2: OUTPUT: π∗ = (Ũ∗

1 , . . . , Ũ∗
N)

3: TREE BUILDING PHASE(XS , Xr0 , τ0(XS))
4: SEARCH PHASE(τ , ~α, XG)

Algorithm 2 TREE BUILDING PHASE(XS , Xr0 , τ0(XS),)

1: INPUT: [Ũ0, . . . , ŨN], XS , robot initial location Xr0 , an initial tree
τ0(XS),

2: OUTPUT: τK .
3: for k = 1 to K do
4: (Xrand, Ũrand(φ)) = SAMPLE()
5: Xnear = NEAREST(Xrand, Ũrand(φ), τk)
6: if NEW STATE(Xrand, Ũrand(φ), Xnear , Xnew) then
7: Xnew.particles = PROPAGATE(Xnear , Ũrand(φ))
8: τ .add vertex(Xnew , Ũrand(φ))
9: τ .add edge(Xnear , Xnew , Ũrand(φ))

10: end if
11: end for

Algorithm 3 Xnew.particles = PROPAGATE(Xold, Ũ , φ)
1: for p = 1 to P do
2: Xnew.particlesp = Xold.particlesp + SAMPLE(Ũ , φ)
3: UPDATE WEIGHT(Xnew.particlesp)
4: Xnew.particlesp.cost = UPDATE COST(Xnew.particlesp)
5: end for

Alg. 1 gives the RRT algorithm with a mechanism adapted
for propagation of errors. First, we build the tree with our mo-
tion primitives from the object start node. Then we search for
a low-cost path based on the scalarized cost function. (In our
implementation these procedures are performed offline.) Alg. 2
consists of following basic functions: The SAMPLE function
returns uniform samples of the object state Xo in χfree. We
also sample a heading angle φ ∈ [0, 2π) and a specific motion
primitive Ũ with object rotation direction. The NEAREST
function finds the nearest node Xnear from τk. Then, the
NEW STATE function determines the new tree node based
on global constraints, such as being collision-free (including
the object state transitions and the robot trajectories). When
new nodes are added, we propagate object motion errors. In
Alg. 3, we compute a new particle state by sampling particles
via the probability distribution of the motion primitive. Then
we update the weights, normalizing them based on the average
of Xnew.particles, also updating J (X).

Once we have a random tree, the next step is to find a
sequence of motion primitives via the SEARCH PHASE in
Alg. 1. We use Dijkstra’s algorithm with J (Xi, ~α).

VI. EXPERIMENTAL RESULTS

This section discusses results from several physical robot
experiments.

A. System setup
We used an RC car controllable to velocities between

0.4 m/s for Ũ0 and Ũ1, and over 1.5 m/s for Ũ2. An embed-
ded computer on the car controls the robot and communicates
with a separate computer integrated with an overhead tracking
system which localizes the object and the robot. The software
uses the ROS framework. All experiments are conducted in
our test arena of size 5.18 m × 4.27 m. Pose errors are
estimated to be ± 5 cm and ± 10rad, respectively. The
tail configuration was not tracked. The following physical
properties were measured: the target object is a cylinder with
mass = 30 g, µo = 0.6655, and radius = 7.5 cm; the

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. JUNE, 2016

00.10.20.30.40.50.60.70.80.91
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

J2 = Prob(x,y,θ)

J 1
≈

N
av

ig
at

io
n

C
os

t
(c

m
)

Objective Space

Ũ0-only
Ũ1-only
Ũ1+Ũ2
Ũ2-only

(a) The Pareto front (in black); the x-
axis is a measure of path accuracy; the
y-axis is navigation cost.

(b) Four paths are plotted in 2-
dimensional space (heading has
been omitted).

Fig. 8. Ũ0-only is a gray path. Ũ1-only is a green path. Ũ2-only is a magenta
path. Ũ1+Ũ2 is a sky blue path.

robot weighs 700 g; tail is a chain with mass = 35 g,
length = 70 cm, and µt = 0.5952.

B. Scenarios: planners, environments, and objectives
1) Three planners: For comparison of the experimental

results, we considered three types of planners. (1) The simple
naı̈ve planner in which the error propagated with a pre-planned
fixed φ. This planner’s anticipated uncertainty is greatly in-
creased over the other two planners. (2) The adjustable planner
updates the φ parameter based on the current object state. This
update is in line 7 of Alg., 2. (3) The adjustable + replanning
planner extends the previous planner by generating a new tree
and a path to reduce any error that remains after the robot
finishes each motion.

2) Two environments: We have two scenarios. The first is
obstacle-free, in which we validate the approach extensively.
The second environment has a static obstacle, and gives a clear
demonstration of how different cost preferences (regarding
collisions) are reflected in the resulting sequence of motion
primitives.

3) Three objectives: We are interested in total execution
time, a measure of path accuracy, and a measure of path safety,
denoted J1, J2, and J3, respectively. Two scaling degrees-of-
freedom are suffice: α1 and α2, with α3 = 1 − α1 − α2.
At transitions between motion primitives, we compute J (X)
by accumulating each cost function. The execution time is
the total robot navigation time. The total accuracy of the
path includes both the reliability of object transitions between
nodes, and how close the states are to the goal. They are
computed via 1 − Pr(Xoi)X̂oi

and 1 − Pr(Xoi)XG
, where

X̂ is our model’s prediction.
First, we examined the open space scenario to understand

the basic characteristics of the motion transitions. For this
scenario, we set α3 = 0 because there are no obstacles. Then,
our four different preferences give four scaled parameters: the
planner with α1 = 0.00001, Ũ0-only, is the most conservative
planner which gives a most reliable path albeit with most
costly execution time. With α1 = 0.0001, Ũ1-only, is modestly
conservative, allowing a reliable path with high probability
to go to the goal. The planner with α1 = 0.0003, Ũ2-only,
is most optimistic, allowing only high-speed motions. The
planner with α1 = 0.0002, Ũ1 + Ũ2, is mixed.

As can be seen in Fig. 8, we have four kinds of paths: Ũ0-
only has sequences with twenty Ũ0. Ũ1-only has sequences

with twelve Ũ1. Ũ2-only has sequences with four Ũ2. Ũ1 + Ũ2
has sequences with one Ũ1, three Ũ2, and two Ũ1.

C. Experimental validation

Two measurements are used for comparison: precision mea-
sures how consistent results are across repetitions; accuracy
considers closeness of the mean of a set of measurements to
the actual goal.

Our tree was built so that the proportion of Ũ0, Ũ1 and
Ũ2 were equally distributed over 250,000 nodes. The start
location is XS = (−100 cm, 100 cm, 0 rad) and the goal
location is XG = (100 cm,−100 cm, π rad). To simplify
our experiments, we assume that the object rotates in a clock-
wise direction, so all motion primitives have a fixed direction
of rotation.

Fig. 9 shows the three different planners simple, adjustable,
and adjustable + replanning with four preferences as shown in
Ũ0-only in first column, Ũ1-only in second column, Ũ1+Ũ2 in
third column, Ũ2-only in fourth column. Ten trials are shown
for each case. The first column of Fig. 9 shows the initial state,
and we can see a representative initialization motion (in green)
for each primitive.

The second row of Fig. 9 shows the simple planner. The third
row of Fig. 9 shows the adjustable planner. We can see that
the adjustable planner has increased precision compared to the
simple planner. From left to right, we see that accuracy also in-
creases. From the third and fourth column of Fig. 9, we might
think that Ũ2 alone is useless. However, those preferences
can be effective with the adjustable + replanning planner;
applying the adjustable + replanning planner for Ũ1+Ũ2 gives
the (representative) result magnified in Fig. 10. The replanning
phase greatly increases accuracy. The replanning phase takes
considerable computational time but certainly improves the
quality of both Ũ2-only and Ũ1+Ũ2.

A detailed analysis of all the results appears in Fig. 11.
Fig. 11(a) shows the model’s prediction (blue), the simple plan-
ner (green), the adjustable planner (red), and the replanning
planner (magenta). The models consistently underestimate
execution cost, likely due to difficulties in controlling the RC
car robustly. The estimate’s deficiencies were traced back to
costs in the initialization steps for the primitives.When errors
are big enough, compared to given trajectories, re-planning
the robot path takes added time. Primitive Ũ0 especially has
a substantial gap between the model and reality, owing to the
reversing motions further exacerbated by a sequence of more
than twenty Ũ0s.

From Fig. 11(b), adjustment and/or replanning reduce dis-
tance errors. The bar shows the mean square error, the error-
bars depict the maximum and the minimum values.

The additional execution time for replanning in Fig. 11(a)
comes from the execution time of additional motion primitives.
Note that the times reported for replanning do not consider
the time necessary for generating the tree, as they only reflect
execution costs not computational ones.

Next, we briefly summarize results exploring cost pref-
erences in the environment with obstacle collisions. In this
case, we use α2 for the scaled cost function. We have

KIM AND SHELL: USING A COMPLIANT, UNACTUATED TAIL TO MANIPULATE OBJECTS 7

(a) Ũ0-only (b) Ũ1-only (c) Ũ1 + Ũ2 (d) Ũ2-only

−250 −200 −150 −100 −50 0 50 100 150 200 250
−200

−150

−100

−50

0

50

100

150

200

x (cm)

y
(c

m
)

(e) Ũ0-only with simple planner

−250 −200 −150 −100 −50 0 50 100 150 200 250
−200

−150

−100

−50

0

50

100

150

200

x (cm)

y
(c

m
)

(f) Ũ1-only with simple planner

−250 −200 −150 −100 −50 0 50 100 150 200 250
−200

−150

−100

−50

0

50

100

150

200

x (cm)

y
(c

m
)

(g) Ũ1 + Ũ2 with simple planner

−250 −200 −150 −100 −50 0 50 100 150 200 250
−200

−150

−100

−50

0

50

100

150

200

x (cm)

y
(c

m
)

(h) Ũ2-only with simple planner

−250 −200 −150 −100 −50 0 50 100 150 200 250
−200

−150

−100

−50

0

50

100

150

200

x (cm)

y
(c

m
)

(i) Ũ0-only with adjustable planner

−250 −200 −150 −100 −50 0 50 100 150 200 250
−200

−150

−100

−50

0

50

100

150

200

x (cm)

y
(c

m
)

(j) Ũ1-only with adjustable planner

−250 −200 −150 −100 −50 0 50 100 150 200 250
−200

−150

−100

−50

0

50

100

150

200

x (cm)

y
(c

m
)

(k) Ũ1 + Ũ2 with adjustable planner

−250 −200 −150 −100 −50 0 50 100 150 200 250
−200

−150

−100

−50

0

50

100

150

200

x (cm)

y
(c

m
)

(l) Ũ2-only with adjustable planner
Fig. 9. An overview of our results. The small circles near the goal location indicate the final object states (orientation as a red line).

0 20 40 60 80 100 120

−140

−120

−100

−80

−60

−40

x (cm)

y
(c

m
)

Fig. 10. We apply the
replanning phase after
the result of Fig. 9(k).
Ten scattered objects
are finally moved to the
near goal location with
good accuracy and pre-
cision.

three preferences, each shown in Fig. 12. Path-1 ((α1, α3) =
(0.0003, 0.1)) consists of three Ũ2s and two Ũ1s. Path-2
((α1, α3) = (0.0003, 0.4)) has four Ũ2s and three Ũ1s. Path-
3 ((α1, α3) = (0.0001, 0.1)) has twelve Ũ1s. Values are
reported for 10 trials for each path. Path-1 is the fastest
method, but it highest risk of collision (at 40 %). Path-2 has a
reasonable execution time and no collision. Path-3 is the most
conservative path.

D. Discussion
1) Implementation challenges: An issue we encountered

with our implementation was that it was difficult to assure that
the robot maintained a fixed velocity. This is because friction
varies depending on whether the object (and tail, including
just some segments of it) are moving or not. A consequence
is that the total execution time reported above is computed
based on the average velocity of the robot.

2) Investigation of practical scenarios: Dynamics-based
motions, such as Ũ2, are not merely a scientific curiosity, they

10(a) Primitive execution times (mean
and standard deviation).

(b) Error as distance from goal
(mean, min, and max).

Fig. 11. The data in Fig. 9 summarized.

can be useful in several practical scenarios. When a robot
cannot access a narrow passage, a high-speed striking motion
that can move an object quickly and reliably through the
passage. If an object is stuck near a wall or a corner, the robot
can use Ũ2 to manipulate a stuck object directing it outwards
from afar. It is also potentially possible for a robot with a tail
to use Ũ2 to separate multiple gathered objects, so that each
object can be brought into their desired location, much like a
billiards break.

Our approach is not limited to cylindrical objects. Owing
to space limitations, we do not report all our data here, but
experiments showed that objects of various shapes (including
a square, a triangle, a star) with convex hulls of comparable
perimeters (and approximate location of center of mass and
center of friction) work with the same parameterized models
we have described for the cylinder. The approach is fairly
oblivious to object geometry.

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. JUNE, 2016

12

Motion
Primitive

Arrival time (s) Collision rate Arrival rate

Path 1 (green) (84.2, 9.17) 40% 60%

Path 2 (purple) (110, 10) 0% 80%

Path 3 (red) (360, 15) 0% 100%

Fig. 12. Analysis of the preferences in the obstacle environment. The black
area is the static obstacle area. Reported arrival time (seconds) is (µ, σ) for
10 trials of each path. We count the number of collision. We also count the
number of arrival at the destination (±30 cm radius).

VII. CONCLUSION

Even though rope-like structures are simple, cheap, and
versatile tools, compliant passive tails have received little
attention for robotic manipulation. We speculate that this is
a consequence of the modelling difficulties inherent to such
systems; this paper’s response to the challenge is to use
a collection of models of varying verisimilitude. We have
demonstrated how the dynamics of a compliant, unactuated
tail can be successfully exploited for manipulation. We have
shown the effectiveness of an approach that uses simple
stochastic models, each associated with a structured primitive.
The primary planning technology used was sampling-based
motion planning with a particle-based representation for error
propagation. We demonstrated our system with physical robot
experiments and the results show that various preferences can
be expressed effectively, ultimately being reflected in different
mixes of primitives being executed.

APPENDIX A
LEARNING MODEL PARAMETERS

Our motion primitives have several parameters. Primitive Ũ0 has
an analytical model (but does include a small variance). For Ũ0, we
only need to know Lmin, which is approximately 20 cm in our tests.
However, Ũ1 and Ũ2 are much more complicated, so we resorted
to collecting data. We placed the robot and tail in random initial
configurations, then we executed the primitives over 20 times while
recording data.

The following summarize the collected parameters through the
repeated execution of each motion primitive in Fig. 13.

Xmean1 =

[
26.9
5.23
4.899

]
Σ1 =

[
5.1673 1.6611 0.2215
1.6611 1.4337 0.1414
0.2215 0.1414 0.0183

]

Xmean3 =

[
80.04
−4.57
4.51

]
Σ3 =

[
122 5.6 0
5.6 6.99 0.902
0 0.902 0.4183

]
Σ2 and Σ4 are taken as [3, 0.1, 0], which are measured directly via
execution of a Dubins curve.

(a) Ũ1 (b) Ũ2
Fig. 13. The object is located at (0,0,0), and the robot executes each motion
primitive with φ = 0. Settings match those in Figs 5 and 6.

REFERENCES

[1] K. Lynch and M. Mason, “Stable Pushing: Mechanics, Controllability,
and Planning,” Int. J. of Robotics Research, vol. 15, pp. 533–556.

[2] T. Meriçli, M. Veloso, and H. L. Akin, “Push-manipulation of complex
passive mobile objects using experimentally acquired motion models,”
Autonomous Robots, vol. 38, pp. 317–329, 2015.

[3] J. Fink, M. A. Hsieh, and V. Kumar, “Multi-Robot Manipulation via
Caging in Envirionments with Obstacles,” in Proc. of Int. Conf. on
Robotics and Automation, 2008.

[4] W. H. Huang, E. P. Krotkov, and M. T. Mason, “Impulsive Manipula-
tion,” in Proc. of Int. Conf. on Robotics and Automation, May 1995.

[5] B. Donald, L. Gariepy, and D. Rus, “Distibuted Manipulation of Multiple
Objects using Ropes,” in Proc. of Int. Conf. on Robotics and Automation,
2000.

[6] S. Bhattacharya, S. Kim, H. Heidarsson, G. Sukhatme, and V. Kumar,
“A topological approach to using cables to separate and manipulate sets
of objects,” Int. J. of Robotics Research, pp. 1–17, 2015.

[7] G. Robinson and J. Davies, “Continuum Robots - A State of the Art,”
in Proc. of Int. Conf. on Robotics and Automation, 1999.

[8] S. Chiaverini, G. Oriolo, and I. D. Walker, “Kinematically Redundant
Manipulators,” in Springer Handbook of Robotics, B. Siciliano and
O. Khatib, Eds. Springer-Verlag Heidelberg, 2008, ch. 11.

[9] R. J. W. III and B. A. Jones, “Design and Kinematic Modeling of
Constant Curvature Continuum,” Int. J. of Robotics Research, vol. 29,
pp. 1661–1683, 2010.

[10] L. S. Cowan and I. D. Walker, “The Importance of Continuous and
Discrete Elements in Continuum Robots,” International Journal of
Advanced Robotic Systems, vol. 10, pp. 1–13, 2013.

[11] M. R. Dogar and S. S. Srinivasa, “A Planning Framework for Non-
Prehensile Manipulation under Clutter and Uncertainty,” Autonomous
Robots, vol. 33, no. 3, pp. 217–236, 2012.

[12] M. Phillips, B. Cohen, S. Chitta, and M. Likhachev, “E-graphs: Boot-
strapping planning with experience graphs,” in Proceedings of Robotics:
Science and Systems, Sydney, Australia, July 2012.

[13] D. Berenson, P. Abbeel, and K. Goldberg, “A robot path planning
framework that learns from experience,” in Proceedings of International
Conference on Robotics and Automation, Saint Paul, Minnesota, USA,
May 2012.

[14] A. Bry and N. Roy, “Rapidly-exploring Random Belief Trees for Motion
Planning Under Uncertainty,” in Proc. of Int. Conf. on Robotics and
Automation, 2011.

[15] T. Libby, T. Y. Moore, E. Chang-Siu, D. Li, D. J. Cohen, A. Jusufi, and
R. J. Full, “Tail-assisted pitch control in lizards, robots and dinosaurs,”
Nature Letter, vol. 481, pp. 181–186, 2012.

[16] E. Chang-Siu, T. Libby, M. Tomizuka, and R. J. Full, “A lizard-Inspired
Active Tail Enables Rapid Maneuvers and Dynamic Stabilization in a
Terretrial Robot,” in Proc. of Int. Conf. on Intelligent Robots and Syst.,
2011.

[17] J. Zhao, T. Zhao, N. Xi, F. J. Cintron, M. W. Mutka, and L. Xiao,
“Controlling Aerial Maneuvering of a Miniature Jumping Robot Using
Its Tail,” in Proc. of Int. Conf. on Intelligent Robots and Syst., 2013.

[18] W. S. Rone and P. Ben-Tzvi, “Continuum Robotic Tail Loading Analysis
for Mobile Robot Stabilization and Maneuvering,” in Proceedings of
IDETC/CIE, Buffalo, New York, USA, Aug. 2014.

[19] A. Patel and M. Brrae, “Rapid Turning at High-Speed: Inpirations
from the Cheetah’s Tail,” in Proc. of the International Conference on
Intelligent Robots and Systems, 2013.

[20] N. J. Kohut, A. O. Pullin, D. W. Haldane, D. Zarrouk, and R. S. Fearing,
“Precise Dynamic Turning of a 10 cm Legged Robot on a Low Friction
Surface Using a Tail,” in Proc. of Int. Conf. on Robotics and Automation,
2013.

[21] R. Briggs, J. Lee, M. Haberland, and S. Kim, “Tails in Biomimetic
Design: Analysis, Simulation, and Experiment,” in Proceedings of the
International Conference on Intelligent Robots and Systems, Vilamoura,
Algarve, Portugal, Oct. 2012.

[22] J. Ackerman, X. Da, and J. Seipel, “Mobility of Legged Robot Loco-
motion with Elastically-suspended Loads over Rough Terrain,” in Proc.
of CLAWAR, 2012.

[23] G.-H. Liu, H.-Y. Lin, H.-Y. Lin, S.-T. Chen, and P.-C. Lin, “A Bio-
Inspired Hopping Kangaroo Robot with An Active Tail,” Journal of
Bionic Engineering, pp. 541–555, Oct. 2014.

[24] P. R. Giordano and M. Vendittelli, “Shortest Paths to Obstacles for a
Polygonal Dubins Car,” IEEE Transactions on Robotics, vol. 25, pp.
1184–1191, 2009.

[25] S. M. LaValle and J. James J. Kuffner, “Randomized Kinodynamic
Planning,” Int. J. of Robotics Research, vol. 20, pp. 378–400, 2001.

	Introduction
	Related Work
	Preliminaries and Problem Description
	Simplifying assumptions
	Problem definition

	Modeling Motion Primitives
	Robot motion model
	Quasi-static model: simplified analytic model for dragging motions
	Dynamic model: high-speed striking
	Recap of motion primitives: initialization

	Planning with the Motion Primitives
	Experimental Results
	System setup
	Scenarios: planners, environments, and objectives
	Three planners
	Two environments
	Three objectives

	Experimental validation
	Discussion
	Implementation challenges
	Investigation of practical scenarios

	Conclusion
	Appendix A: Learning model parameters
	References

