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Analyzing the sensitivity of the optimal assignment
in probabilistic multi-robot task allocation

Changjoo Nam and Dylan A. Shell

Abstract—We consider multi-robot teams operating in uncer-
tain dynamic settings where the costs used for computing task-
allocations are not known exactly. In such cases, the desire to
minimize the team’s expected cost might need to be curtailed if,
in so doing, the risk that results is intolerable. We describe a
parameterizable variant of the assignment problem that enables
a designer to express such preferences, allowing one to take a
risk-averse position if the problem demands it. We consider costs
that are random variables, but which need not be independent—
a useful setting because it permits one to represent inter-robot
couplings. We analyze the sensitivity of assignment optima to
particular risk valuations and introduce algorithms that provide
an interval for the preference parameter in which all values result
in the same optimal assignment. This helps in understanding the
effects of risk on the problem, and whether the risk-based model
is useful in a given problem domain.

Keywords—Networked Robots; Planning, Scheduling and Coor-
dination

I. INTRODUCTION

Given a team of robots and a set of tasks, multi-robot task
allocation (MRTA) is concerned with selecting the best task
for each robot to perform. The most common formulation
involves, firstly, a cost being estimated for each robot–task
pairing, and then the computation of an assignment that
minimizes the sum of costs, i.e., the Single-Task robot, Single-
Robot task, and Instantaneous Assignment (ST-SR-IA) MRTA
problem [1]. When circumstances change or new information
comes to light (e.g., the unexpected occurrence of an event)
the assignment of robots to tasks may need to be adjusted
to reflect these contingencies. By doing so repeatedly and
with regularity, the robots can produce dynamic cooperative
behavior that befits a team.

The literature on MRTA is expansive but in almost all treat-
ments the estimated costs are scalar values, failing to capture
any uncertainty in the states of the robots, or the tasks, or the
environment. A further, and also nearly universal, assumption
of the ST-SR problems is that the costs are independent, having
no interrelationship between values. Practical inefficiencies can
result rather easily from ignoring either such interdependencies
or uncertainty. Even very straightforward scenarios lead to
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Fig. 1: Cost uncertainty can arise in many ways. For example, owing to
position uncertainty of the robot and the task. The sum of two independent
normal distributions is also normally distributed, so the distance between a
robot and a task is normally distributed. The traveling time is proportional to
the distance, so time spent navigating (a useful metric of cost) is also normally
distributed.

MRTA problem instances where these assumptions, though
standard, are dubious. This paper investigates the problem
of optimal assignments when neither of these simplifying
assumptions are made.

This paper explores a way to capture specific forms of
uncertainty and to incorporate interrelationships between costs
because we are interested, generally, in richer cost represen-
tations along both dimensions. We consider costs as random
variables for which distributional information is available.
Such the information could be obtained from robots employing
a state estimator or historical measurements from a dataset.
For example, the navigation example in Fig. 1 shows position
uncertainties represented by 2× 2 covariance matrices, output
from a Kalman filter. Uncertainty in the robot’s pose and its
estimate of the task’s position mean that traveling time is un-
certain too. More specifically, the cost is normally distributed
if positions also have normal distributions because the sum of
two independent normal distributions is also normal.

In this work, we characterize costs by their mean and
Conditional Value-at-Risk (CVaR), the latter is a risk measure
suitable for any type of distribution. We describe statistical
properties of optimal assignments given the characterizations
of costs (i.e., the mean and CVaR) and a precise form of
interrelationship in the costs that we can model tractably.
We examine an efficient model for computation of optimal
assignments subject to a risk preference that determines the
relative importance between the mean and CVaR, when there
is a tension between them. We show that there is a useful class
of assignments that are indifferent to this risk preference. For
problems outside of this class, we introduce a fast heuristic
algorithm which computes the sensitivity of an optimal as-
signment to the particular risk preference.
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II. RELATED WORK

Assignment problems with random costs are termed random
assignment problems, an area of extensive research that was
first surveyed comprehensively by Burkard and Cela [2] and,
more recently, by Krokhmal and Pardalos [3]. Broadly speak-
ing, exact analysis studies problems in terms of instance size,
n, while asymptotic analysis considers n→∞. These analyses
provide the upper and lower bounds, and the expected value
of the cost sum of an optimal assignment, as functions of n,
allowing one to understand behaviors of the problem according
to its size easily. These work has a wide range of applications
and gives a useful information to system designing or decision-
making process. However, the assumptions of homogeneous
distributions and the i.i.d. random variables limit exploring
more complex settings where costs are dependent and drawn
from various distributional assumptions.

Nikolova and Stier-Moses [4] propose a traffic assignment
model incorporating uncertainty by introducing stochastic
costs (travel times), which are uncorrelated random variables
representing the uncertainty in the time. Each agent chooses a
set of routes in a network and has an objective value that
is the weighted sum of the expected travel time and the
standard deviation of its travel time along the routes. Their
work provides equilibria for several versions of routing games.
This stochastic cost representation has been successfully used
and analyzed in game theoretic perspective of the routing
problem, and now we are interested in applying the stochastic
representation and the risk-sensitive formulation to MRTA.

The closest work to this paper is that of Ponda et al. [5],
who propose a stochastic formulation of task allocation where
planning parameters have uncertainties owing to the discrep-
ancies between system models and actual system dynamics.
The chance-constrained approach, which maximizes the worst-
case cost sum within a risk threshold, is used. The proposed
framework allows agents to work in a distributed manner by
allocating individual risk threshold based on a global risk
threshold. The result shows that their planner outperforms
the deterministic and the robust planners for any risk thresh-
old. However, the consequence of a particular value of the
global threshold cannot be anticipated directly in terms of
the resulting allocation of agents to tasks. Thus, a necessity
of analyzing the outcomes of those threshold values arises
to consider countermeasures (e.g., reallocations) against the
uncertainties.

III. DEFINITIONS AND PRELIMINARIES

This section describes a mathematical formulation of the
MRTA problem, and introduces sensitivity analysis of an op-
timal assignment, which provides a prescribed region of costs
where changes within that region do not impair the optimality
of the current assignment. At the end, a brief introduction to
risk measures is provided.

A. Multi-robot task allocation
The ST-SR-IA MRTA problem can be posed as an Optimal

Assignment Problem (OAP). For n robots and n tasks,1 we
assume we are given costs cij ∈ R≥0 that represent the cost of
the ith robot ri performing the jth task tj for i, j ∈ {1, · · · , n}.
The robots are to be allocated to tasks: let xij be a binary
variable that equals to 0 or 1, where xij = 1 indicates that the
ri performs tj , and xij = 0 elsewhere. Then a mathematical
description of the problem is

min

n∑
i=1

n∑
j=1

cijxij (1)

subject to
n∑
j=1

xij = 1 ∀i, (2)

n∑
i=1

xij = 1 ∀j, (3)

0 ≤ xij ≤ 1 ∀{i, j}, (4)
xij ∈ Z+ ∀{i, j}. (5)

We let c and X∗ be n×n matrices representing a cost matrix
and an optimal assignment of the problem, respectively.

B. Sensitivity analysis of optimal assignments
The OAP can be relaxed to a linear programming problem

(LP) by removing (5).2 The LP formulation may make use of
Sensitivity Analysis (SA) of an optimal assignment to yield a
safe region of costs where all costs within the region preserve
the current optimality. We provide a brief interpretation of the
analysis for the MRTA problems, based on a comprehensive
study of Ward and Wendell [7].

An LP problem corresponding to an MRTA problem can
have more than one feasible solution. For each feasible solu-
tion, the variables xij (i, j = 1, · · · , n) can be divided into
basic variables and nonbasic variables. A variable is basic
if it corresponds to one of the vectors in the basis, given a
feasible basis to a linear-programming problem; the variable is
nonbasic otherwise. For each k, an index of a feasible solution,
critical region Rk is a set of costs where the MRTA problem
has the same optimal assignment for any cost c ∈ Rk. It is
defined as

Rk = {c ∈ R(n2) : cNk
− cJkB−1k ANk

≥ 0}, (6)

where Jk and Nk indicate basic and nonbasic variables of the
kth feasible solution, respectively. Matrix Bk and ANk

are
constraint matrices of basic variables and nonbasic variables.
And cJk and cNk

are costs of basic and nonbasic variables.

1This is without loss of generality, since if the numbers of robots and tasks
are not equal, dummy robots or tasks would be inserted to make them equal.
The costs of dummies have very large numbers so that they can be naturally
excluded from the optimal assignment.

2An optimization problem with a linear objective function has only integer
solutions if its constraint matrix is totally unimodular [6].
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Fig. 2: A 2-D example of θ(X∗). Any cost in the set has the same solution.

The critical region Rk is formed by linear boundaries with
nonempty interiors.

There is, however, an additional complexity because the
MRTA problem is degenerate (see Appendix in [8]) and,
consequently, the critical region Rk is not a complete descrip-
tion of the region which preserves optimality of the current
assignment. The actual complete set is

θ(X∗) =
⋃
k∈H

Rk, (7)

where H = {k : X∗Jk = B−1k ,X∗Nk
= 0}, the union of the

critical regions of all degenerate solutions. Note that θ(X∗) is
also a polyhedral set [7, Theorem 17] with linear boundaries
that cross the origin (there might be overlaps among Rk). Fig. 2
shows a two dimensional example of θ(X∗) (the smallest
nontrivial MRTA problem has four dimensions, the figure is
just a pedagogical tool for visualization).

An n × n MRTA problem has 2n − 1 basic and (n − 1)2

nonbasic variables. To compute (7), we must identify the basic
and nonbasic variables of the kth feasible solution. The n
variables corresponding to costs in the optimal assignment are
basic variables, but the degeneracy means that the remaining
n − 1 basic variables cannot be identified directly. Thus, we
shall choose the n − 1 basic variables from the remaining
n2 − n variables to complete a feasible solution, yielding a
total of

(
n2−n
n−1

)
feasible solutions. Despite the set being large,

the interiors of Rk may overlap so θ(X∗) can be covered by
a small subset of Rk.

C. Risk measures
In financial mathematics, risk is defined as the variability of

the future value of a position [9], and a risk measure maps
a set of random variables into the set of real numbers. In
[10], variance is employed as the risk measure of a portfolio.
However, the variance has been criticized since it treats the
positive and negative deviations from the mean identically. For
this reason, Value-at-Risk (VaR) and Conditional Value-at-Risk
(CVaR) have been developed.

Given a confidence level λ ∈ (0, 1), VaRλ is the smallest
value such that the probability that a loss exceeds the value
at most (1 − λ). Computations of CVaR are not simple
(involving integrals), but closed-form expressions of common
distributions are provided in [11]. For those distributions with
no known closed-form expression of CVaR, one may compute

integrals or sample from the distribution and compute the
average of the samples greater than or equal to VaR. If one
has historical data, CVaR can be computed by fitting a density
function to the data or by a nonparametric method by using
the data directly. Interested readers are referred to [9].

IV. THE PROBABILISTIC COST REPRESENTATION

A straightforward way to model uncertainty is to treat the
cij in (1) as random variables, Cij . One may further express
the observation that uncertainty of a cost arises from three
sources: the robot, task, and the environment associated with
the robot and task (e.g., the path between a robot and a task),
via statistical properties that express interrelatedness in the
costs. We consider costs of the form of a sum:

Cij = Rij + Tij + Eij , (8)

where the Rij , Tij , Eij are random variables, representing
costs contributed by the ith robot, the jth task, and an environ-
ment between them, subject to the following conditions:

1) every Eij is independent of every Rkl;
2) every Eij is independent of every Tkl;
3) every Rij is independent of every Tkl;
4) each Eij is independent of ∀kk 6=i ∀ll 6=j Ekl;
5) each Rij is independent of ∀kk 6=i ∀l Rkl;
6) each Tij is independent of ∀k ∀ll 6=j Tkl.

Note that there is no assumption of identical distributedness.
Statistical dependencies can exist between factors not pre-

cluded by the six conditions above. The term Eij is a factor
which influences Cij independently of other factors. But the
Rij variable can have dependencies on Rik, it is intended to
capture uncertainty born of aspects of the ith robot. The same
thinking applies to Tij for the jth task.
Theorem 4.1 For costs of the form (8) subject to the six stated
constraints, the costs Cij where x∗ij = 1 (i, j ∈ {1, · · · , n})
are independent random variables given an assignment X∗

satisfying (2)–(3).
Proof. Consider distinct Ckl and Crs, where x∗kl = 1, and
x∗rs = 1. Clearly Ekl is independent from Ers, but Rkl can
only be dependent on Rrs if k = r, which contradicts (3).
Similarly, Tkl can only be dependent on Trs if l = s, which
contradicts (2). �

The joint distribution of the costs must be known in order to
compute the distribution of the sum of random costs. With the
independence of the costs, the joint distribution can be obtained
by the product of the given marginal cost distributions, which
is significantly more convenient than that of the dependent
case.

We prove another theorem about CVaR for a computation-
ally tractable formulation of the probabilistic MRTA problem
described in the following section. Definitions 4.2, 4.3, and
Theorem 4.4 are from [12].
Definition 4.2 (Comonotonic set) The set A ⊆ Rn is comono-
tonic if for any y and z in A, either y ≤ z or z ≤ y.
Definition 4.3 (Comonotonic random vector) A random vector
is comonotonic if it has a comonotonic support.



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. JUNE 2016

Theorem 4.4 (Comonotonic additivity) In Theorem 4.2.1 in
[12], it is proven that

CVaRλ,Sc =

n∑
i=1

CVaRλ,Zi , (9)

where CVaRλ,V denotes the CVaR of the random variable V
with a confidence level λ. The sum of comonotonic random
variables (Zc1, · · · , Zcn) is Sc = Zc1+· · ·+Zcn. Thus, the CVaR
of the sum of the random variables is equal to the sum of the
CVaRs of the random variables if the random variable forms
a comonotonic random vector.

From the definitions and theorems, we derive a theorem for
a convenient computation of the CVaR of an assignment.
Theorem 4.5 The CVaR of an assignment X can be computed
simply from the sum of each cost distribution’s CVaR:

CVaRλ,CX
=

n∑
i=1

n∑
j=1

CVaRλ,Cijxij . (10)

Proof. The cost sum of an assignment, CX, consists of the
sum of costs (i.e., random variables) whose decisions variables
are xij = 1 (i.e., CX =

∑n
i,j=1 Cijxij). The support of

those random variables is the complete set of, or a subset of,
nonnegative real numbers, which is a totally ordered set. A
totally ordered set is a comonotonic set by definition. So the
sum of costs in an assignment is the sum of comonotonic
variables, and Theorem 4.4 holds for the CVaRs of CX and
Cij . �

V. OPTIMAL ASSIGNMENT WITH PROBABILISTIC COSTS

For i, j ∈ {1, · · · , n}, we use the mean µij and CVaRλ,ij
of random variable Cij to characterize its distribution. From
Theorem 4.5, we can define two objective functions replacing
(1), which are the sum of means and CVaRs:

min

n∑
i=1

n∑
j=1

µijxij , (11)

min

n∑
i=1

n∑
j=1

CVaRλ,ijxij . (12)

It is worth noting that, without Theorem 4.1 and 4.5, one must
compute the sum of the distributions and the CVaR of the sum,
which involve several integrals. The problem of optimizing
these functions subject to (2)–(5) is the biobjective assignment
problem (BiAP) [13]. The optima are best visualized as a
Pareto front. Some assignments may have low summed mean
but high CVaR, some with low CVaR but high mean, and
others may represent a compromise.

It is not meaningful to seek a single optimum given that
there are two objectives unless we can express a preference
as a precise trade-off between minimizing the mean and the
CVaR. We quantify this as a risk preference, viz. a stipulation
of the relative importances of the mean and the CVaR. This
yields a scalarized BiAP that

min

n∑
i=1

n∑
j=1

(
αµijxij + (1− α)CVaRλ,ijxij

)
(13)

subject to (2)–(5) where α ∈ [0, 1] is the risk preference. Thus,
with this preference, one may apply a standard assignment
algorithm to produce an assignment.

The confidence interval λ is another parameter that changes
the objective value (13) because it changes the CVaR. Thus,
the determination of λ ∈ (0, 1) should be taken into account.
We follow one of the conventions (i.e., 95% or 99%) for
determining it, but varying its value is still a meaningful
direction to consider so discussed in Sec. V-D.

On the other hand, we note that some problems have an
optimal assignment X+ such that

min

n∑
i=1

n∑
j=1

(
αµijx

+
ij + (1− α)CVaRλ,ijx

+
ij

)
, (14)

is minimized for α ∈ [0, 1]. We term these problems risk
preference indifferent since the outcome is identical for any
α. We show a provable instance of such the problems.
Theorem 5.6 Problems with costs of the form (8) subject to
the six stated statistical requirements, with the additional fact
the ∀j (∀i Rij = Ri) and ∀i (∀j Tij = Tj) (both Ri and Tj
are random variables), and ∀i, j Eij = kij (where each kij is
constant) are risk preference indifferent.
Proof. If Ri has CVaRλ,Ri

and Tj has CVaRλ,Tj
, then

all assignments X’s (optimal and otherwise) have a
sum of

∑n
i=1

∑n
j=1 CVaRλ,ijx

+
ij =

∑n
i=1 CVaRλ,Ri

x+ij +∑n
j=1 CVaRλ,Tj

x+ij . Hence, the optimal assignment only de-
pends on the first term of (14), that is the one involving µij .
The minimizer of this assignment is the overall minimizer no
matter the value of α. �

Several practical problems fall into this category as the
example in Fig. 3, where the distributions are symmetric
from the mean of robot or task locations toward the opposite
directions. Since CVaR is proportional to the variability (e.g.,
variance) of a distribution, the sum of CVaRs of the two
assignments A and B are the same. Thus, the value of α does
not affect the determination of an optimal assignment.

Nevertheless, certainly there remain many problems which
are not risk indifferent. Since α weights two sums with
different meanings, it is a fairly ad hoc parameter. We therefore
propose a sensitivity analysis that allows a user to determine
how critical their choice of α is in producing the particular
optimum. The analysis helps understanding the effect of the
preference change and determining its value.

A. Standard sensitivity analysis for the risk preference
Given a risk preference α, we compute its safe interval

where any change within the interval does not change the
current optimal assignment. Conceptually, this is the same as
the sensitivity analysis introduced in Sec. III-B. The difference
is that the bounded region of costs is determined by the
weighted sum of two objective values:

C = αM + (1− α)P, (15)

where C is a matrix representation of Cij for i, j ∈
{1, · · · , n}. M and P are n × n matrices consisting of µij
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Fig. 3: An example risk preference indifferent problem. Robots navigate to
tasks via a road network. By virtue of the symmetric property of the normal
distribution, Rij = Ri and Tij = Tj hold for all i and j. Assuming all Eij ’s
are constant (or equal), two assignments A and B have the same variability,
which makes them to have the same CVaR sum.

and CVaRλ,ij , respectively. The cost C varies depending on α
and forms a line in the cost space since α is a 1-D parameter.

As discussed, θ(X∗) is a polyhedral cone consisting of
linear inequalities (6). Since we have a set of linear equations
θ(X∗) and a linear function C, one can compute intersections
between them. An intersection is a particular value of C that
corresponds to a unique α because (15) is injective. Thus,
we can compute an interval α ∈ [a, b] that is the minimum
and maximum of those intersections. A straightforward way to
achieve this is by linear programming where (15) is minimized
or maximized over θ(X∗). Since there is only one variable α,
we do not need to consider the full cost space of C. We reduce
the dimensionality, by minimizing and maximizing α over a
set of linear inequalities that are functions of α, obtained by
substituting cij by αµij + (1− α)CVaRλ,ij .

This procedure is shown in Alg. 1. Given M and P, we
compute C (line 1) and compute an optimal assignment (line
2). We use the sensitivity analysis described in Sec. III-B
to compute θ(X∗) (line 3). Then we rearrange θ(X∗) as a
function of α. Lines 4 and 5 compute the minimum and
maximum intersection, so the objective values yield the exact
interval of α where any α within the interval does not destroy
the optimality of the current assignment.

Algorithm 1 RiskSA
Input: n × n matrices M and P that consist of µij and CVaRλ,ij ,
respectively. A risk preference α.
Output: An exact interval [a, b] of α and the optimal assignment X∗ in that
interval.
1 C = αM+ (1− α)P
2 X∗ = HUNGARIAN(C)

3 θ(X∗) = SA(X∗,C) //compute θ(X∗) by (7)

4 a = LINPROG(α, θ(X∗), 0, 1, max) //compute the max α ∈ [0, 1]

5 b = LINPROG(α, θ(X∗), 0, 1, min) //compute the min α ∈ [0, 1]

6 return X∗, a, b

B. Heuristic sensitivity analysis for risk preference

The discussion in Sec. III-B anticipates the weakness of
Alg. 1: the running time and space complexity are factorial
in n because SA in line 3 of Alg. 1 enumerates all feasible
solutions, a set whose size has factorial growth. Thus, we

describe a heuristic method that produces estimates of the
output interval much more quickly, described in Alg. 2.

The algorithm begins with a given α and computes the
optimal assignment for α. The algorithm expands the interval
downward (lines 5–14) and upward (lines 16–25). In each
iteration, α increments or decrements by δ. Within [0, 1], it
runs until the optimal assignment is altered. In each direction,
the maximum difference between the approximated boundary
and the exact boundary is δ. Thus, the approximated interval is
smaller than the exact one by at most 2δ. The time complexity
is O(n

3

δ ) since it calls the Hungarian method (O(n3)) at most
b 1δ c times.

Algorithm 2 HeuristicSA
Input: n × n matrices M and P that consist of µij and CVaRλ,ij ,
respectively. A risk preference α0 and the approximation parameter δ.
Output: An approximation interval [a′, b′] of α and the optimal assignment
X− in that interval.
1 α = α0

2 a− = b− = α

3 C = αM+ (1− α)P
4 X− = HUNGARIAN(C)

5 while α− δ ≥ 0 //expand α downward by δ in each loop

6 α = α− δ
7 C = αM+ (1− α)P
8 X∗ = HUNGARIAN(C)

9 if X∗ == X−//if X∗ does not change with the new α

10 a′ = α //expand a′

11 else
12 break //X∗ changed, stop downward expansion

13 end if
14 end while
15 α = α0

16 while α+ δ ≤ 1 //expand α upward by δ in each loop

17 α = α+ δ

18 C = αM+ (1− α)P
19 X∗ = HUNGARIAN(C)

20 if X∗ == X−

21 b′ = α //expand b′

22 else
23 break //X∗ changed, stop upward expansion

24 end if
25 end while
26 return X−, a′, b′

C. Extension: finding optimal assignments for α ∈ [0, 1]

If a practitioner has doubts when choosing a value of α,
it is useful to see how the optimal assignment changes for
the entire range. It can be computed via sensitivity analysis
of optimal assignments with respect to α. This analysis can
be achieved via repeated calls to Alg. 1. The first iteration
finds an interval of an arbitrary α for its optimal assignment.
Then the next iteration finds another interval outside the initial
interval (i.e., choosing an arbitrary value of α outside the
interval already found). It finishes once all intervals in [0, 1]
are found. Since Alg. 1 finds the exact interval of α for an
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Fig. 4: An example progression of Alg. 3 (n = 4). In each iteration, the
algorithm finds a new interval (the thick horizontal bar) and its corresponding
optimal assignment. The algorithm improves the map of α in each iteration
and eventually finds the exact solution (Iteration 6).

optimal assignment, choosing any α outside the range gives a
new optimal assignment and its interval.

Although Alg. 1 gives exact intervals, it can be computa-
tionally intractable as the problem size increases. Thus, we
repeat Alg. 2 until all optimal assignments for all discrete
values of α have been explored. It may not find all optimal
assignments in the continuous space of α, but quickly give
valuable information for determining α.

Alg. 3 analyzes the sensitivity of optimal assignments with
respect to α using a modified version of Alg. 2 (a minor
modification is limiting the working range of to I instead of
the full range [0, 1]), and Fig. 4 gives an example use of the
algorithm. The algorithm begins with the initial unexplored
range of α (line 2). It runs until no range remains unexplored
or any of unexplored ranges is greater than δ. In each iteration,
one unexplored range is selected and removed from the queue
U (line 4). Then α is computed as the midpoint of the selected
range (line 5). The optimal assignment X∗i for that α and its
approximation interval Si is computed (lines 6–7). In Fig. 4,
the cross indicates α, and the horizontal bar represents the
interval. If the lower bound of the interval is larger than
the lower bound of the previously unexplored range (line 8),
a new unexplored range is inserted to the queue (line 9).
Lines 11–13 are for the upward expansion. For example,
[a′, b′] = [0.278, 0.512] in the first iteration in Fig. 4, so
U becomes {[0, 0.278), (0.512, 1]}. The time complexity is
O(n

3

δ2 ) since it calls Alg. 2 at most b 1δ c times.

D. Remarks

In the BiAP, only empirical methods exist to select α despite
its importance. The preceding sections have provided sufficient
conditions for problems where the particular value of α is
irrelevant. Secondly, they have presented methods that reduce
manual labor in exploring different risk preferences.

On the other hand, λ is another parameter that decides
the value of the scalarized cost as discussed in Sec. IV. In
this work, λ is fixed to a predetermined value (i.e., 95% or
99%) since the parameter has a clear interpretation. If the
determination of λ is not convinced, one could perform another
sensitivity analysis with respect to the value of λ that is briefly
described below.

Algorithm 3 α-hSA
Input: n × n matrices M and P that consist of µij and CVaRλ,ij ,
respectively. The approximation parameter δ.
Output: A set of optimal assignments X and their α-intervals S.
1 i = 0

2 U = {[0, 1]} //initialize the queue of unexplored α

3 while (U is not empty) || (any range in U is greater than δ)
4 I = DEQUEUE(U) //dequeue one unexplored range

5 α = MIN(I) +
MAX(I)−MIN(I)

2
//begin with the midpoint

//of an unexplored range

6 [X∗i , a
′, b′] = HEURISTICSA′(M,P, α, δ, I) //run Alg. 2

7 Si = [a′, b′] //the apx. interval of X∗i
8 if MIN(I) < a′

9 ENQUEUE(U, (MIN(I), a′)) //exclude searched range

10 end if
11 if MAX(I) > b′

12 ENQUEUE(U, (b′,MAX(I))) //exclude searched range

13 end if
14 increment i
15 end while
16 return X = {X∗0, · · ·X∗Π}, S = {S0, · · ·SΠ}

λ

α0

1

1

Assignment A

Assignment B

Assignment C

(a) A hypothetical mapping.

0 0.2 0.4 0.6 0.8 1
,

0

0.2

0.4

0.6

0.8

1

6

(b) A mapping from a small-
sized instance (n = 5).

Fig. 5: A hypothetical and an example mapping of optimal assignments on
the α-λ plane, which is analogous to the mapping with respect to α shown
in Fig. 4.

We know that (15) given a fixed value of λ forms a line in
the cost space while changing α. For all values of λ ∈ (0, 1),
one ends of the lines (when α = 1, which the CVaR term
has no contribution) reach to the same point in the cost space.
Changing both parameters produces a (hyper) surface unless P
in (15) is invariant (in this case, the cost still forms a line). The
shape of the surface, which could be nonlinear, is determined
by the cost distributions. The surface has a point that all
constituting lines (i.e., each line is formed when changing α
for each value of λ) join at, such as a cone.

Given a cost surface, we can use the standard or the
randomized analysis (RANDSA) proposed in [8] to compute
the regions of the optimal assignments on the surface. The
regions from an analysis correspond to the regions of optimal
assignments on the α-λ plane (Fig. 5), which is analogous to
the one-dimensional mapping with respect to α (Fig. 4).3

3Fig. 5(b) is not drawn by a sensitivity analysis but by changing two
parameters manually.
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VI. EXPERIMENTS

We examine four distinct types of experiments. First, we
generate random costs that simulate the situations with large
uncertainties. This experiment shows the validity of our for-
mulation of using the mean and CVaR than using scalar values
only. Next, we measure the performance of the algorithms
with random instances. Next, we examine two robot navigation
scenarios, giving a view of the sensitivity of a risk preference
in practical applications. First, we capture uncertainties in the
state of robots from a simulator using extended Kalman filter
(EKF) for localization. Second, we collect traveling times in
an urban area using the Google API [14], which provides a
traveling time between two points for a specific time in a day.
It is an instance of obtaining cost distributions from historical
data or measurements. From the data, we compute the mean
and CVaR of traveling times.

A. Assignment computation considering uncertainties
We run an experiment that shows the advantage of us-

ing the mean and CVaR than scalar values (e.g, mean) for
costs. Our formulation is adequate for uncertain situations,
so we set cost distributions to have nontrivial variances. The
probability distributions of costs are neither necessarily a
particular distribution nor identical. We only need to know
their density functions. Then the means and the CVaRs of those
distributions can be computed. For the computations of CVaRs,
the methods discussed in Sec. III-C can be used.We use normal
distributions4 for costs, where each cost has the mean and
standard deviation drawn from uniform distributions U(0, 10)
and U(0, 20), respectively (e.g., a normal cost distribution
N (5, 152)). We randomly generate an n×n matrix of normal
distributions and compute an optimal assignment based on both
the mean and CVaR (with α = 0.05, which is risk-averse).
For comparison, we compute another optimal assignment only
with the mean values. Then a cost matrix is sampled from the
matrix of normal distributions. We compare the cost sum of
the both assignments using 10,000 random matrices (n = 50
and λ = 0.95). Our formulation reduces 7.511% of the cost
sum (the standard deviation is 0.1578) compared to the case
of using the mean only. It shows that our formulation is able
to save costs using the richer information about uncertainties.

B. Random instances for performance evaluation
We randomly generate an n × n matrix of normal distri-

butions where the mean and variance of each distribution are
drawn from U(0, 1). The parameter is δ = 0.001 throughout
all experiments. The parameter δ can be adjusted considering
the time allowed and the desired degree of accuracy.

Fig. 6, and Tables I and II show the results from random
matrices. The running time (averaged over 20 repetitions)
of the standard method is prohibitive when n > 6. Up to
n = 6, the standard and the heuristic method use the same
problem instance for each repetition. For n > 6, we only run
the heuristic method. The results in Fig. 6(b) show that the
heuristic method is scalable for large instances.

4The CVaR of a normal distribution is −µ+ σ
λ
f(λ) for a pdf f(·).
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(b) Running time for n > 6.

Fig. 6: Running time of random instances. (a) The standard algorithm finding
the exact interval. (b) The heuristic method for larger instances.

TABLE I: Running time (sec) of Alg. 1 and 2 (20 repetitions).

(a) Running time up to n = 6. The running time of the standard algorithm for
n > 6 is prohibitive.

Alg. n 2 3 4 5 6

Standard Mean 0.09980 0.2030 1.724 27.59 487.7
Std. dev. 0.09450 0.03960 0.05320 2.046 85.19

Heuristic Mean 0.1465 0.2125 0.2479 0.3508 0.3961
Std. dev. 0.04642 0.06633 0.08662 0.09421 0.1079

(b) Running time of the heuristic algorithm.
n 10 20 30 40 50 60 70 80 90 100

Mean 0.6706 0.9870 1.244 1.440 1.505 1.688 2.292 2.561 3.103 4.026
Std. 0.2255 0.5324 0.8664 0.8682 0.9744 1.014 1.151 1.441 1.990 2.021

We measure the running time and the solution quality of
Alg. 3 for n = 10, · · · , 50 (Table II-a). This result is compared
to a basic method that runs the Hungarian method iteratively
from α = 0 to 1. The number of iterations is determined to
reach the same solution quality with Alg. 3 (i.e., α increments
by 0.0007). The solution quality (Table II-b) is measured by
the searched ranges over the full range of α. Notice that two
methods use the same instances.

Alg. 3 shows faster running times than the iterative method
while both methods produce high quality solutions. The al-
gorithm is supposed to run offline before operating robots,
so 15 sec for 50 robots is reasonable.5 The solution quality
decreases as n grows because the methods with large instances
call their subroutines (i.e., Alg. 2 and the Hungarian method)
frequently, where each call of a subroutine produces an error
at most 2δ.

C. Cost uncertainties from state estimation

We use a robot simulator [15] employing a state estimator
(EKF) to capture the uncertainties in robot poses so that costs
can be represented by distributions. We place five robots and
five tasks (Fig. 7(a)) where the mission is visiting the tasks by
the robots without duplicated assignments. Cost is traveling
time where the objective is to minimize the sum of traveling
times. We simplify that the robots move constantly at 1 m/s.
Also, we assume that the locations of the tasks are certain,
and the robots locally avoid collisions. For a robot-task pair,
the path length between the mean robot position and the task

5A system operator (or robots) determines a value of α before execution.
Or α may change at run-time by looking at the result in hand.
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TABLE II: Results of Alg. 3 and an iterative method (20 repetitions).

(a) Running time (sec).
n 10 20 30 40 50

Alg. 3 Mean 0.8717 2.532 5.061 9.073 15.51
Std. dev 0.1736 0.5523 0.8147 0.9947 1.474

Iterative Mean 1.221 3.523 6.946 12.23 20.40
method Std. dev 0.2579 0.7551 1.090 1.096 1.981

(b) Solution quality (%).
n 10 20 30 40 50

Alg. 3 Mean 99.37 98.81 98.35 97.71 96.74
Std. dev 0.1000 0.2300 0.2700 0.4900 0.4400

Iterative Mean 99.73 99.29 98.89 98.47 97.77
method Std. dev 0.0900 0.1800 0.2200 0.3000 0.2700
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3-sigTellipseTofTcovariance TaskRobot Path

(a) A snapshot from a robot simulator [15] with an example
assignment. The robots move to the tasks along the paths.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RiskBpreferenceB(alpha)

AssignmentBBAssignmentBA

(b) The result from Alg. 3. Two assignments and
their corresponding intervals are found.

Fig. 7: An experiment with cost distributions from a state estimator. (a) Cost
(traveling time) distributions are computed based on the path lengths and
the covariance matrices of the robot poses. (b) Using Alg. 3, the problem
of choosing α in the continuous space [0, 1] is converted to choosing one
assignment from the discrete set of assignments.

location, which is the mean of the path length distribution, can
be computed. The variance of the distribution is determined
by the outgoing direction from the current robot pose (i.e.,
σ2 = vTΣv where v is the vector representing the outgoing
direction of a path and Σ is the covariance matrix). From this
distance distribution, we calculate the cost (i.e., traveling time)
distribution by dividing the mean and the standard deviation
by the velocity. Repeating this for all n2 costs constructs a
matrix of distributions.

Fig. 7(b) shows the result from Alg. 3 where the input is the
matrix of cost distributions and δ = 0.001. Two assignments
and their corresponding intervals are found where Assignment
A is risk-averse than B. It shows that the determination of
α in the continuous space in [0, 1] is converted to choosing
one from the discrete set of two assignments, which is much
simpler than the original problem.

D. Cost uncertainties from historical data or measurements
We examine a practical transportation problem of self-

driving vehicles in a metropolitan area. We position five
vehicles and five tasks at arbitrary locations (Fig. 8). The
mission is visiting the task locations by the vehicles where the

Self-driving vehicle

Task

Assignment/path
Fig. 8: A transportation
problem in a metropolitan
area. The mission is visit-
ing the tasks by the vehi-
cles with the minimum sum
of traveling times. The trav-
eling times are distributed
owing to the varying traf-
fic conditions, so the scalar
cost representation is not
adequately rich.

traveling times vary depending on traffic conditions. We collect
traveling times using Google Directions API [14]. For each
pair of a vehicle and a task, 1,439 data points are collected,
which are the measurements at every one minute during a day.
Note that the path of a pair is the same for all data points,
which is marked as an arrow in Fig. 8. These data reflect the
traffic condition at the specific time in a day. Thus, the data
points are naturally distributed.

Instead of fitting probability density functions to the data,
we choose to use a nonparametric method to obtain the mean
and CVaR for each vehicle-task pair. We calculate the mean
from a set of data point for a pair. For the CVaR, we calculate
the mean of the highest 5% of the set (i.e., λ = 0.95). This
nonparametric method does not have the problem of imposing
an incorrect assumption about the distribution.

We run Alg. 3 with the matrix of means and CVaRs of trav-
eling times. The algorithm finds a unique optimal assignment
for any α ∈ [0, 1], which means that this problem belongs to
the class of risk preference independent. The reason is that
the CVaRs are proportional to the length of the paths, so the
optimal assignment does not change while α changes. Alg. 3
is able to decide whether a problem instance belongs to the
risk preference independent class.

VII. CONCLUSION

In this paper, we consider multi-robot task allocation under
uncertain costs. We use a cost representation incorporating
uncertainty and interdependency, via distributional models. We
provide conditions to show that the interdependencies among
costs do not exist between elements in an assignment. The rep-
resentation gives a new perspective on optimizing an allocation
subject to a risk preference, where uncertainty takes a role in
determining an optimal assignment. In addition, we show a
problem class where the position taken on risk has no effect
on the optimal assignment. For the problems where the risk
preference is important, we provide algorithms for analyzing
the sensitivity of an optimal assignment with respect to the
risk preference. This enables a better understanding of how to
determine the risk preference and its consequence. Further, we
would like to investigate individual risk preferences than the
homogeneous setting.
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