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Abstract—Navigation and localization problems are challenging
to solve when operating in ocean environments owing to inherent
environmental dynamics and severe limitations on communication
capabilities. This is compounded in coastal regions, precisely
where the majority of the phenomena of interest occur, and
the need for accurate navigation estimates is most critical.
Existing navigation and localization techniques rely either on
high-powered sensors (e.g., Doppler Velocity Loggers) resulting
in decreased deployment time, or dead-reckoning (compass and
IMU), with motion models resulting in poor navigational accuracy
due to unbounded sensor drift combined with large environmental
disturbances. Here we examine a low-cost, low-energy approach
to navigation and localization in near-shore (<100 km) environ-
ments by considering non-metric instantiations of maps.

Ocean navigation methods in the Marshall Islands up through
the last century relied upon knowledge of charts made of sticks,
shells, and engravings to aid seafarers in long sea voyages. These
charts hold a wealth of information about the ocean in a seemingly
simple representation of what we would call a map. In this paper,
we examine the utility of a non-metric map representation that
incorporates moving currents, wind directions, swell, and fluid-
dynamic properties of refraction and reflection — data regarding
the intrinsics of the ocean most germane where a geometric or
absolute reference frame becomes less obviously the appropriate
representation. We provide simulation results for both navigation
and localization problems, and propose a simple control law for
a practical navigation problem.

I. INTRODUCTION

Modern oceanic navigation relies heavily on GPS. However,
GPS requires connection to three satellites at minimum, the
signal of which can be unreliable for a myriad of reasons:
proximity to the north or south poles, attenuation from atmo-
spheric conditions, sensor malfunction, or active blocking by
human-caused RF interference. In pursuing the development of
navigational methods that do not rely on GPS, we investigated
the utility of historical forms of navigation coupled with
today’s technology.

Early ocean navigation methods in the Marshall Islands
relied upon knowledge of charts made of sticks, shells, and
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Fig. 1. A typical Marshallese Mattang stick chart used to help teach sailors
how to conceptualize the wave patterns around islands [1]. Line ab represents
the direction of the swell wave. The straight lines, e.g., line cd, divide the
space around the island into quadrants, and the curved lines, such as line ef,
represents the swell wave reflection off of the island.

engravings to aid seafarers in long sea voyages. These charts
hold a wealth of information about the ocean in a seemingly
simple representation. The representation contains information
that we would associate to a map. Ocean navigation was
treated via a heuristic, topological structure rather than a rigid,
metric construct. Today, the concept of a map—as most often
used in robotics—is a spatial abstraction to answer pairwise
distance queries, the typical ends being route-finding and plan-
ning for autonomous navigation. However, when considering
ocean navigation, it is obvious that navigation costs (and their
variances) are no longer simple functions well-characterized by
considerations of pure geometry, certainly not geometry fixed
to an external reference frame. Traditional maps affix dynamic
water-based phenomena to particular locations—we wish to re-
duce the ‘tyranny of place’ in its role as a unifying abstraction.
We are interested in a synergy of Marshallese-like intuitions
with metric maps to increase the autonomy of persistent and
long-range assets in the maritime environment. Specifically,
we are interested in combining representations that incorporate
moving currents, wind directions, swell, and fluid-dynamic
properties of refraction and reflection; the intrinsics of the
ocean where a geometric or absolute reference frame becomes



less obviously the appropriate representation. In this work, we
explore how modern tools (compass, IMU, and simple control
laws) can be used to perform accurate, persistent, long-distance
navigation for autonomous maritime vehicles. Specifically, we
use information from the wave spectrum to augment existing
methods (dead-reckoning) to improve low-power navigation
and localization.

II. BACKGROUND

A. Stick Charts
Stick charts have been of interest to Western anthropol-

ogists since they were discovered by American missionary
Gulick in 1862 [1], [2]. The stick charts served as an aid
in teaching Marshallese sailors how to navigate using the
wave patterns they experience while situated in a boat [3].
The combination of constructive and destructive interference
between the reflections and refractions of waves among the
Marshall Island chain provided a landmark-based roadmap
for accurate navigation to distant islands within the region.
The need for this type navigation in the Marshall islands
was partly driven by the low height of the islands (lack
of visual references/landmarks) and seasonal wind and wave
patterns (consistent tradewinds and predictable dominant swell
direction) [4]. Marshallese navigators used swell direction,
current direction, wind direction and the direction of sunrise
and sunset to aid in their navigation [5]. A Vaeakau-Taumako,
or wind compass, was used to determine wind direction [6].
The direction of the wind, the sunrise and the sunset were used
in tandem to give a sense of direction, similar in effect to a
magnetic compass [5]. The swell and current directions were
used to visualize the wave patterns [5].

There are three primary types of Marshallese stick charts;
the Mattang, the Meddo, and the Rebbelib [7]. The Mattang
(shown in Fig. 1) is an idealized chart, and the most widely
referenced and utilized, without any sense of scale or distance.
The primary purpose of this chart is to describe the way waves
interact around a given island or archipelago [8]. To interpret
the Mattang, shown in Fig. 1, imagine a single island at the
center of the chart. The short stick (line ab) represents the
direction of the incoming swell wave. This line ab is the only
non-symmetric part of this kind of stick chart. The straight
lines (e.g., cd) help to divide the region around the island
into quadrants and the curved sticks, e.g., line ef, represents
the waves reflected off of the island. The intersections between
the curved sticks and straight sticks (e.g., line cd) are locations
that a sailor should be able to sense based on the motion of
a boat in the waves [1]. The sailor would use their ability to
sense the motion of the waves to determine the direction of
the island from up to 80 km away [9], [10].

The Meddo and Rebbelib charts contain information about
wave patterns similar to the Mattang, but are generally specific
to a particular region, or specialized for a given season. The
Meddo generally focuses on a smaller region with seasonal
wave patterns noted around islands. The Rebbelib is a regional
map containing fewer details about wave patterns, but held
more information about the spatial relationship between is-
lands [1]; of the three types of charts, being more metric than
topological.

B. Wave Mechanics
Marshallese navigation relies heavily on the mechanics of

ocean waves. Ocean waves can be described by the 2D wave
equation

∂ 2u
∂ t2 = v2(

∂ 2u
∂x2 +

∂ 2u
∂y2 ). (1)

Here, u is the potential energy of the wave, v is the group
velocity of the wave, t is time, and x and y are two orthogonal
directions in the plane of the water.

Solutions to (1) usually take the form of sines and cosines,
and because the equation is a linear differential equation,
superpositions of solutions are also solutions. Equation (2) is
the general solution to (1), where A is the amplitude of the
wave, C is an offset value, λ is the wavelength, and ω is the
temporal angular frequency:

u(x,y, t) = Asin(
2π

λ
(x+ y)−ωt)+C. (2)

Variables A and C are both initial conditions, while λ and
ω are wave properties that define the speed of the wave,
see (3). These solutions to the 2D wave equation are subject
to boundary conditions such as Snell’s law, conservation of
energy, and the conservation of momentum:

v =
ωλ

2π
. (3)

Snell’s law, described by (4) and shown visually in Fig. 2,
describes how waves bend due to a change in speed. This is rel-
evant to water wave theory because, as the bathymetry of water
becomes shallower, the speed of the wave group decreases.
This decrease in speed causes the waves to bend and wrap
around an island. Snell’s law dictates that waves will always
collide perpendicularly to the island in the ideal case. The fact
that the water waves will always collide perpendicularly comes
from taking the limit as v2 goes to 0 in (4). As v2→ 0, θ2 must
also go to 0; this phenomenon is refraction.

v1

v2
=

sin(θ1)

sin(θ2)
=

λ1

λ2
. (4)

Equation (3) shows that wave speed is a function of both
temporal frequency and wavelength. A decrease in speed
implies either a decrease in temporal frequency or wavelength;
however, a decrease in temporal frequency would imply waves
would ‘stack up’ in time, because we do not see this phe-
nomenon occur we can then conclude that a decrease in speed
causes the wavelength to decrease (or we say they ‘stack up’
in space.)

Some of the waves slowed due to the shallow bathymetry
will, inevitably, collide with the shore. In an idealized model,
these collisions are assumed to be perfectly elastic meaning
that the momentum and the energy of the wave remains
constant. With these two constraints, the waves will reflect
back, returning in the direction from which they struck the
island. This type of reflection means that we can treat the island
as a point source of waves. The assumption that the island
looks and acts like a point source holds for large distances
from the island; when not in visible sight range of the island.



Fig. 2. Snell’s law describes how incoming waves will bend owing to a change
in speed. This change in speed occurs as the wave approaches shallower waters
surrounding an island.

III. COMPUTERIZED SIMULATION MODEL

For the purposes of testing modern technology to achieve
navigation and localization based on historical Marshalese
methods, we created a single-island, simulation environment.
The island is treated as a point source, and the swell waves are
treated as incoming planar waves. Reflections and refractions
are then just superimposed to model the wave interaction
around the island. Details of the simulated model appear in
the sections which follow.

A. Creating the Simulation Environment
A computerized model was created to determine what pa-

rameters are necessary for accurate navigation and localization.
The model was created in MATLAB using a relaxation differ-
ential equation solver. Equation (5) is the relaxation method
used where un is the new potential, u is the current potential,
up is the previous potential, i is the index in the x-direction
and j is the index in the y-direction. As this method relies
on the state of adjacent nodes, nodes at the edge cannot be
evaluated. Thus, the boundary at i = 1 (left side of the model
in Fig. 3) changes as a function of time based on a sinusoidal
input. This sinusoidal input creates a perfectly planar wave that
refracts and reflects off of an island placed at the center of the
model domain. The remaining three edge boundaries are all
held constant. The constant boundaries that are perpendicular
to the wavefronts (top and bottom in Fig. 3) remove energy
from the potential, u.

un(i, j) = 2un(i, j)−up(i, j)+
1
2

(
u(i+1, j)+u(i−1, j)

−4u(i, j)+u(i, j+1)

+u(i, j−1)
) (5)

Fig. 3. Depiction of model at steady state where a swell wave is generated
on the right hand side of the model, the swell wave is then refracted around
the island and reflected. This figure shows the edge effects near the top and
bottom of the model. The scale, on the right side of the figure, is relative
potential energy, u, in the wave where 1 is the intensity of the incoming swell
wave.

The steady state can be visualized in the snapshot in Fig. 3,
where the shows wave potential, u, is rendered as a function
of position, x across and y up, and time, t, or f (x,y, t) = u.
The model space is 700×700 nodes in the x and y directions,
with a temporal period of 16 time steps. Nodes with a distance
less than ten nodes away from the island were changed to be
less responsive to the states of adjacent nodes. This decrease
in responsiveness in spatial coordinates slows the movement
of the wave to model the refraction resulting from decreasing
water depth. In this case, we have assumed that the bathymetry
around the island decreases linearly. The change in speed
around the island models how refraction occurs around islands
due to changing bathymetry.

The top and bottom of the figure show drastic edge effects,
owning to all the edges nodes having a fixed height of zero.
(This boundary condition is a necessity of using a relaxation
differential equation solver.) However, as these effects are
confined to the edges of the model space, only the central
nodes within 70≤ x≤ 630 and 70≤ y≤ 630 were examined.

B. Analyzing the Simulated Model
Two methods were used to examine the simulated environ-

ment: 1) numeric partial derivatives, and 2) Fourier transforms
of the potential of the wave. These methods were performed
spatially and temporally and were chosen partially due to their
ease of measurement. Also, reports of the information that
Marshallese sailors are said to sense suggest that frequency,
amplitude, and associated energies are useful features. The
potential energy of the wave is easy to measure because, when
the depth of water is greater than the wavelength of the wave,
the potential energy is directly proportional to the height of
the wave.

Partial derivatives were found by connecting points on either
side of the point of interest, and taking the slope of the



Fig. 4. Visualization of the partial derivative of the potential, u, in the x
direction. The values of the partial derivative were then normalized between
0 and 1.

Fig. 5. Plot of the spatial Fourier transform, with a single high value at the
center of the model when the swell wave crosses the island.

line (see. (6)). These first-order partial derivatives were taken
with respect to x, y, and t. Figure 4 shows the value of the
partial derivative in the x direction of the potential function u.
The partials in the x and y directions were also represented
as a gradient magnitude acting at an angle in the xy plane.
The spatial partials represent how steep the wave is in a
given direction, while the temporal partial gives how quickly
the waves rise and fall at a specific point in space. These
parameters describe the motion of waves that Marshallese
navigators are said to have used/felt while navigating.

∂ f (x,y, t)
∂x

=
f (x+1,y, t)− f (x−1,y, t)

(x+1)− (x−1)
(6)

Two types of Fourier transforms were performed on the
model. The first was a spatial transform in both the x and y
directions. This was done to see if there was any information
encoded in the spatial frequency of the waves. The only infor-
mation found with this transformation was at those particular
times when the swell wave passes over the island (Fig. 5). The
temporal Fourier transform was performed at each node of the
model. Figure 6 shows that as distance to the island reduces,
the temporal frequency increases. This increase in frequency
is much higher when the distance is fewer than ten nodes.

Fig. 6. Absolute value of the Fast Fourier Transform (FFT) of the potential u.
The value of this FFT increases as one approaches the island. (The green dot
in the middle of the figure is an artifact of how the island’s node reflected
waves.)

IV. RESULTS

To navigate using wave patterns, one needs to be able to
connect wave parameters and the location of the island. Here
we employed supervised learning techniques to find such a
relation. Supervised learning, as a form of machine learning,
is used when the output is already known for a given data
set. Given the computer model output, we have a collection of
wave parameters at known locations relative to the island.

The two types of supervised learning are classification and
regression. Classification takes a numeric input and gives a
categorical output. The success of a classification machine is
measured with accuracy, i.e., what percentage of outputs did
the machine correctly label. While regression-type learning
takes an numeric input and gives a numeric output, the success
of which is measured with root mean squared error (RMSE),
or the average distance between the output and the known
value. Before supervised learning was used, the model space
was split into four differing regions around the island (Fig. 7).
This division into regions was done to mimic the symmetry
observed in the Mattang chart (Fig. 1).

A. Navigation

The first application learning is a classification task: to de-
termine which of the four regions a given observation occurred
in. The inputs features provided were: potential as a function
of time u(t), potential gradient as a function of time ∂u(t)

∂x
and ∂u(t)

∂y , the time rate change of potential ∂u(t)
∂ t and Fourier

transform of potential FFT(u). A parametric study of different
kernels was performed to see which would best correlate wave
parameters to region. The kernel with the highest accuracy
was a quadratic support vector machine (quadratic SVM), with
an accuracy of 98.6%. To build the predictor, 15% of the
available nodes (11.189 nodes per region) were selected from
each region. A quadratic SVM machine learning kernel was
then trained using five-fold cross validation with 15% of the



Fig. 7. For the purposes of learning, the spatial variables were divided into
four equal-sized regions with the island at the center at point (350,350), and
the 70 nodes around the edges removed to ignore the edge effects present in
the model. A single line of nodes between each region was left unassigned
and a total of 78323 nodes were in each region.

Fig. 8. Accuracy of the trained classifier: 15% of the available nodes (11.189
nodes per region) were selected from each region. A quadratic SVM machine
learning kernel was then trained using five-fold cross validation with a 15%
of the data held for validation.

data held out for final validation. Figure 8 shows the accuracy
and error computed for each region.

The learned classifier was able to accurately determine
which region around the island contained a given observation.
An investigation of the errors indicates that they occurred
specifically on the artificially inserted boundaries between the
regions; areas where an observation could easily be in either
of the two regions. This suggests that one could navigate to
the island by associating each region to a direction to travel: a
simple bang-bang controller. If in region one (green) go in
the direction of the swell wave, if in region 2 (blue) turn
left and go orthogonal to the swell wave, if in region 3 (red)
go against the swell wave and if in region 4 (magenta) turn
right and go orthogonal to the swell wave. In the event that
an observation places you on a boundary, apply one of the

Fig. 9. True response versus predicted response for the regressor trained
to determine the distance in the x direction to the island while in region 1.
Ideally these two values should be equal at all times. This helps to show how
the trained machine has greater difficulty locating the island when the observer
is further from the island.

aforementioned controls for either of the two boundaries at
random and reestimate at the next time epoch. Following these
rules and re-evaluating at regular intervals will eventually get
you to visible sight of the island, where human navigation
or other forms of navigation (e.g., vision-aided) could take
over. This form of navigation might mimic to a degree, how
the Marshallese sailors would sense the interaction between
the swell and reflected wave and follow the interaction to the
island.

B. Localization
For each region two regression machines were trained. One

machine was responsible for finding the distance to the island
in the x direction and the other machine was responsible
for finding the distance in the y direction. Similarly to the
classification case, a parametric study was preformed to see
which kernel was best able to determine the island’s location,
because there were multiple machines being trained, each one
was given its own parametric study. For all studies, it was
found that a Matern 5

2 Gaussian Process Regression (Matern-
GPR) had the lowest error for all regions and directions with
an average RMSE of 40 nodes.

The RMSE for each of the trained machines are shown in
Fig. 10. The RMSE for each of the machines vary widely and
are larger than desired with and average RMSE of 40 nodes.
An error greater than ten implies we would not be able to
navigate to the island within sight range. Regions 1 and 3 both
have a smaller error predicting the x direction while regions 2
and 4 had a smaller error in the y direction.

For further examination, a new set of regressors were trained
with the assumption that the swell wave could be parsed/sensed



Fig. 10. Localization via learned regressor: Each bar shows the average error
of a trained predictor when estimating the location of the island with respect
to an observer in a known region. The green bars are for region 1, blue in
region 2, red in region 3 and magenta in region 4.

Fig. 11. Localization via learned regressor after swell subtraction: Each bar
shows the average error in predicting the location of the island (relative to an
observer) when the swell wave was removed. The green bars are for region
1, blue in region 2, red in region 3 and magenta in region 4.

and removed from the overall wave signal. This was done to
examine if the presence of the swell wave increased the RMSE
in the trained machines. Figure 11 shows that when the swell
wave is removed, the error drops significantly to an average
RMSE of 5 nodes. Further exploration of the data is required
here to understand why the error reduction was so dramatic
without the swell, and if it is practical to be able to remove the
swell component when performing this in situ with humans or
robots at sea.

V. CONCLUSION AND FUTURE WORK

Regressors trained via supervised learning show that it is
possible to determine the location of an island assuming that
the reflected wave can be differentiated from the swell wave.
Knowing the location of the island might be used in tandem
with dead reckoning to globally localize your location.

We have designed a scale model boat (see Fig. 12), and
integrated a small CPU and off-the-shelf sensors (compass,
IMU, etc.) to begin in situ testing. The scaling for the boat was
done using Buckingham’s Pi Theorem, keeping a geometric
similarity between oceanic conditions in the Marshall islands
and values achievable with a wave flume. The geometric
similarity assures that the water wave motion in the model
simulates a larger device in the ocean. Initial experiments will

Fig. 12. Our 3D printed model of boat for collection of wave information.

use the scale-model boat in a wave flume. The goal of these
experiments will be to see if a single IMU will be able to
sense the wave parameters seen in the model analysis in a way
that would allow the machine learning methods to accurately
determine the direction of land.
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