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Abstract

Inter-vehicle docking is the problem of coordinating multiple robots to actively form and
maintain physical contact. It is an important capability for Autonomous Surface Vehicles (ASV)
and is an essential part of a wide class of missions. This article considers one such mission: the
emergency response and environmental protection problem of containing a floating pollutant.
We propose a solution in which multiple robots autonomously navigate so as to surround the
surface matter. Before doing so, the robots dock with one another in order to secure specialized
attachments designed to ensnare the contaminant. We describe the prototypical physical robot
system developed to perform this task, and we detail the system architecture, sensing and
computational hardware, control system, and visual processing pipeline.

While employing multiple ASVs maximizes spatial reconfigurability, it depends on the inter-
robot docking capabilities being particularly reliable. But achieving robust docking is a sig-
nificant technical challenge because the water continually induces external disturbances on the
control system. These disturbances are non-stationary and almost impossible to predict for
unknown environments. Our system relies primarily on visual servoing within a control frame-
work in which a variety of sensors are fused. Accurate disturbance measurements are obtained
through traditional sensor modeling and filtering techniques. As the environment is a priori
unknown, varies from trial to trial, and has proven difficult to model, we apply a model-free
reinforcement learning algorithm, SARSA(λ), along with specialized initial conditions which
ensure stable operation, and an exploration guidance approach that increases the speed of con-
vergence. We adopt a two-loop control scheme for visual servoing to successfully make use
of feature descriptors with various (and variable) computational times. We demonstrate this
approach to the docking problem with autonomous ground vehicles and autonomous surface
vehicles. The results from several situations are compared, showing that disturbance rejection
coupled with SARSA(λ) is an effective approach.
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1 Introduction and Motivation

Since the burgeoning of the research area in the 1990’s, Autonomous Surface Vehicles (ASVs) have
been studied extensively for use in industry, military, and scientific research settings [Bertram, 2008].
Recent examples of missions for surface vehicles capable of autonomous navigation and way-point
following include work in environmental monitoring [Wang et al., 2009], investigation of hazardous
environments [Murphy et al., 2011], and rescue applications [Clauss et al., 2009]. This paper
describes a containment problem which we believe to be a unique, novel, and important application
domain for ASVs. Two recent catastrophic events brought this area to light and motivated the
present research:

Hebei Spirit oil spill On December 9th 2007, a collision between a barge and heavy tanker Hebei
Spirit led to spill of crude oil off the coast of Taean, Chungcheonam Province, South Korea. A
total of 10 800 tonnes of oil were spilled devastating coastal farms, fisheries, natural wetland
areas, and public beaches [BBC, 2007]. In all, a total of more than one million volunteers
assisted in the clean-up effort. The clean-up was complicated by abnormal weather in the
critical, early stages of disaster recovery effort. This meant that the oil’s spread along the
west coast of the country took longer halt than otherwise would have been the case.

Deepwater Horizon oil spill An explosion on the Deepwater Horizon drilling platform killed 11
men and injured 17 others on April 20th 2010. The uncapped sea-floor oil well resulted in be-
tween 492 000 and 627 000 tonnes of oil spilling into the Gulf of Mexico [NOAA, 2010]. During
the four months following the explosion a variety of short-term efforts were attempted in order
to cap the well. (Although sometimes referred to as the 2010 oil spill, there were actually
eight other oil spills that same year; the total number of oil spill disasters is astonishing.)

In the days immediately following both disasters, oil containment booms were deployed to corral
the floating oil. These booms are passive devices, usually consisting of multiple connected inflatable
sections, which float on the water surface in order to form a physical barrier to contain floating con-
taminants. Although the booms are not without limitations (cf., Grier [2010] and Doerffer [1992]),
it has been claimed that deployment logistics—rather than quantity of boom—was the primary
limiting factor in the Deepwater Horizon spill containment effort [Sullivan, 2010]. In addition to
the established and documented best practices (see Chapter 6 of Fingas and Charles [2000]), the
importance of such containment booms has spurred academic interest from researchers (e.g., Fang
and Wong [2001], and Fang and Wong [2006]).

This paper describes a prototypical multi-robot system for deploying floating containment
booms. We propose a distributed approach in which several ASVs incrementally form a chain
around the floating contaminant. Figure 1 is an artist’s rendering of the concept. Individual
robotic units are deployed in parallel and, potentially, in a number of different ways (e.g., either
launched from a single vessel, thrown from several separate manned craft, released from the shore,
or a combination of these options). Irrespective of their initial arrangement, the self-propelled
units maneuver in order to position themselves for maximum advantage. Next, a process of chain
construction occurs. Pairs of robots dock with one another in an operation that causes their boom
connectors to interlock. As the units move apart, the connecting booms unreel to their full length.
This chain formation process starts from one end and proceeds incrementally until the whole chain
has been formed. The units, physically coupled in this way, maintain the chain and their propulsion
still permits collective control of the barrier.
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Effective distributed deployment of floating booms in the manner envisioned depends critically
on the inter-robot (or inter-vehicle) docking capability. In this work we demonstrate that robust
autonomous docking between two ASVs via visual servoing is indeed practicable, but that several
techniques must be integrated to address issues that arise due to image noise, dynamic and un-
predictable environments, and the distinct timescales of different feature detectors and the control
loop. Feature-independent Image-Based Visual Servoing (IBVS) is employed to effectively estimate
the image Jacobian matrix and the target robot’s pose while maximizing generality. Robustly ob-
taining this information, including the target’s distance, permits local path planning to best pick
the most effective docking direction and can also be employed for following behaviors.

The disturbances caused by wind, wave, and current represent a significant challenge to precise
control of the small sized ASVs considered here. To address this, our approach employs two-loop
control system with a disturbance rejection method operating within the inner loop. However, one
issue is that these external disturbances occur more or less continually and are non-stationary so
that prediction remains challenging, especially if the environment is not known beforehand. We
employ an on-line reinforcement learning method to adapt to the unknown environment, account
for variable conditions, and achieve reliable performance. To achieve adequate operational perfor-
mance, we employ initial conditions which give satisfactory starting performance and introduce an
action exploration strategy that is directed in order to speed convergence.

The controller scheme and methods proposed in this paper are applied to real vehicles. The
docking approach is validated through demonstrations with both Autonomous Ground Vehicles
(AGVs) and ASVs. The AGVs represent a form of control-case because they permit evaluation
without water induced disturbances and they allow random noise to be introduced artificially in a
parameterizable way. The ASVs employed were custom designed prototypes for the containment
boom scenario and illustrate the effectiveness of the robust visual servoing approach in unpre-
dictable, dynamic environments, with thrusters for actuation, and under more realistic marine
conditions. But the docking capabilities and the methods introduced for robust disturbance rejec-
tion are applicable more widely than the deployment and containment scenario we consider here.
Both are important for many of the task domains already mentioned. Moreover, in the coming
years, additional focus will likely be placed on problems which involve tightly coupled coordination,
and the importance of these techniques is expected to grow.

Figure 1: An artist’s depiction of the robotic containment boom. Multiple individual robots dock
with one another in order to incrementally unfurl the inflatable boom in order to surround and
corral the floating pollutant.
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The remainder of this paper is organized as follows: Section 2 describes the relationship between
this and existing work. Section 3 briefly describes the physical and logical system architecture.
Section 4 explains the integrated visual servoing and control scheme. The experiments in Section 5
demonstrate the performance with both ASV and AGV robots; the data are discussed in that
section too. The final section, Section 6, concludes the paper.

2 Related Work

We are not aware of any prior work that considers autonomous deployment of booms, surface
pollutant containment, or incremental formation of tethered chains by surface vehicles. The concept
of distributed oil clean-up was recently proposed by Kakalis and Ventikos [2008]; while that work
includes conceptual pictures of “vacuum cleaner” like robots for collecting oil; we are not able
to assess the viability of that concept for use with physical robots. The approach we propose is
based on current oil spill management practice and is applicable to general containment of a variety
of matter (e.g., floating ice). Additionally, it can be sensible to deploy these boom devices as a
precautionary measure: their long-term effectiveness does not depend on significant movement or
ensuring wide-spread coverage.

The broad advantages that multi-robot systems have over single robot systems are directly ap-
plicable to ASVs: viz. robustness through redundancy, performance speed-up through parallelism,
expanded collective capability through synergy, and ability to exploit the distributed nature in-
herent to certain tasks [Parker, 2008]. But within the literature there remain comparatively few
demonstrations of multiple autonomous surface platforms. By way of examples: Benjamin et
al. [2006] implement and demonstrate US Coast Guard mandated rules for prevention of collisions,
and evaluate their implementation on multiple ASVs. Curcio et al. [2005] developed the SCOUT
(Surface Craft for Undersea and Oceanographic Testing) surface vehicle as a platform for multiple
vehicle operations algorithm testing, including underwater craft. The majority of multi-ASV work
does not consider tightly-coupled coordination tasks where physical contact is necessary.

Within the broader autonomous marine vehicle literature, docking is an important instance in
which a direct physical coupling is sought. Often underwater craft that explore the ocean floor,
for example, may only recharge their batteries and transmit data when docked—either to a seabed
station or an ASV. Murarka et al. [2009] and Park et al. [2009] both use structured light for docking
their Autonomous Underwater Vehicle (AUV). The light serves as a reference signal which helps
the robots approach the docking target. This is a particularly shrewd choice of positioning signal
because the water’s filtering and attenuation can reduce the effect of external elements such as
sunlight, illumination changes, and artificial light, which cause interference on the surface. The
present study employs vision-based methods for inter-robot docking; we focus on the relationship
to work employing such methods in the remainder of this section. It is worth noting, however, that
alternative sensors have been used for docking (e.g., Kim et al. [2009] use RF signals), but this
leads to a new set of challenges.

Docking via Visual Servoing

Vision-based systems have been previously been shown to be effective for docking an ASV with
an AUV. Martins et al. [2007] and Dunbabin et al. [2008] are good examples of coordinated ASV
to AUV docking. That work makes creative use of their particular hardware: a vision camera is
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fixed to the roof of the ASV and special angles are used to maximize detection of the AUV’s salient
color. In this work, we are unable to use the same configuration since the robots we employ are
homogeneous and the focus on inter-robot docking means that no particular robot is privileged
so as to form a special drifting target. The solution employed in the present study—detailed in
the following section—is to employ visual feature descriptors and feature matching. This proved
to be effective at accurately determining the distance to a target object and it was less sensitive
to lighting changes and more robust to scale variance than color segmentation (see Section 5.1).
The majority of examples in the literature that successfully employ black and white, and color
segmentation methods are for submerged operations (e.g., underwater line-following [Bibuli et al.,
2008; El-Fakdi and Carreras, 2008]). The fundamental trade-off is that feature-based techniques
are more computationally expensive; the control architecture we employ, however, overcomes the
latency which arises from the slower detection and tracking.

Researchers attempting to perform visual servoing must address the issues of measurement noise,
the limited computational time, and imperfect system models. There are two broad types of ap-
proach: Position-Based Visual Servoing (PBVS) and Image-Based Visual Servoing (IBVS) [Hutchin-
son et al., 1996]. Generally speaking, PBVS is robust to image noise but object information is re-
quired to predict the object pose; PBVS is particularly sensitive to camera calibration and usually
requires a sophisticated model of the target (e.g., a CAD model). In contrast, IBVS does away
with those requirements. It is largely robust to camera calibration error, but the image Jacobian
matrix depends on both the camera and the 3-D coordinates of the feature points. (Section 4.4
describes how these elements are computed in the IBVS method we use.) SIFT [Lowe, 2004] based
trackers, like those employed in this work, have been used in dynamic multi-vehicle settings be-
fore. Most closely related is the system that Giesbrecht et al. [2009] developed as a step toward
autonomous ground vehicle conveys. They address the problem of autonomously following a leader
and demonstrate this with on- and off-road vehicles. They face the same problem of comparatively
slow feature tracking, recognizing that obtaining data at the proper frequency is critical for the
system to work well. Their approach is to reduced the search space so as to save computational
time. Instead, this work uses an enhanced SIFT detector within a two-loop control architecture for
controlling the ASV (see Section 4.2).

Modeling Environmental Disturbances via Reinforcement Learning

Prior work on ASV-to-AUV docking presumes that the latter is drifting on the water, and the
water itself is assumed to be calm. In this work we are concerned with docking quickly with
both a poor a priori understanding of the environment and potentially changing ocean conditions.
Thus, the proposed method applies an on-line learning approach to the ASV control problem. We
illustrate how tabular SARSA(λ) [Sutton and Barto, 1998] will achieved convergence. Important
related work is the visual servoing control method of Martinez-Marin and Duckett [2005], who apply
IBVS and reinforcement learning in a grasp positioning scenario. We believe Gaskett et al. [1999],
who employed Q-learning and a neural network, were the first to apply reinforcement learning to
AUVs. In contrast to our model-free approach, Pereira et al. [2008] employ a simplified model of
ASV dynamics in order to perform station keeping with an under-actuated system. Fahimi [2007]
develops sliding-mode control for ASVs, but relies of assuming disturbances are always of some
maximum amplitude. A learned model, like that which we employ, will likely result in better
performance in a particular environment because the model can adapt to the structure of that
environment by learning that structure in situ.
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Figure 2: Physical and logical architecture of the overall containment boom deployment system.

3 Physical System Architecture

We describe the overall architecture of an approach we envision for autonomous containment boom
deployment. Physically, the system consists of a single monitoring station and multiple autonomous
robots as shown in Figure 2. The monitoring station receives information about the spill config-
uration and transmits target positions to each of the robots via wireless communication. These
way-points (in GPS coordinates) are used both during initial positioning before the chain has been
formed and after booms are deployed to actively corral the floating oil. Each robot is autonomous,
locally filtering and fusing several sensors, estimating properties of the environment, and capable
of docking with other units without any external low-level guidance.

Each robot periodically transmits its estimated location back to the monitoring station so as to
update the visual display; this information is used by the operator to assess the navigation progress
of each unit with respect to the oil. The window in Figure 2 shows a simple interface in which
a region is selected with the mouse via rubber-band-like process. Target way-point locations are
computed by dividing the circumference appropriately. Once satisfied with the relative position of
robots and contaminant, the operator sends a chain formation command, which kicks off a process
of docking around the perimeter. The robots dock in the following manner. An initially selected
robot docks with the robot nearest to it along the boundary. Those two robots separate and the
boom unfurls between them. Those two robots then hold their positions in order to become docking
targets for their neighboring robots. The process continues until all the booms have been unfurled.
Each robot adapts to its local environment, predicts its own position, and maintains its own status.
When the docking operation is triggered, the robot which still has no boom unrolled is given only
the GPS coordinate of the other unit. Although the error in this coordinate is too large for docking
directly, it is precise enough to allow the robot to get the target within its visual field of view.
Visual servoing is used to obtain the precision necessary to complete the docking procedure.

The monitoring station manages information about the containment area but relies on each
robot to autonomously perform its docking. Apart from the high-level directives, the station
serves to keep track of the overall scenario and watch the development of the chain. This paper
demonstrates that this architecture is logical and feasible because the robots can receive high-level
docking commands and autonomously perform the necessary low-level controls to carry them out.
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Figure 3: Autonomous Surface Vehicle designed as a prototype system in order to assess the
feasibility of a robotic containment boom deployment. These units are the primary platform used
for implementation, development and validation of the robust visual servoing and docking behaviors.

Consequently, the bulk of the paper concentrates on visual servoing in order to dock in dynamic,
unpredictable environments.

3.1 Prototype Hardware Units

The prototype ASV we developed is shown in Figure 3. This vehicle is the principal experimental
platform for the development and testing of robust docking. Each ASV has three parts: an upper
body, a middle body and lower body. Upper body includes the main CPU, sensor board, and
power manager. The middle body add buoyancy to ensure that the ASV stays afloat. The lower
body houses the motor driver and battery; these heavy components ensure the proper center of
gravity. The single camera is positioned at the midpoint of the front side pointing forward. The
two thrusters are positioned so that when both have equal power the unit moves forward, i.e., in

Figure 4: Test navigation of a single unit on a calm day.
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the same direction as the camera is pointing. Figure 4 shows the wake pattern of the device while
navigating. The hardware provides a selection of sensors which are ultimately fused in software to
order deal with unpredictable dynamic environments; environmental state estimation is managed by
two micro-controllers (Atmega128, TMS320F28335) which mange sensors at a variety of sampling
rates (a) GPS (66ch, DGPS): 500ms, (b) Compass (HMC6352, 2-axis): 250ms, (c) IMU (ADIS16350
with 3-axis accelerometer and gyro): 100µs. The main CPU, an Intel core 2 duo at 1.8GHz, performs
the vision processing and manages high-level control.

Figure 5: Each robot’s controller software consists of two modules: the Control Logic Module and
the Vision Processing Module. The two switches labelled A and B permit separate activation and
deactivation of the modules. A sequence of switch settings allows robust docking with neighbor
robots to be performed.

Figure 6: The Target Detection procedure within the Vision Processing Module follows a three
stage pipeline, with each stage performed sequentially: (1) keypoints are extracted from the current
image, (2) feature descriptors are computed for each keypoint, and (3) a match to the previous image
is found and outliers discarded.
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4 Integrated Visual Servoing Control Scheme

Each robot runs controller software that is cleanly decomposed into two modules. Figure 5 shows
the two modules: the Control Logic Module, the Vision Processing Module, and their interactions.
Three separate modes of behavior are realized by activating the modules in different ways via the
two switches labelled A and B. The Control Logic Module is the primary procedure for controlling
navigation of the ASV. Its internal logic and novel integration of several components are described
in Section 4.2. The Visual Processing Module is responsible detecting and tracking other robots.

Initially the robot attempts to navigate toward the target as assigned to it by the monitoring
station. The Control Logic Module will operate in a global positioning mode, wherein input from
the Vision Processing Module is unnecessary. Uncertainty due to imprecision in the GPS signal
means that the robot cannot dock with that position information alone. Consequently, Vision
Processing Module must detect a target robot. After successful detection, the Vision Processing
Module provides tracking information to the Control Logic Module, which it uses to navigate toward
the target. While doing this, other aspects of the control system (like disturbance compensation,
for example) are operating concurrently.

4.1 The Vision Processing Module

The Vision Processing Module operates first in Target Detection mode and then transitions to the
Target Tracking mode during the final phase of tightly coupled docking. Figure 6 shows the se-
quential pipeline involving three main procedures for the detection mode of operation: (1) keypoint
extraction; (2) feature descriptor computation, and (3) matching to a reference along with outlier
removal. Particular experiences and implementation choices are described for each of these next,
along with the details of operation within the tracking mode.

Keypoint Extraction Given an input frame from the camera, the first operation is to extract
features for subsequent processing. Three requirements must be met: we must be able to
identify and extract features reliably, they must persist (or reoccur) across frames at least for
some short time-window, and processing must be efficient. These requirements become most
important when addressing the challenge of target detection under conditions arising from
simultaneous target and camera motion in a dynamic environment. We implemented Rosen
and Drummond’s FAST keypoint extractor. As shown in Rosten and Drummond [2006], the
method has the benefit of computational efficiency which enables high-speed corner detection.

Feature Descriptors The keypoints identified in the preceding step are particular points in the
input image. The property of invariance to changes in scale and orientation ensures that
similar views of the same scene will produce overlapping keypoint sets. A richer descriptor
for each keypoint must be computed in order to reliably associate the points between frames.
Ideal feature descriptors will be maximally distinctive while being invariant to artefacts aris-
ing from the camera and environment. In this work, robustness to changes in illumination
turned out to be especially important. We employed SIFT [Lowe, 2004] descriptors, which are
invariant to image translation, scaling and rotation, and partially invariant to illumination
changes and robust to local geometric distortion.

Matching As a final process of target detection, a reference image’s feature points and an input
frame’s feature points must be correctly matched. This process is necessary in order to
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estimate the target object’s position and to remove outliers. Iterative matching for each
point, while capable of finding the best possible matching, is computationally costly and
would adversely affect the performance of the entire vision pipeline. Computational savings
result from selecting PROSAC [Ondřej Chum and Jiri Matas, 2005] over RANSAC (Random
Sample Consensus) [Fischler and Bolles, 1981]. Significant speed results from exploiting a
linear ordering structure for the matching, which requires assumptions that are reasonably
met in operation (a similarity measure must predict correctness of a match better than random
guessing).

Tracking The detection mode seeks to recognize, identify, and locate the target object by process-
ing a single image in isolation. Since the detection mode considers all the pixels within the
image, significant processing cost (in terms of time) is incurred, which motivated our devel-
opment of the tracking module. The tracking module is designed to exploit spatio-temporal
locality: once the target object has been detected, the next target position is likely to be near
the previous one. The system architecture includes a mechanism to permit smooth transition
from detection mode to tracking mode and back again. Figure 5 shows this with the symbol
marked Switch A; it obeys the following logic: when the target detection module succeeds in
determining the target object’s position, that information is provided to the tracking code for
processing subsequent frames; if the target object is missed in target tracking mode, the vision
processing is switched back to detection behavior as and when needed. Thus, the tracking
mode serves to complement the detection mode. Our implementation uses a simple Mean-
Shift Matching [Comaniciu et al., 2002] to track a target object. This method uses the color
histogram of the object in the previous image to find the target object near the object’s past
position. The simplicity of the method made it an attractive candidate for implementation
and it proved to be adequate for the salient orange robots.

4.2 The Control Logic Module

The Control Logic Module is responsible for controlling the navigation of the ASV and is composed
of the most critical elements of the control system. Figure 7 gives a graphical representation the
controller. The figure shows three control loops: (1) the inner control loop, which is always active;
(2) outer control loop-A, which is responsible for visual servo control and only active during that
mode of operation ; and (3) outer control loop-B, which is the global positioning control logic and
is active while the robot is approaching the target from afar. Since exactly two control loops are
active at any one time, we term this a two-loop switching architecture. The two control loops are
switched when the robot is ready for docking.

The use of two loops permits the control system to minimize latency even though the time
required for processing vision data can be significant. The visual servo control (marked as “outer
control loop-A” reproduced in Figure 7) detects and recognizes a target objects and estimates an
object’s pose. It does this at comparatively slow speeds considering the dynamics of the robot.
However, simultaneously, the tracker in the inner control loop (“inner control loop” in Figure 7)
tracks the object at a high speed. A primary objective of the architecture was to abstract away the
particular choice of feature tracker and detector. This abstraction is only possible when the other
responses of the system are not affected. Although not a perfectly clean abstraction, our approach
enlarges the visual servo system’s feature independence and does permit multiple features to be
used. The result is that the logic ultimately improves docking the target object because we were
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Figure 7: A block diagrammatic overview of the Control Logic Module: three control loops are
visible. The inner loop is common and always active, but only one of the outer control loops is ever
active at one time.

able to explore various feature choices.
On the other hand, in global positioning mode (marked as “outer control loop-B” in Figure 7) is

applicable when approaching a target object from afar. Global position from the DGPS (Differential
Global Positioning System) sensor has an uncertainty of almost ±3m in real environments. So the
control logic also helps in approaching the target object. The target’s position is communicated
from main station, and the outer control loop computes heading updates only at the GPS sampling
frequency (every 0.5s). The inner control loop (“inner control loop” in Figure 7) is able to apply
disturbance rejection (along with reinforcement learning, as is explained at the next subsection)
concurrently.

Thus, the inner control loop ensures accurate docking and way-point following. It manages
to do this because of the box labelled “Local Position” in the block diagram, which includes a
disturbance rejection mechanism (Compensator) to help overcome environmental dynamics. The
“Compensator” employs high-frequency IMU data in order to address the effects of environmental
disturbances, rather than relying on visual or GPS-based sensory feedback.

4.3 Disturbance Rejection

Figure 7 shows the inner control loop with a block labelled “compensator” which reduces the
effect of disturbances in an effort to maximize the range of circumstances in which the system
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may robustly navigate. Navigation behavior is implemented through a combination of a traditional
control scheme and Reinforcement Learning. The traditional control scheme involves a filtering
approach that is similar to that employed by Caccia et al. [2008]: we apply a state-space model of
the Inertial Measurement Unit (IMU) and Kalman filter to estimate accelerations and deal with
measurements’ noise characteristics since the measured accelerations contain errors such as drift.
Even in relatively benign environments, prior work using Image-Based Visual Servoing for tracking
(e.g., Aull [2009]) has emphasized the need for filtering of target locations. Ultimately, the approach
we employ relies on the use of linear accelerations to measure environmental disturbances.

In order to measure disturbance exerted by dynamic environments, a low-cost, strap-down,
solid-state IMU is used in our system. The IMU consists of three accelerometers and three angular
rate gyros. The three accelerometers measure linear accelerations in three perpendicular directions
and three gyros measure angular velocities in the same directions. The gyros are used to estimate
the robot’s attitude and the estimated attitude is applied to compensate for the local gravity in
the measured accelerations.

The local gravity can be calculated if its initial value or the robot’s initial orientation is known.
In case of the former, using the given initial gravity and rotational angles obtained by the integration
of the angular velocities, the tri-axial components of the local gravity can be computed. In the
latter case, the attitude of the robot system is dependent on the initial orientation because the
angular rates from the gyros are integrated to get the orientation angles of the robot system.
Thus, the initial orientation of the robot system is needed to estimate accelerations from dynamic
environments more correctly. Therefore, we adopt the former approach in our system.

4.3.1 Inertial Measurement Unit Model

To define the IMU model for detecting and hence rejecting disturbances, we choose a state vector

x =
[
xx

T xy
T xz

T
]T

(1)

where xm = [vm am bam ωm bωm]T is a state vector and vm, am, bam, ωm and bωm are
velocity, acceleration, acceleration bias, angular velocity, and angular velocity bias of the robot
with respect to the m-axis, where m ∈ {x, y, z}.

Using the state vector defined above, state-space equations for the IMU are given by [Farrel
and Barth, 1998; Grewal et al., 1991]:

x(k + 1) = x(k) + Gu(k) + n(k), (2)

y(k) = Hx(k) + v(k). (3)

(The details of these equations appear in Appendix A.)
In the above equations, we assume all the process noises are uncorrelated with one another, and

accelerations and angular velocities along x-, y-, and z-axes can be observed independently. In order
to overcome the biased and non-stationary behavior of the IMU and to estimate the magnitude
of errors, the bias terms, bam and bωm related to the accelerometers and gyros, are modeled as
undergoing a random walk and considered as states.

As the state-space equations show, the resulting process and measurement equations are all
linear, and the error states (bam and bωm) and their relevant true states (am and ωm) are coupled
only through the measurement equations but not process equations.
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The accelerations and angular velocities estimated from these equations are used to compute the
robot’s orientation and to estimate the environmental disturbances as measured by accelerations.
As the noise associated with the accelerometers and the gyros is spatially Gaussian and temporally
white, and the overall system equations are linear, in our approach we use Kalman filtering in order
to smooth noise.

4.3.2 IMU Kalman Filter

Kalman filtering [Welch and Bishop, 2006; Grewal and Andrews, 2001] is a Bayesian filtering
approach and the optimal (minimum variance) filter for linear discrete systems that consist of
difference equations like Equations (2) and (3).

Through Kalman filtering, the tri-axial accelerations and angular velocities are estimated. Then
rotational angles are obtained by integration of the estimated angular velocities are used to compute
three perpendicular components of the local gravity about the robot-attached coordinate frame.
These estimated accelerations are used in order to measure environmental disturbance.

4.3.3 Initial Gravity

For calculating tri-axial components of the local gravity about the robot-attached coordinate frame,
gravity at the robot’s initial attitude, which is called the initial gravity, is required. To do this,
we follow the idea of Joshi et al. [2010]. They assumed that if the robot initially has no external
forces on it other than gravity, then the measured accelerations are Gaussian distributed about
the constant force of gravity such that the mean direction of acceleration is an initial direction of
gravity:

g0 =
1

N

N∑
i=1

a(n) (4)

where g0 is the initial gravity, N is the number of measurements, and a(n) is the n-th acceleration
measurement vector.

4.4 Controller

This section deals with the block labelled “Controller” in Figure 7.

4.4.1 Traditional Controller

While the controller is receiving input from the camera, it requires a processing step to trans-
form the target position from image-based coordinates to robot heading coordinates. This step in
unnecessary for the other forms of input (e.g., from GPS).

ẋ = Lxvc, (5)

Lx =

[
−1

z 0 x
z xy −(1 + x2) y

0 −1
z

y
z 1 + y2 −xy −x

]
, (6)

v̇c = KL+
x

[
xc − xd
yc − yd

]
. (7)
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Equation (5) relates the image plane feature velocity ẋ to the fixed camera velocity vc. The
relationship between the two relies on Lx, the image Jacobian which is shown in Equation (6), where
z is the target object’s depth. Since feature distance is computed from vision information, the Lx

can be calculated directly from known variables. The image plane feature position is (xc, yc). The
desired feature position is (xd, yd). The traditional PID controller is constructed in Equation (7)
where L+

x is Pseudo-inverse of Lx.

4.4.2 Reinforcement Learning

A variety of different learning methods exist within the reinforcement learning literature. The
present task requirements dictate that we address a control problem without a complete prior
model of the environment dynamics. Two additional (and inter-related) constraints direct the
choice of method: firstly, the requirement for reasonable actuator controls from the very beginning,
and, secondly, a preference for rapid convergence. SARSA, named because it learns from the
variables abbreviated as (st, at, rt+1, st+1, at+1), is an algorithm which estimates a state-action–
value function (or Q-function) for a given policy. SARSA is a popular application of the temporal
difference approach to address control problems. The algorithm forms an intermediate method
between TD(0) and the Monte-Carlo method being both model-free and capable of boot-strapping.
Consideration of at+1 is what distinguishes SARSA from standard Q-Learning: the Q-values in the
former represent the values for the policy the learning agent follows including the consequences of
exploration, while the latter considers only the values from following a exploitation policy. Put
another way, in SARSA a policy describes the action selected in a particular state (st) with the
action performed in the next state (st+1) drawn from the same policy; thus, it is called an on-policy
method.

One advantage of SARSA is the ease with which it can be extended to allow eligibility traces
in the form of a method called SARSA(λ). An eligibility trace is additional information associated
with each Q-value which records the visits to the associated state. The eligibility trace does this
in a time-decaying manner (we employ the notation e(s, a) below for this information). The trace
value is interpreted as the degree to which a particular Q-value is suited for learning updates,
which means the temporal difference information can update many values rather than a single one.
Thus, SARSA(λ) has the advantage that learning time can be greatly accelerated over the standard
SARSA method.

In the implementation and evaluation described below, we have introduced a new action selec-
tion policy which augments a basic policy by imposing additional structure on the non-exploitative
actions. We term this “exploration guidance” because it uses the current Q-value maximum to
influence exploration choices. In particular, we found that the vast majority of exploratory actions
can be drawn from boundary conditions that are essentially useless because they ignore the struc-
ture already identified via the maximum Q-value. When appropriate initial conditions are used
(as described below) exploration guidance tempers the actions that are selected so that reasonable
control is achieved throughout the learning process. Essentially, the method enforces a bound on
the difference between the exploration and the exploitation actions, via a parameter σe. So doing
adds the additional requirement that there be a measure of difference between actions, which is
quite natural in our control context. The algorithm, from Sutton and Barto [1998], is shown in
Algorithm 1 along with the modifications that add exploration guidance. The pseudo-code shows
how an action selection based on the ε-greedy policy can use the σe guidance; treatment for ε-soft,
or softmax variations are analogous.
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Algorithm 1 SARSA(λ) with exploration guidance action selection.

Initialize Q(s, a) = H(s, a) and e(s, a) = 0, for all s, a
repeat for each episode do

Initialize s, a
repeat for each step of episode do

Take action a, observe r,s′

Compute action a? which maximizes Q-value from s′

with probability ε do
Guided exploration: randomly choose a′ such that |a′ − a?| ≤ σe

otherwise
Exploitation: choose a′ = a?

end
δ ← r + γ Q(s′, a′)−Q(s, a)
e(s, a)← e(s, a) + 1
for all s, a do

Q(s, a)← Q(s, a) + αδe(s, a)
e(s, a)← γλe(s, a)

end for
s← s′; a← a′

end repeat
end repeat

State variables (50 states) (x, y) = [−200,−192,−184, · · · , 192, 200]

Target state (x, y) = [−10 : 10]

Control variable (50 actions) θ = [−1.0,−0.96,−0.92, · · · , 0.92, 0.96, 1.0]

Guidance deviation σe = 20

Initialization deviation σh = 5

Sampling time 50ms

Reward R =


50 if goal,

−5 if break,

−error otherwise.

Table 1: Parameters of Reinforcement Learning algorithm on the physical robot.

Table 1 summarizes the particulars of the reinforcement learning problem used for the physical
robots. Note that (x, y) denotes an image coordinate position. Also, the basic sampling interval is
50ms, but it can be increased by a vision processing delay up to 500ms. This order of magnitude
increase in time is non-deterministic. The control variables represent the power of two thrusters:
so the heading between -1.0 to 1.0 is represented by discretizing into 50 actions. The reward is
constructed to that arriving in the reference position results in a score of 50. Otherwise, −5 is
obtained when an image processing failure occurs (e.g., when the target leaves the camera frame).
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We have assumed that the camera is located and aligned so the central region of the image
coincides with a straight heading. Using this information, an initial state-action table with reason-
able starting values is constructed. This is done via a 50 × 50 matrix H composed to have values
for treatment of each control variable (−1.0 < A < 1.0, a total of 50 actions) in each possible state
(−200 < S < 200, a total of 50 states). We impose the following natural relationship between
actions and states: alignment means that the indices can be directly associated. For each state (a
column in H) we assign values in the form of a Gaussian probability distribution across the actions
(the row entries). The distribution has a constant standard deviation given by σh, but is shifted
so that the peak in column i falls in the ith position. Thus, the maximum values fall along the
diagonal of H. As the number of episodes is increased and additional empirical data is obtained,
the Q matrix adapts to better reflect the dynamic, unpredictable environment. The purpose of H
is to help achieve operational robustness in the early stages of learning.

To sum up, we have employed two approaches to apply reinforcement learning techniques to
our problem: one is using guidance exploration SARSA(λ) to help speed convergence, the other is
designing an initial H matrix for stability.

4.5 Disturbance Compensation

Algorithm 2 describes the simple logic that implements the disturbance compensation method
in software: essentially it consists of two concurrently executing control loops, each operating
at a time-scale dictated by their inputs, which are coupled through heading variables. Dm =[
yx

T yy
T yz

T
]T

is the output of the disturbance model (in m/s2) as is described in Section 4.3
and detailed in Appendix A. Since the IMU coordinate system is aligned with the image frame
coordinates in our system, the model of environmental disturbances can be simplified by considering
the accelerations along the first two axes (viz.

[
yx

T,yy
T
]
). In the algorithm, Rpos denotes the

horizontal reference position in camera coordinates (i.e., the center of image, in our configuration).
Tpos represents the current estimate of the target object’s position and is produced by the vision
processing pipeline as outlined in Section 4.1. From the reference position and the target’s position
we directly compute a heading which we denote with θt. Also θd represents the robot’s desired
heading which is computed to offset estimated disturbances. Finally, ẋd is the robot’s desired
speed which is similarly adjusted.

The control loops are shown as each of the two main functions: The Outer Controller
which updates θt by using the measured target object position. The other is Inner Controller
which counteracts the disturbance by using Dm(yx

T,yy
T). The disturbance elements yx

T and yy
T

are used because they have the primary influence on the heading and speed of the robot. The gain
gx is used in computing θd as described in the algorithm, and it serves to normalize the output to
between −1 and +1 radians. The robot’s speed, ẋd is adjusted by gy similarly.

5 Experiments

The environment used for the marine experiments that follow was a flowing river. The experimental
scenario is shown in Figure 8. The global positioning mode is employed to have the ASV approach
the target object and get it within range before detection of the target object and visual servoing
commences. The docking target was passive: floating on the surface not executing any motor
commands, which we feel can help in evaluating the proposed method. Once visual servoing mode
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Algorithm 2 Disturbance compensation via two loop controller

Inputs:

Dm = Disturbance measurement
[
yx

T yy
T yz

T
]T

(acceleration along each axis)
Rpos = Reference position [x] in camera coordinates
Tpos = Target object position [x, y] in camera coordinates

Parameters:
gx,y = The gain parameter of computing θd and ẋ
ṡ = The robot’s pre-adjusted speed

Computed Values:
θt = The direction to the target object by image processing
θd = The robot’s desired heading
ẋd = The robot’s desired speed

Function Outer Controller(Tpos, Rpos) (update θt when the vision is processed)
θt = Rpos − Tpos(x)

Function Inner Controller(θt, Dm) (update θd and ẋd when the IMU is processed)
θd = θt − gxDm(X)
ẋd = ṡ− gyDm(Y )

Figure 8: The evaluation scenario: flowing water with wind typical of unpredictable dynamic
environments which are challenging to model.
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is enabled the target object was reliably. ASV operates autonomously employing the controller
described. Measurements were made of whether the ASVs docked; final docking was deemed
to have been achieved only when contact was made between robots. Since we were unable to
instantaneously measure the flowing river, ground truth (e.g., with different degrees of disturbance
and noise) for evaluation purposes remained problematic. Thus, we also used the same controllers on
ground vehicles: with the AGVs we assume that ground is static easily characterizable environment
compare to a choppy, flowing water surface. With the ground vehicles, synthetic noise was added
for comparison to the no noise case. Although only an approximation, we believe this to be a good
preliminary evaluation of the impact of the disturbance compensation mechanism. The final we
test we carried out was with ASVs in a realistic marine environment, and the results show that
the proposed disturbance rejection, reinforcement learning, and two-loop controller permit docking
in unpredictable and dynamic environments. Moreover, comparison to the traditional controller
results show the effectiveness of the disturbance rejection method.

5.1 Depth Estimation in Visual Servoing

Most image features have different processing times. Particularly, SIFT [Lowe, 2004] performs
well in detecting and recognizing a target object in real environment. However, because of slow
computation time, it is insufficient for uses that require real-time performance. In order to use it in
real environments, Giesbrecht et al. [2009] uses a SIFT tracker to track a moving object. To do so,
the authors measured the processing time for the SIFT computation and calibrated their control
loop so as to use this as the underlying control period. A reduction in search space was necessary
in order to maximize the control frequency.

In this paper, we employ a two-loop control logic in order to have a feature-independent ap-
proach. Thus, our system can use feature descriptors such as SIFT in addition to a robust matching
method. Generally feature descriptors are comparatively slow, but they can successfully estimate
a target object’s pose and depth both of which are useful for dynamic docking as well as following.
In the following experiments, the scale of the target object (as a function of distance) is given by a
scale table. Consequently, depth information is produced from scale. Figure 9 shows the detected
image height versus ground truth distance for both SIFT and our matching method. While both
methods have agreement over their common range, SIFT can detect up to 200cm while the tracker
can track the target object up to 500cm. When both run concurrently, SIFT takes 1000ms per
frame while the tracker uses only 100ms on our hardware.

It can support the estimated scales of the target robots. SIFT can detect up to 200cm within
1000ms, while simultaneously, the tracker can track the target object up to 500cm within 100ms
with our hardware. Thus, various features can be used for target object detection and tracking in
the proposed control architecture. To overcome the feature descriptors’ slow speed, several trackers
can be used within the inner controller, which helps to compensate for the detection speed and
assists in tracking long distances.

The results of the tests on the detection and tracking of target objects in real environments are
shown in Figure 10. The scale size represents robot’s depth which is from produced from the scale
table.
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Figure 9: Scale Estimation: detected target image height versus ground truth distance for the slow
SIFT features compared and our implementation of a tracking method.

Figure 10: Target detection (white boxes) and tracking (red boxes) for the AGV and ASVs.
Left: Target Detection at 1m. Middle: Target Tracking at 2m. Right: Target Tracking at 4m.
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Figure 11: A “docking” test with autonomous ground vehicles. This scenario permits controlled
evaluation of the role of environmental disturbances since the AGVs do not contend with the effects
of choppy, flowing water or wind.

5.2 Results of Autonomous Ground Vehicle

To evaluate the proposed method, one target AGV was placed 4m ahead of another AGV. The
target AGV was detected AGV. Figure 11 shows the approach of the docking AGV along with its
tracking on the right. The utility of disturbance rejection was evaluated by comparing a traditional
PID (with Reinforcement Learning) controller with disturbance rejection to one without. On
the ground, there is not enough noise to reject disturbance. So, injected Gaussian noise is used
to capture elements of a dynamic, unpredictable environment. In Figure 11, number 1 shows
completion of approach control, and number 2 shows detecting and tracking the target robot with
disturbance rejection. Finally, number 3 is docked with the target robot.

As a result, in Figure 12, the left figure shows the results of Reinforcement Learning without
disturbance rejection which does not have irregular rewards at any time. The right figure shows
those of Reinforcement Learning with disturbance rejection: observe both the increased mean
reward function, the reduction in variance, and the significantly improved lower envelope. This
suggests the disturbance rejection improves the learning process itself.

Moreover, in Figure 13, we present two types of noise conditions for both the PID and RL con-
trollers (left and right, respectively). The “No Added Noise” condition reflects the natural noise
within the robot system, i.e., but without additional noise being injected. The “Random Noise”
condition includes the addition of Gaussian random noise (horizontal position error is sampled from
a Normal distribution with σ = 20 pixels.) The plots show the response of the system under each
of these conditions along with a third line illustrating the effectiveness of the controllers under the
“Random Noise” condition but with the disturbance rejection functionality enabled. By comparing
the relative amplitude of the oscillations it is straightforward to observe that the Reinforcement
Learning controller follows the target more smoothly than the traditional PID controller. Addi-
tionally, disturbance rejection helps to follow a target object more smoothly in both cases. Finally,
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Figure 12: An illustration of the effectiveness of disturbance rejection on the learned state-action
map (Q-values): the Q-value function landscape is flattened and smoothed. The left figure shows
the Q-values of the executed policy versus time in four separate trials for Reinforcement Learning
without disturbance rejection on docking ground vehicles. The right figure is identical except with
disturbance rejection enabled. Significant variations both along individual trials and between trials
is readily observed. Nevertheless the disturbance rejection reduces the amplitude of the Q-value
variation. (Since SARSA is an on-policy method, the Q-values represent estimates of returned
reward including both exploration and exploitation aspects.)

Figure 13: Evidence of increased stability in visual servoing control on ground vehicles. The vertical
axis represents the distance of the centroid of the target from the central line in the image (in number
of pixels); the horizontal axis denotes time in seconds. Smoothness of the target following behavior is
reflected in the relative amplitudes. (Left: PID controller, Right: Reinforcement Learning controller
controller).

21



Figure 14: An example USV pair docking test. (Compare the water surface to the calm day shown
in Figure 4.)

the combined use of disturbance rejection and Reinforcement Learning is beneficial. (Note that in
Figure 13, the vertical axis represents object positions relative to the center of input images so zero
is the target reference, permitting one to interpret the required robot heading.)

5.3 Results of Autonomous Surface Vehicles

The previous section demonstrated that the techniques integrated into the control system are
effective for AGV docking. Next, the system was tested with our prototype ASVs in a real river
environment. The scenario as described above. As shown in Figure 14, one ASV detect the other
ASV and then docks with it. The fourth frame of Figure 14 is the view of ASV from the initial
position.

Tests in which the ASV tries to dock to a drifting target robot at a distance of 4m away were
executed for different initial poses but same distance and the results are reported in Figure 15.
The dotted lines on both the graphs are results of PID & RL without disturbance rejection (two
different initial positions). The solid lines are results of PID & RL with disturbance rejection (three
different initial positions). In general, the particular initial positions give repeated fluctuation. The
PID controller has more frequent and large oscillation compared to the Reinforcement Learning
method. Moreover, disturbance rejection reduces these fluctuation, and reduces the time needed to
approach the other robot. The shorter execution times suggest additional robustness to fluctuations,
as reaching stability implied faster recover. As the number of time is increased which is shown DR1
to DR3, the docking time is reduced from around 7 seconds to 5 seconds. Moreover, based on the
oscillation, the Reinforcement Learning with disturbance rejection shows the stable visual controller
compared to the traditional approach.

Evidence of increased stability in visual servoing control on ground vehicles. The vertical axis
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Figure 15: Visual servoing control of Autonomous Surface Vehicles at real environment. The
vertical axis represents the distance of the centroid of the target from the central line in the
image (in number of pixels); the horizontal axis denotes time in seconds. (Left: PID controller,
Right: Reinforcement Learning controller controller).

represents the distance of the centroid of the target from the central line in the image (in number of
pixels); the horizontal axis denotes time in seconds. Smoothness of the target following behavior is
reflected in the relative amplitudes. (Left: PID controller, Right: Reinforcement Learning controller
controller).

6 Conclusions

Ultimately, if ASVs are to fulfill important search, rescue, navigation, and inspection duties, these
vehicles need to detect and recognize objects fast and reliably, and they need to be able to operate
in unpredictable and dynamic environments. This paper has described an approach with several
integrated elements toward that end:

• Visual servoing is generally considers a single control loop. However, this work used a two-
loop system with a switching structure that increases feature generality. The visual servoing
controller uses numerous features such as color, templates, and local descriptors, all of which
have different extraction speeds, yet all of which can be used without serious restriction.
Attempting to attain feature-independence in visual servo control is a useful principle in
order to achieve robustness and a two-loop switched controller is an effective way to do this.

• Disturbance rejection-like stabilization at the shortest time-scale is beneficial in dynamic
environments, but can require selection of computationally efficient techniques (like the mean-
shift, in our case). Fusing data at the longest time-scale is likely to be problematic.

• Adaptability via on-line learning improves performance in non-stationary environments, but
careful choice of learning algorithm and choice of sub-problem is important. In this work
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Figure 16: Tests with multiple tethered units.

it remains unclear how disturbance rejection affects the learning process. Both disturbance
rejection and adaptation improve performance; their interplay is not yet clear.

This work has proposed an important multi-ASV application: that of autonomous robotic boom
deployment in order to corral floating pollutants. Our experience was that wind, waves, and water
currents would pose a particular challenge for tasks that require tightly coupled coordination. A
prototype robotic system was constructed, and the plausibility of autonomous multi-ASV dock-
ing demonstrated, including evaluation with test-trials with controlled noise conditions on ground
vehicles.

6.1 Outlook and Future Work

Further development is necessary before the robotic containment boom idea can be declared feasible.
An important mechanical consideration is the mechanism by which booms should reliably fasten
after the docking procedure. Possibly insights from the reconfigurable robotics community could
contribute to that solution. Figure 16 shows some preliminary experiments that were conducted
with the units that had been tethered together. Exactly how to maneuver large groups of such
robots remains an open question.

Future work could consider ways in which the disturbance rejection scheme can be extended
through a robust three-axis modeling that can help the system adapt to additional types of chal-
lenging environments. This would address limitations of the current approach and likely improve
performance across a range of dynamic environments. Second, while currently employing two
control loops helps ameliorate the effects of delay in sensor processing, faster feature extraction
methods will naturally improve the quality of the control output and can simplify the controller
itself. For example, the separation between target detection and tracking is critical to the success
of the current system because detection on its own would be too slow. Third, important questions
remain as to the rate of convergence when adaptive on-line learning methods are used in multi-
vehicle scenarios. For example, when two robots are approaching one another in order to dock,
it would be beneficial to have an estimate of their comparative stability as this could affect the
servoing strategy employed.
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A IMU Model

State-space equations for the IMU are given by

x(k + 1) = Φx(k) + Gu(k) + n(k), (8)

y(k) = Hx(k) + v(k), (9)

where Φ = diag(Φx,Φy,Φz) is the state transition matrix and is a block diagonal matrix that
consists of the state transition matrices

Φm =


1 Ts 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , (10)

of each axis, where Ts is the sampling interval. The input matrix, G = diag(Gx,Gy,Gz) is

a block diagonal matrix with the input matrices, Gm = [Ts 0 0 0 0]T. The measurement
matrix, H = diag(Hx,Hy,Hz) is also a block diagonal matrix having three m-axis input matrices,

Hm =

[
0 1 1 0 0
0 0 0 1 1

]
.

y =
[
yx

T yy
T yz

T
]T

is an output vector that is a compound of each axis’s output vector,

ym = [am ωm]T. Here am and ωm mean measurements of the accelerometer and gyro with respect to

the m-axis. A system’s input vector, u =
[
gx + aFx gy + aFy gz + aFz

]T
. consists of components

along each axis of the local gravity, gm and of the acceleration, aFm exerted by the robot’ driving

force. n =
[
nx

T ny
T nz

T
]T

means a process noise vector of unmodeled effects with the pro-

cess noise vectors of m-axis, nm = [nvm nam nbam nωm nbωm ]T, each element of which means
Gaussian white noise corresponding to each element of the state vector and nvm ∼ N(0, Qvm),
nam ∼ N(0, Qam), nbam ∼ N(0, Qbam), nωm ∼ N(0, Qωm), and nbωm ∼ N(0, Qbωm). A measurement

noise vector, v =
[
vx

T vy
T vz

T
]T

is made up of each measurement noise vector, vm = [vam vωm]T

of axes where vam and vωm are Gaussian white noises corresponding to each element of the output
vector, ~ym, and therefore these noise terms are defined by vam ∼ N(0, Ram), and vωm ∼ N(0, Rωm).
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