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Abstract Several important forms of robotic environmental monitoring involve es-
timating a spatial field from comparatively few measurements. A number of re-
searchers use linear least squares estimation techniques, frequently either the geo-
statistical Kriging framework or a Gaussian Process regression formulation, that
provide estimates of quantities of interest at unmeasured locations. These methods
enable selection of sample locations (e.g., for adaptive sampling) by quantifying un-
certainty across the scalar field. This paper assesses the role of pose uncertainty and
measurement error on variance of the estimated spatial field. We do this through a
systematic empirical comparison of scalar fields reconstructed from measurements
taken with our robot using multiple imperfect sensors and actively estimating its
pose. We implement and compare two models of variance: Kriging Variance (KV)
and Interpolation Variance (IV), illustrating that the latter —which has not been used
in a robotics context before— has several advantages when used for online planning
of sampling tasks. Using two separate experimental scenarios, we assess the es-
timated variance in scalar fields constructed from measurements taken by robots.
Physical robots sampling within our office building suggest that using IV to select
sampling sites gathers more data for a given time window (45% more than KV),
travels a shorter distance to collect the same number of samples (25% less than
KV), and has a promising speed-up with multiple robots. Water quality data from
an Autonomous Underwater Vehicle survey of Lake Pleasant, AZ. also show that
IV produces better qualities for given a distance and time.

Keywords: Environmental monitoring, robotic sampling, Measurement and position error

1 Introduction
Large-scale environmental monitoring is a particularly promising application for
robots [8]. Robots have already begun to collect oceanographic data sets of unprece-
dented scale and resolution (e.g., [4]). The underlying challenge addressed by such
systems stems from the fact that the measured data are sparse compared to the large
spatial areas/volumes of interest. Mobility makes adaptive strategies for in situ sam-
pling possible but leads naturally to the question: “given the data already captured,
where should the robots go in order to sample further?” This is an important basic
problem in robotic monitoring and data collection, and is one for which a variety of
solutions have been proposed e.g., [7, 5, 14].
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Linear least-squares estimation methods have been among the most successfully
used in robotics for spatial interpolation and region sampling. By way of example,
we include the recent work of Kemppainen et al. [7] in the Gaussian Process regres-
sion framework, and Elston et al. [5] via Kriging interpolation. Both employ equiv-
alent minimum error-variance estimation techniques [11] that permit measured data
to be interpolated in a way that takes into account a statistical description of spatial
covariance [3]. Along with an estimate of values of interest at particular locations in
the field, these methods also associate a measure of estimate uncertainty. Within the
Kriging framework, the standard error measure is called the Kriging Variance (KV)
or Kriging Error. It plays an important role for robotic adaptive sampling due to the
fact that researchers (including, but not limited to [7] and [5]) have used it to select
future sampling locations and to plan informative paths.

This paper assesses the role of pose uncertainty and measurement error on vari-
ance of such an estimated spatial field. We conducted a systematic empirical com-
parison of scalar fields reconstructed from measurements taken by robots using im-
perfect sensors.

1.1 Problem Statement
Two complementary aspects are investigated experimentally in this work:

Issue 1: Pose and measurement uncertainty — Classical formulations for spatial field
estimation involve idealizations that may be ill-suited for robotic sampling. Specif-
ically, standard formulations lack explicit consideration of measurement noise and
position uncertainty, flying in the face of practical experience with real sensors.
This paper includes a formulation which addresses these two aspects. Because sig-
nificant prior robotic work employs formulations without modeling these forms of
uncertainty explicitly (cf. [7, 5, 14]), we conducted an empirical evaluation of how
estimates of the spatial field differ depending on whether the method employed con-
siders these sources of uncertainty or not. Scale and severity of the uncertainty are
important considerations too.
Issue 2: An alternative to KV — Yamamoto [12] argued that the traditional KV mea-
sure fails to measure local data dispersion appropriately because it is computed from
a global description of spatial variance (the variogram) averaged over the whole es-
timate. To address this shortcoming he introduced a new measure called the Inter-
polation Variance (IV). It is computed as the weighted average of the squared dif-
ferences between measured data and the interpolation estimate, which is intuitively
analogous to the traditional expression for statistical variance. Several geostatisti-
cal papers have evaluated IV and compared it to KV [10, 13], but IV appears to be
unknown in the robotics literature.

Figure 1 illustrates the difference in estimated field uncertainty when sample
position uncertainty and measurement noise are factored into estimates of field un-
certainty measured with KV. Without considering these aspects, field variance is
underestimated. The figure on the right also shows the IV measure for comparison;
IV offers a distinct and in some ways more informed estimate of the interpolation
uncertainty.
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(a) Uncertainty ignored (b) Pose & measurement
error

Fig. 1 Richer treatment of site
uncertainty is justified. The stan-
dard model (a) underestimates
field variance compared to ex-
plicit treatment of uncertainty (b).
Note also Interpolation Variance
(IV) shown in (b).

The following are the paper’s contributions:
• A unified Ordinary Kriging (OK) formulation with both pose uncertainty and mea-

surement noise which explicitly separates sensing error from the variogram.
• A particle filter realization and implementation of the formulation.
• An empirical investigation of the impact of sample site uncertainty with respect to

KV and IV. Most importantly, IV is an informative measure for selection of future
measurement sites, which suggest a new set of adaptive sampling approaches.

• The demonstration of autonomous sampling site selection with single and multiple
robots and a comparison KV and IV in terms of resulting performance.

Notation: Since no single definitive formalism has yet emerged for robotic sam-
pling, we have elected to describe the results with terminology from the Kriging
framework. The following motivated this choice:

1. Interpolation Variance has only been proposed within the Kriging framework.
2. Our work requires that we communicate our findings, including measured and

estimated data, with geostatisticians.
3. Our applications involve robots estimating two or three dimensional fields. The

family of variogram models have been informed by experience with the underly-
ing physical processes (cf. covariance models in [9]).

Equivalency implies that the results hold for the Gaussian processes model as well.

1.2 Related Work
Measurement error is a common problem in robotics and it is widely recognized
that most sensors are imperfect. In contrast, Cressie’s classic geostatistics text [2]
mentions that measurement error is usually implicitly included the nugget variance
and that the practitioner often ignores the measurement error because it is typically
considered smaller than the spatial variogram. When neither identified nor directly
treated, micro-level variation of the spatial process is conflated with error introduced
by imperfect sensing. The distinction is particular important when the variogram is
intended to describe the intrinsic spatial variability of the statistical process, rather
than its observation through a particular sensor. This is significant when multiple
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sensors are available for a particular phenomenon and when sensor noise character-
istics are estimated online.

Also, perfect robot pose information is not normally available. Chilés [1] was
the first to consider position uncertainty in the Ordinary Kriging (OK) interpolator.
He assumed a probability distribution over poses as the only form of error, nam-
ing this “attribute position error.” Cressie and Kornak [3] take both position and
measurement uncertainty into account in their Universal Kriging (UK) model. The
UK variant is more general than the OK model, since it includes parameters to es-
timate strong trend in the underlying spatial process. The UK’s generality comes
at a price, however: interpolation error is not (numerically) simple to estimate. In
fact, most existing robotics experiments employ OK [7, 14] over UK for this rea-
son. Additionally, evidence presented in by Zimmerman et al. [15] shows that OK
actually outperforms UK for realistic data since the latter is prone to over-fit. The
OK formulation presented here is suited for robotics as it incorporates both pose
uncertainty and measurement noise, is tractable when realized with a particle filter,
and explicitly represents the sensor noise model.

In robotics, Kemppainen et al. [7] used Kriging without treatment of pose or
measurement uncertainty in considering well-localized robots in an experimental
environment. Zhu et al. [14] applied OK to find a optimal sampling strategy based
on KV. Elston et al. [5] evaluated trajectory quality on the basis of a variogram
model; the simulation did not consider measurement error.

As a measurement of interpolation error, KV does not depend on data values but
only on the semivariogram model and data sample sites. Yamamoto [12] suggested
that the Interpolation Variance (IV) would be well-founded because it measures the
reliability of estimates by considering both the Kriging weights and data values,
i.e., it is a heteroscedastic measure. We are not aware of any evaluation of IV that
considers measurement or position uncertainty.

2 Technical Approach
The purpose of Kriging is to estimate the values of a spatial random variable, Z, from
sparse sample data. Ordinary Kriging, the most common type of Kriging in practice,
assumes that the spatial statistical process that generates the random values can be
characterized by an unknown mean [11]. An estimate Z∗(x0) is obtained from λi and
samples Z(xi) via (1):

Z∗(x0) =
n

∑
i=1

λiZ(xi),
n

∑
i=1

λi = 1. (1)

The coefficients λi, called Kriging weights, show that the interpolated points are
obtained from a distance weighted average of nearby measured points. The weights
are computed in matrix form via a pseudo-inverse of (2):



Spatial Interpolation for Robotic Sampling: Uncertainty with two Models of Variance 5

A =


γ(x1,x1) · · · γ(x1,xn) 1

...
. . .

...
...

γ(xn,x1) · · · γ(xn,xn) 1
1 · · · 1 0

 , (2)

b =


γ(x1,x0)

...
γ(xn,x0)

1

 , Aλ = b. (3)

The value depends on the semivariogram function γ which represents the strength
of spatial relationships in the random field. It is defined as the square of the expected
difference between values at different locations, i.e., γ(x,y) = [E(Z(x))−E(Z(y))]2.

KV is given by σ2(x0) = ∑
n
i=1 λiγ(xi,xo)+ψ(xo). Taken together, these yield the

optimal OK prediction of unobserved values of the process when neither measure-
ment noise nor position uncertainty are included.

2.1 Measurement error
Kriging Variance: The traditional Kriging approach usually treats the measure-
ment noise as zero, i.e., that the measured data represent true values. It is common
for geostatistical texts (e.g., [2, 11]) to add that if there is reason for a practitioner
to suspect measurement error (described with variance, cm) then the remedy is to
subtract this value from the field Kriging variance, as so

σ
2
m(xo) =

n

∑
i=1

λ
i
mγm(xi,xo)+ψ(xo)− cm, (4)

where γm is the variogram and ψ is a Lagrange multiplier. This is both counterintu-
itive and incorrect for imperfect measurement as typically considered in the robotic
sampling context. Understanding why depends on two observations. Firstly, despite
moving from idealized to noisy sensing, it has tacitly been assumed that the var-
iogram is constructed using the same noisy sensor as employed for the sampling
itself. Thus, the variogram no longer merely encodes the intrinsic spatial depen-
dency of the underlying statistical process. The result is that γm is a variogram that
includes measurement error and has been shifted by cm automatically. Secondly,
applying (4) removes the implicitly captured sensing variation in order to describe
only the interpolation variance. It does not, therefore, yield a variance that estimates
what would result if you were to place the sensor at the given location.

Instead, we define γm to be γtruth + cm, where γtruth is calculated using a high-
fidelity sensor or from a theoretical understanding of the spatial process. The resul-
tant expression for the variance is
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σ
2
ε (xo) =

n

∑
i=1

λ
i
truthγtruth(xi,xo)+ψ(xo)+ cm. (5)

One is now no longer subtracting the measurement error from the prediction,
which decreases the variance so it no longer matches measured data, but instead
increasing the degree of uncertainty, as one might expect.

Interpolation Variance:
In contrast, interpolation variance estimates are affected by the variogram only

indirectly. The IV computation is analogous to a form of variance where the prob-
ability density is replaced by OK weight λ . The choice of γm alters the computed
λ , but the sensitivity to measurement noise is dominated by the local data variation.
Clearly this latter effect has no impact on KV. Equation (6) shows IV in terms of λ

and the variance of the input consistent with the other notation:

s2
o =

n

∑
i=1

λi[z(xi)− z∗(xo)]
2. (6)

2.2 Position uncertainty
To take position uncertainty into account within the Kriging framework, Chilés [1]
proposed the following model. The measurement believed to be made at a point
xα is actually performed at another position xα +uα , where uα is a random vector
which contributes to the position error. Given probability density p(uα) and also
the joint density p(uα ,uβ ) for any pair of points, one may extend the OK equations
(2)–(3) by randomizing vectors uα over poses. This produces equations (7)–(8):

x̃α = xα +uα ,

Ãαβ =
∫∫

γm(x̃α , x̃β )p(uα ,uβ )duα duβ .
(7)

b̃oα =
∫

γm(x̃α , x̃o)p(uα)duα . (8)

The expressions for Ãαβ and b̃oα can be directly applied in (2)–(3) in place of
A and b. Employing this strategy propagates pose uncertainty (position variation)
through to the field estimate and produces an increase in the interpolation variance.
It is important to note that even if the distributions are unimodal and isotropic, the
observed values may differ from the interpolator predictions at the associated max-
imum likelihood positions.

In practice, incorporating pose uncertainty in Kriging for real systems involves
application of (7)–(8) in a representation which ensures the operations involved can
be carried out tractably. We describe an efficient realization of Kriging via a particle
filter. Additionally, this has the advantage of already being a practical representation
of pose uncertainty, e.g., see [6]. Particle filters approximate a probability density
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through a set of weighted samples, ω(n), drawn from the distribution being repre-
sented.

The following equations illustrate a Kriging computation, analogous to that de-
scribed above, using the particle filter. Essentially, integrals have been replaced with
summations, and appropriate weights used:

Ãαβ =
n

∑
i=0

m

∑
j=0

γm(xi,x j)ωi ω j, (9)

b̃oα =
n

∑
i=0

γm(xi,xo)ωi, (10)

where n and m correspond to the number of samples drawn from the distribution.
Similar to the equations described above, once the relevant matrices are computed
in this way, interpolation proceeds as before.

Our particular robots localize themselves using a particle filter based approach,
so this treatment is particularly straightforward: Kriging inputs are computed via
(9)–(10) on the localization particles and, once the relevant matrices are computed
in this way, interpolation proceeds directly.

3 Experiments

Equipment & Experimental Scenarios
Two separate experimental scenarios were used. Both assess the estimated variance
in scalar fields constructed from measurements taken by robots:

1. Sound and light, indoors: An iRobot Create robot, equipped with a Hokuyo
URG-04LX-UG01 laser sensor and an Asus Eee PC 1005HA netbook, was given a
map of our building; it moved around the environment using an adaptive particle
filter to localize itself. The localized robot was given several target measurement
positions along a linear corridor. A total of 44 measurement positions, each approx-
imately 50cm apart, were provided as navigation goals. After the robot arrived at
each goal position, it saved its current localization estimates by writing the parti-
cles representing the pose probability distribution to disk. The robot remained in
place for 2 seconds, collecting data from three sensors: (1.) ambient sound volume
in decibels via the onboard microphone on the netbook; (2.) light intensity measured
in lux with a Phidgets “Precision Light Sensor” and (3.) ambient temperature via a
Phidgets “Precision Temperature Sensor”. We did not report values from the third
sensor, as the building climate control made them uninteresting.

Figure 2 shows the second floor of our building. For simplicity the measurements
we analyze further all come from a single corridor about 17m in length. Two sound
sources emit the same continuous beeping sound at locations shown in the figure
(the sound itself is a flute C7 note at 2000Hz.) The measurements were recorded at
night so that the florescent lights in the ceiling were the sole light source.

The light and sound fields represent opposite extremes. Light intensity was essen-
tially constant, except with a spatial period representing light spacing, the light sen-
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Fig. 2 Environment in which measurements were recorded: the robot navigates along the corridor
from R to G, taking denote measurements. The two S symbols denote the positions of sound
sources.

sor showed low variation, and the empirical variogram shows a short range spatial
covariance. On the other hand, the measured sound volume had large fluctuations
and a variogram illustrating longer range spatial structure.

The sensor noise variance cm was estimated for each sensor, by computing the
mean of variances computed from 200 values taken over 2 seconds at the same
position. Variogram models were fitted passing through the origin from samples
averaged over the 200 values in order to minimize sensor noise. We adopted the
spherical variogram model (11), where n is the height of the jump of the semivari-
ogram at the origin (known as the nugget), s∗ is the limit of the variogram at infinite
lag (the sill), and r is the distance at which this is first reached (range). Light within
our environment is characterized as follows: r = 2m, s∗ = 580lux, and the sensor
has variance cm = 5. Similarly sound has r = 5m, s∗ = 80 decibels, and the sensor
variance cm = 30.

γsph(x1,x2) = s∗·
[

3‖x1− x2‖
2r

− ‖x1− x2‖3

2r3

]
+n. (11)

2. Interpolated H2O quality indicators, from Lake Pleasant: An AUV equipped
with a YSI 6600vs Sonde (see Fig. 3) took dense measurements within a 70m×
100m window. These readings along with GPS positions were used as “ground
truth” data on which we simulated sampling experiments as follows: readings at
any point were generated from an OK interpolation with Gaussian noise added (σ2

selected per YSI’s listed measurement accuracy per quality indicator).
Samples, collected in the way described above, were then processed four differ-

ent ways in order to consider the different treatments of sample site uncertainty:

1. The single best pose hypothesis with field measurement assumed to be error free
(PBMB).

2. The single best pose hypothesis with field measurement treated as noisy (PBMU).
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(a) Ocean Server Iver2 AUV. (b) Sampling pattern.

Fig. 3 Real world data were
collected in Lake Pleasant, AZ.
(−33◦ 51’55.66”N, 112◦ 17’45.01”W)
by directing a AUV in (a) to trace
the 3215m long “lawnmower”
pattern in (b). Measurements of
five different quality indicators
were taken 3448 times at 0.5Hz
over the 1hr 55min traversal.

3. The full pose distribution with measurement assumed to be error free (PUMB).
4. The full pose distribution with measurement treated as noisy (PUMU).

Instances involving PB used the single sample from the particle filter with maxi-
mum weight. The PU instances employed the whole distribution in order to pass the
uncertainty onto the spatial field representation. The measurement treatment was
analogous: variance of the sensor only being considered in MU cases.

Planners: Greedy KV- and IV-based Selection
In the data reported in Section 4, we provide the distance travelled as a robot at-
tempts to reduce field uncertainty. In these cases, we considered a naı̈ve planner in
which the robot selects new sample locations by greedily picking the position in the
field estimate with greatest uncertainty, sampling there, incoporating the data, and
repeating the process. This uncertainty is measured using either KV or IV, as will
be indicated.

4 Results

4.1 Comparison of KV and IV: Density Dependence
Figure 4 illustrates that KV depends on sample position but is independent of the
observed data.1 KV has the same shape between measurement sites no matter what
the measured data actually are. However, IV considers different local data values
and exhibits some degree of anisotropy in shape.

Figure 4 also shows that KV and IV have different characteristics and that these
depend on the two different sensors. As the number of measured data increases, KV
decreases smoothly. In contrast, IV can increase due to an implicit dependency on
data variation. Thus, IV has the smaller value of the two estimates for sparse data,
but with the increasing density, the tendency of both measures causes them to cross
at a certain point. Figure 5 quantifies this effect for the sensors we considered: the
light sensor results in an intersection for between 3 and 5 samples. For the sound
sensor this occurs between 7 to 8 samples. Moreover, the data variance decreases

1 Since the variogram is isotropic, the KV inherits this property too.



10 Young-Ho Kim, Dylan A. Shell, Colin Ho and Srikanth Saripalli

−12 −10 −8 −6 −4 −2 0 2 4
60

80

100

120

140

160

180

200

220

240

distance(m)

lu
x

 

 

Truth

Measured−In

Prediction

std(KV)

std(IV)

(a) Light, 4 samples

−12 −10 −8 −6 −4 −2 0 2 4
60

80

100

120

140

160

180

200

220

240

distance(m)

lu
x

 

 

Truth

Measured−In

Prediction

std(KV)

std(IV)

(b) Light, 8 samples

−12 −10 −8 −6 −4 −2 0 2 4
−10

0

10

20

30

40

50

60

70

distance(m)

d
e

c
ib

e
l

 

 

Truth

Measured−In

Prediction

std(KV)

std(IV)

(c) Sound 4 samples

−12 −10 −8 −6 −4 −2 0 2 4
−10

0

10

20

30

40

50

60

70

distance(m)

d
e

c
ib

e
l

 

 

Truth

Measured−In

Prediction

std(KV)

std(IV)

(d) Sound 8 samples

Fig. 4 The two variance estimates have different behavior with regard to sample density.

as additional measurements are added. The evaluation of KV and IV for the two
sensors in subsequent sections uses 4 inputs for light and 8 inputs for sound.

Fig. 5 Differing behav-
ior as a function of data
density. Analysis of vari-
ance (measured and esti-
mated) as a function of
sample density. (KV in
red, IV in blue.)
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4.2 Measurement error
As the reported cm values illustrate, the light sensor is considerably more sensitive
than the sound sensor. To make clear the impact of measurement error on variance
estimates, we show only the sound case.
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Fig. 6 Comparison of the measurement error at 8 points.



Spatial Interpolation for Robotic Sampling: Uncertainty with two Models of Variance 11

Figure 6 illustrates several properties: IV equals zero at the measured points,
while KV is increased by cm at the measured points. Moving beyond the measured
points, both increase approximately linearly with increasing noise. Figure 6 shows
clearly how IV underestimates at measured points. The rate that IV increases reflects
unexpected uncertain data unlike the KV which merely considers distance between
measurements.

Although IV vanishes at measurement points, it compensates when multiple
sensed values are close to one another since the sensor noise inherently limits the
quality of prediction from the local neighborhood. The measurement error is im-
plicitly represented by IV, which relies on the increasing numbers of measurements,
to truly reflect the data spread. We suggest that IV will capture cm when multiple
measurements are taken from the same location. However, IV must be taken as the
envelope computed from all measurements and one should not compute IV from the
mean.

4.3 Position uncertainty
Figure 7 shows the effect of position uncertainty for each of the sensed fields. Nei-
ther, KV nor IV are zero at the measured points but both increase linearly with
IV increasing more than KV. Severe position uncertainty degrades interpolation be-
cause Ãαβ represents a convolution weight. It is worth observing that KV increases
most near measurements. On the other hand, IV increases variance everywhere else.
Unlike the previous case, the interpolated Kriging may no longer be a punctual in-
terpolator, i.e., the estimate may not coincide with the measurement.
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(a) PBMB Light.
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(b) PUMB Light.
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(c) PBMB Sound.
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Fig. 7 Position uncertainty: light with 4 inputs, sound with 8 inputs.

4.4 Effects of both forms of sample uncertainty
It is worth considering both measurement error and position uncertainty together,
as it best reflects the reality of most robotic sampling scenarios. Figure 8(a) shows
the PBMB case (no uncertainty modelled) for the light sensor. The KV, however,
underestimates the variance in some locations, partly because the light sensor has
a small variance. Figure 8(c) shows the underestimation of variance (observable by
comparison to the ground-truth data). By considering uncertainty, Figure 8(b) shows
that KV does not fully resolve the underestimation problem, while IV appears to be
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(b) PUMU Light.
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Fig. 8 Both variance measures for 8 light and sound readings.

a better estimate. However, it may overestimate in cases with small scale sensor
variance like the light sensor. In Figure 8(d), the KV does not show the variation of
sensor values. However, IV shows good estimates for the noisy sound sensor, and
the PUMU IV case shows the uncertainty near the measurements.

In many cases, the absolute variance estimate is used to select navigation goals.
While both forms of variance can be used, it is important to note that the sensor
variance can influence the appropriate choice of goal.

4.5 Planner effectiveness of for adaptive sampling
Greedy planners based on KV and IV can both be effectively used for autonomous
sampling since either decreases (both) measures of variance. Fig. 9 summarizes the
experiments conducted with a single robot indoors for estimating the light intensity
field. Selecting targets with KV results in an approximately even spacing between
samples, as shown in inter-sample distance histogram inset in Fig. 9(a). In contrast,
the insets in Fig. 9(b) show how the heteroscedastic property causes different spac-
ing. The right inset of Fig. 9(b) also illustrates the importance of employing the
envelope scheme when there are multiple measurements at a particular site or even
very nearby sample sites.

Figure 10 shows data from multi-robot tests with KV or IV for sample site plan-
ning. The plots show that the two robots are able to sample with efficiency that is
almost twice that of the individual robots, if we consider the rate of decrease in total
field variance.

4.6 Data-dependence on planner performance
While KV is widely known and a frequently used measure, IV has complementary
aspects as a candidate for robotic sampling applications. Fig. 11 shows that this is
observation is true in both scenarios. For light indoors, the robot covers a distance
±25% shorter to collect the same number of samples as a KV planning robot. In a
given time interval, the IV method collects ±45% more samples than KV. The table
below shows Lake Pleasant data.
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(a) KV-based planner (first 600 sec-
onds).

(b) IV-based planner (first 600 sec-
onds).

Fig. 9 Autonomous sampling drives variance measures down. The sample position selected as
either (a) maximal KV, or (b) maximum IV position. The vertical axis represents the mean KV and
IV, the horizontal axis denotes time. The inset histogram shows the distribution of inter-sample
distances. The right inset is the resultant light field (in lux) along with variance estimates.

IV planner KV planner
B/G Algae (3467.7,37104) (3186.8,26543)
Chlorophyll (0.4117,0.0015) (0.4321,0.0013)
pH (0.1509,0.0008) (0.1687,0.0004)
Temperature (0.1939,0.0001) (0.2071,0.0002)

(Left) Reported statistics are (µ,σ)
of MSE between estimated field and
ground-truth values, for n = 10 inde-
pendent trials.

Table 1 Application of IV and KV planner in Lake Pleasant, AZ. The results compare 10 cross-
validation trials, showing the mean and standard deviation values. The estimated field uses 30
samples at point A in Fig. 11(b).

(a) KV for selecting sample sites. (b) IV for selecting sample sites.

Fig. 10 A multi-robot demonstration of KV and IV for sampling. Two robots sample light and
temperature concurrently.
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Fig. 11 Minimizing IV
collects more data for a
given duration than KV,
and travels shorter dis-
tances to collect the same
number of samples. Data
are means and variances
from ten separate trials of
each greedy planner.

(Right) Cross-validation analo-
gous to Table 1, but with an up-
per bound on distance traversed
rather than a fixed number of sam-
ples. The s value denotes number
of samples used.

IV planner KV planner
B/G Algae (3467.7,37104) s = 30 (3236.7,29308) s = 9
Chlorophyll (0.4084,0.0014)s = 25 (0.5212,0.0048)s = 8
pH (0.1786,0.0024)s = 18 (0.1796,0.0008)s = 8
Temperature (0.1939,0.0001)s = 30 (0.2007,0.0003)s = 5

Table 2 Application of IV and KV planner in Lake Pleasant, AZ. The results are mean and stan-
dard deviation of MSE measured cross-validation between estimated field and ground-truth values
for 10 trials. The estimated field are for samples drawn within the first 600m in B of Fig. 11(b).

5 Conclusion
In robotics, Kriging spatial interpolation is generally used without considering mea-
surement error and position uncertainty. However, our data demonstrate that doing
so may result in underestimation of interpolation error. This paper shows how both
of these forms of uncertainty can be easily incorporated into the standard OK in-
terpolator, allowing the uncertainty to reflect itself as an increase in variance of the
underlying field. Our physical robot data show that measurement error and posi-
tion uncertainty do affect the error estimates for both KV and IV. Our empirical
assessment resulted in several observations about the models variance and their re-
lationship. For example, data density affects both KV and IV, but in opposite ways;
we first postulated and then determined that a cross-over point exists. Secondly, even
though IV equals zero at measured points, employing the envelope of the variance
function is natural near multiply measured points. Finally, sample site uncertainty
not only changes the variance, but can also result in a non-punctual interpolator.

While KV is widely known and frequently used traditional measure, IV is a new
candidate for robotic sampling applications which has several aspects that are com-
plementary to KV. We have shown the feasibility of IV as a measure of uncertainty
by incorporating it in a demonstration of an autonomous robot system which adap-
tively samples light and temperature in our building. When compared to KV, select-
ing points to greedily minimize IV collects more data for a given duration and travels
shorter distances to collect the same number of samples. Additionally, IV appears
no less suited to multi-robot applications than KV in terms of potential sampling
speed-up.
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