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Abstract— Drivers and other road users often encounter
situations (e.g., arriving at an intersection simultaneously)
where priority is ambiguous or unclear but must be resolved via
communication to reach agreement. This poses a challenge for
autonomous vehicles, for which no direct means for expressing
intent and acknowledgment has yet been established. This
paper contributes a minimal model to manage ambiguity and
produce actions that are expressive and encode aspects of intent.
Specifically, intent is treated as a latent variable, communicated
implicitly through a partially observable Markov decision
process (POMDP). We validate the model in a simple setting:
a simulation of a prototypical crossing with a vehicle and one
pedestrian at an unsignalized intersection. We further report
use of our self-driving Ford Lincoln MKZ platform, through
which we conducted experimental trials of the method involv-
ing real-time interaction. The experiment shows the method
achieves safe and efficient navigation.

I. INTRODUCTION

Field studies have suggested that current-generation au-
tonomous vehicles lack social competence [1], [2]. Humans
resolve ambiguities in traffic via social interaction, including
expressing intent. In some cases, these interactions are so
effective that they are almost transparent. Examples involve
acknowledging/asserting the right of way, or communicating
the intention to yield [3]. Drivers use actions, such as ap-
proaching at speed, as signals to implicitly communicate the
intention of not giving way to pedestrians at unsignalized
crossings [4]. This paper explores specific means to treat
factors that cannot be sensed directly, such as a pedestrian’s
intent to cross, but for which it is important to reason over.

One place where informal interaction protocols are par-
ticularly important, and where autonomous vehicles must be
competent participants, is when pedestrians wish to cross
the road on which the vehicle is traveling. We examine
pedestrian-vehicle interaction by focusing on a scenario with
an unsignalized intersection3, as this is a representative
circumstance in which communication is crucial [6], [7].

Our focus is on approaches that are directly practicable:
though current technologies encourage the installation of
ever richer sensors on robots, factors such as age, gender,
culture, faith, and past experiences—factors known to in-
fluence pedestrian crossing [8]—are unlikely to be precisely

1Ya-Chuan Hsu and Dylan A. Shell are with the the Department of
Computer Science and Engineering at Texas A&M University, College
Station, TX, USA.{yachuan815, dshell}@tamu.edu

2Swaminathan Gopalswamy and Srikanth Saripalli are with the Depart-
ment of Mechanical Engineering at Texas A&M University, College Station,
TX, USA.{sgopalswamy, ssaripalli}@tamu.edu

3An unsignalized intersection “is defined as any at-grade junction of two
or more public roads at which the right-of-way for motorists, bicyclists, and
pedestrians is not controlled by a highway traffic signal.” [5]

sensed any time soon. Moreover, our emphasis is to preserve
social aspects so that existing understanding of pedestrians,
including the role of implicit coordination and indirect sig-
nals, remains applicable without further presumptions. This
study uses actions already commonplace, such as speeding
up/slowing down. The present study is appropriate also in
those cases where pedestrians cannot determine whether the
approaching vehicle is autonomous or not.

We give a decision-theoretic treatment that considers those
aspects of pedestrian behavior which are not directly observ-
able to be a form of uncertainty that must be modeled. A
plan is constructed that reasons over and manipulates this
uncertainty. When the vehicle executes the plan, the result
exhibits hallmarks of social competence, at least as applies
to the simple, small-scale scenario studied. Our broader
philosophy is that several aspects of social interaction cope
with uncertainty, thus representing uncertainty explicitly and
dealing with it efficiently, can yield socially effective robots.

We consider the paper’s main contributions to be:
• A minimal model of social ambiguity: Despite social
interaction being far from trivial, we boil several fairly
complex and abstract concepts down to a single source of
uncertainty, formulating a ‘lumped parameter’ model with a
variable we dub the pedestrian’s crossing intention. Although
a collection of factors exist, our approach gives a single
expression that can be interpreted in terms of probability.
• Framing a practically solvable partially observable de-
cision problem: The conciseness of the representation can
be exploited by maintaining a low-dimensional distribution,
making it practical for the vehicle to solve for a sequence of
actions. Those actions manage uncertainty, including some
which seem to elicit information—bearing the hallmarks of
implicit communication. The model we present expresses this
satisfactorily (albeit indirectly) via transition dynamics.

Beyond those two primary contributions, we also report
on an implementation and demonstration with a real au-
tonomous vehicle. The brief description suffices to illustrate
the feasibility of the approach. On further examining our
vehicle’s behavior, it appears to be less conservative than
some human drivers, potentially indicating that that planner
helps resolve ambiguous situations quite efficiently.

II. LITERATURE REVIEW

Resolving ambiguities in traffic poses three main chal-
lenges for autonomous vehicles: 1) sensing is hard, especially
for subtle gestures and cues; 2) human-to-human social pro-
tocols are informal and only serve to establish expectations;



3) human-to-autonomous vehicle protocols have yet to be
forged along with associated expectations.

The studies we describe next provide evidence that a
great deal of useful behavior can follow from quite mini-
mal information about pedestrians. This gives the basis for
our approach which only measures pedestrian position and
velocity; these data, the daunting challenges of perception
notwithstanding, can be sensed tractably today. We approach
both challenges (2) and (3) by capturing a range of human-
to-x interaction via active management of uncertainty.

A. Pedestrians crossing: definitions and known determinants

Early studies of pedestrians crossing roads observed that
pedestrians are primarily concerned with time-gaps [9]. The
Highway Capacity Manual [10] defines the critical gap as
the time below which a pedestrian will not attempt to begin
crossing. Detailed studies [9], [11] identified that each person
has their own critical gap, which depends on the oncoming
vehicle’s speed; people do not cross when the vehicle violates
their threshold.

Subsequent studies thoroughly evaluated factors, including
traffic flow conditions, road geometry, temperature, etc., that
influence peoples’ critical gap [12], [13]. They show that
the critical gap correlates positively with cautiousness. Our
model includes a factor representing one notion of caution.

Besides external factors, personal characteristics pertain-
ing to specific pedestrians influence their critical gap. Some
studies show that gender affects pedestrian behavior [14],
[15]; others point out that age is an influencer of pedestrian
behavior [16], [17].

B. Cooperative pedestrian interaction with autonomous cars

There are many successful systems for autonomous driv-
ing [18], [19], but the study of close interactions between
autonomous vehicles and pedestrians is more recent. How-
ever, most studies [20]–[24] focus on examining pedestrian-
vehicle interaction to provide reference data for future im-
plementations of autonomous vehicles. These studies do not
include practical approaches for actual autonomous vehicle
implementations that consider interaction.

A critical difficulty for autonomous vehicles driving amid
pedestrians is to incorporate pedestrian intentions and behav-
iors into their decision making. Among different approaches,
the simplest approach is to create a reactive system [25].
However, this ignores uncertainty inherent in making predic-
tions, resulting in fast computation but sub-optimal solutions
over time. Thus, different methods to reason about the
prediction uncertainty during decision making have been pro-
posed [26], [27]. The POMDP approach is general, assuming
neither linear dynamics nor Gaussian noise [28]. Though
POMDPs are widely known to be demanding computa-
tionally, steady improvements in efficiency have seen them
being implemented in reasonably-scaled experiments [29].
This work leverages POMDPs to balance the uncertainties
the pedestrian intention while having the vehicle operating
safely and efficiently. Whereas [28] and [29] seek to reduce
obstruction by inferring pedestrians’ navigation goals, we

instead express the interplay between vehicle and pedestrian.
Under our model, information-gathering actions influence the
pedestrian’s behavior.

Various methods have been proposed for autonomous
vehicles to communicate their intended actions to pedestrians
nearby. Though no single solution dominates, one approach
involves displaying physical information [30]–[32] and sev-
eral companies [33]–[35] have developed specialized external
hardware. In contrast, we deliberately opted to use features
found on a standard vehicle.

III. PROBLEM DEFINITION

Consider a pedestrian and vehicle both approaching the
same segment of a roadway and, initially, it is ambiguous
as to who will cross the intersection first. (See Fig. 1.) Both
vehicle and pedestrian interact, via their respective choices
of actions, to efficiently and smoothly resolve this question
as the situation unfolds. Treating the (coupled) behavior of
both participants as a dynamic process, the basic assumption
underlying our model is that both agents resolve the question
of who crosses first as a form of uncertainty reduction.

Fig. 1: Bird’s eye view of the unsignalized crossing.

IV. APPROACH

The crossing order that the pedestrian has in mind cannot
be observed directly by the vehicle. However, as the vehicle
drives, it gains information regarding the pedestrian by inte-
grating observations and using its model of the pedestrian’s
progress to learn more about the pedestrian’s state. We
propose the most concise representation possible, a single
binary variable, whose values encode who will cross the
intersection first. This variable represents the pedestrian’s
evolving understanding of the crossing order question. The
vehicle maintains a belief/distribution over this variable.

From the point of view of the vehicle, the pedestrian’s
states evolve stochastically. But, at the same time, they are
influenced by the vehicle’s state, which is itself altered via
the vehicle’s actions. An appropriate choice of action helps
ensure that it will make a sequence of observations that are
informative. When the pedestrian’s behavior, as sensed under
the observation model, depends markedly on the pedestrian’s
conviction regarding the crossing order, then the vehicle
learns about this hidden variable indirectly. Thus by choosing
actions the vehicle has an interactive mechanism, which it
can initiate, to actively manage its belief.

The preceding complexities are included in our model,
along with one further, important nuance. The vehicle is
only disposed to gain information that is valuable for driving



safely and efficiently through the intersection. We formulate
an instance of a POMDP [36] that describes the effect of
actions for the vehicle. As is well known, POMDP solutions
balance actions that gain information with ones that attain
valuable reward. For us, the former are actions that the
vehicle takes to better ascertain the pedestrian’s understand-
ing of the crossing order, whenever valuable. Furthermore,
here ‘better ascertain’ does not merely mean observing but
potentially also influencing.

Below, we carefully examine the dynamics of the vehicle
and pedestrian’s beliefs about the crossing order, interpreting
how they resolve initial ambiguity and reach agreement.
Sec. VII compares the vehicle’s performance against the
strategies human drivers are known to use in resolving
ambiguous situations, as mentioned in [21].

V. MODEL DESIGN

At a high level, our POMDP model considers a state space
S comprising states S = {SH , SC}, where SH represents in-
formation about the pedestrian (mnemonic: �H for human),
including their position (Hpos), velocity (Hvel), characteristic
(Hchr) and crossing intention (ξ); SC represents information
of the vehicle (�C for car), including vehicle position (Cpos)
and velocity (Cvel). The subsections that follow detail how
we approach the abstract concept of human intention and
capture the notion of beliefs and agreement over crossing
order; how we model the pedestrian and vehicle’s physical
transitions in a decoupled fashion; and then how we connect
the pieces to construct the final POMDP model.

A. Mental states: Crossing order

Let us denote the binary variable encoding crossing order
at time t as ξt. We define ξt ∈ {0, 1}, where ξt = 0 means the
pedestrian crosses first and ξt = 1 means the vehicle crosses
first. The dynamics of ξt are based on domain knowledge
(i.e., a time-gap–based decision), detailed in Sec. V-B.2.

B. Pedestrian dynamics

The dynamics of a pedestrian is expressed with a
collection of Markov chains. Each state in the chain
contains variables that describe the pedestrian’s physical
states. We also think of ξt as being associated with the
pedestrian.

1) Overview: We restrict ourselves to a consideration of
very basic motion: the pedestrian can either move along the
crosswalk or pause. We will assume that the pedestrian can
move at any reasonable speed, but, as clarified shortly, we
treat speed in a particular way. In each state of the Markov
chain, the physical state is a representation of the distance
(discretized) from the crosswalk. The transition probability
between each physical state is calculated based on the speed
the pedestrian is traveling. To define the speed, we first
need to know the crossing order (recall, ξt is seen as the
pedestrian’s crossing intention).

2) Deciding to cross or not: Summing up the studies in
Sec. II-A, the influences on pedestrian crossing decision-
making comprise two main factors: (i) Contextual factors in-
clude the position/velocity of the vehicle and the location of
the crosswalk; (ii) Habitual factors include the pedestrian’s
traits and personal characteristics, like age and gender.

For contextual factors, we condense them into a notion
of the ‘level of perilousness’ of the current world state.
The level of perilousness is computed based on the time
difference between the pedestrian’s arrival at the crossing
and the remaining time of the vehicle’s arrival at the crossing
point. If the vehicle has not finished crossing the intersection
while the pedestrian starts to cross, the sooner the vehicle
arrives compared to the pedestrian, the higher the level of
perilousness and vice versa. The habitual factors determine
how the pedestrian will act according to its sense of the
level of perilousness. For modeling purposes, we consider the
extremes: a reckless (H rkl

chr) and a cautious (Hcts
chr) pedestrian.

The final result is the making of a decision, we consider
as having ξt take a value. Based on the factors described
above, the dynamics of ξt can be expressed, as an example,
below:

P (ξt+1 = 0| ξt = 0,SHt , S
C
t ) =

0.3 if critical gap is small, and pedestrian is reckless,
0.9 if critical gap is large, and pedestrian is reckless,

0.14 if critical gap is small, and pedestrian is cautious,
0.74 if critical gap is large, and pedestrian is cautious,
1.0 otherwise.

(1)
For P (ξt+1 = 0| ξt = 1, SHt , S

C
t ) the values for the five

cases are 0.26, 0.86, 0.1, 0.7, and 1.0, respectively. For
P (ξt+1 = 1| ξt = 0, SHt , S

C
t ) they were 0.7, 0.1, 0.86,

0.26, and 1.0; similarly for P (ξt+1 = 1| ξt = 1, SHt , S
C
t ) the

probabilities are 0.74, 0.14, 0.3, 0.9, and 1.0. Here a reckless
(or cautious) pedestrian is just one that has Hchr = H rkl

chr (or
Hcts

chr, respectively).
(The numbers above are the values used for the trials we

report below; more precise values could be obtained via
psychological experiments and data collection.)

3) Pedestrian locomotion: The pedestrian’s motion de-
pends on whether they currently intend to cross first or
second. This is, of course, precisely the information in ξt.
Hence the motion can be clearly defined into two cases
expressed with functions fξt : S −→ R yielding velocities.

a) Pedestrian crosses first (ξt = 0): When the pedes-
trian decides to cross the intersection before the vehicle
does, it will attempt to travel at some speed to ensure
it crosses first. We enforce some basic constraints: should
the pedestrian reach the fastest walking speed, 2.5m/s [37],
it remains moving at the highest speed it is capable of
maintaining. If the speed needed to arrive in time is below
average walking speed 1.4m/s [37], the pedestrian continues
at a normal pace. Quantitatively, this is

f0(·) =
{

1.4 if o∆t > 2 s

2.5× eαo∆t if o∆t ≤ 2 s
, (2)



where o∆t, computed from St ∈ S, is the time difference
between the remaining time for the vehicle to arrive at the
intersection and for the pedestrian to finish crossing the
intersection. Here α is a negative constant that represents
the incline of the pedestrian’s speed.

b) Vehicle crosses first (ξt = 1): In this case, the
pedestrian will stop at the curb and wait for the vehicle to
pass when it determines that, continuing at its current speed,
it cannot reach the other side of the road before the vehicle
arrives. The pedestrian’s velocity is given as

f1(·) =

{
1.4 if o∆p < −1 m or o∆p > 1 m,

0 if −1 m ≤ o∆p ≤ 1 m and can’t cross at 1.4 m/s,

1.4 if −1 m ≤ o∆p ≤ 1 m and can cross at 1.4 m/s

(3)

where o∆p, computed from St ∈ S, represents the relative
position the pedestrian is from the crosswalk. Once the
pedestrian starts crossing the crosswalk, o∆p becomes a
negative value in our representation.

C. Vehicle dynamics

The vehicle, unlike the pedestrian, has actions that we
wish to determine. Hence, we model the vehicle’s controls
as actions of a decision process. The vehicle needs to avoid
collision with the pedestrian, whose crossing behavior is not
perfectly known. The vehicle must deal with two forms of
uncertainty: partial observability and stochasticity. By choos-
ing actions, the vehicle seeks an optimal strategy through
reasoning about the pedestrian’s behavior as expressed in
the stochastic model.

1) Vehicle’s motion model: Let Cpos be the state that
represents the vehicle’s distance from the crosswalk and state
Cvel represent the vehicle’s velocity. The evolving physical
state of the vehicle is specified as (Cpos(t), Cvel(t)) at time t.
The vehicle is constrained to move in a fixed direction
towards the crosswalk and its control is based on acceleration
a(t) ∈ {adec, 0, ainc}, where adec < 0 and ainc > 0. Given
a(t), the new state of the vehicle is calculated as

Cvel(t+ ∆t) = Cvel(t) + a(t),

Cpos(t+ ∆t) = Cpos(t) + ∆t · Cvel(t).
(4)

2) Vehicle-pedestrian interaction: The interactions be-
tween vehicle and pedestrian near the crossing point are
embedded into transition functions. When the vehicle and
the pedestrian are far from the crossing, they transition to
their next state based on their individual dynamics. How-
ever, as modeled in Sec. V-B.2, the pedestrian’s crossing
behavior considers the vehicle position and velocity. Once
the pedestrian is near the crosswalk, the behavior of both
the vehicle and the pedestrian are now tightly coupled: both
their state transition probabilities are influenced by not only
the vehicle’s state but its action as well.

3) Sensors and observations: We assume that the vehicle
is equipped with sensors capable of detecting the pedestrian
and reporting his/her position and velocity. These sensors
produce data that has an error range which decreases as
the vehicle gets closer to the pedestrian. Additionally, the
vehicle is assumed to have sensors that return an accurate
value of the vehicle’s velocity and pose (the latter is merely

the distance from the crosswalk). Taken together, this sensing
equipment generates observations that we represent as a 4-
tuple: (Hpos, Hvel, Cpos, Cvel).

4) Rewards: The vehicle’s primary objective is to mini-
mize the risk of colliding with the pedestrian. Consequently,
a large penalty is assigned when both the vehicle and the
pedestrian are on the crosswalk simultaneously. Additionally,
to incentivize efficiency, the vehicle receives rewards for
those states with a higher velocity. We emphasize that the
vehicle is not specifically rewarded for knowing things about
the pedestrian; any information of value is valuable because
it has implications for safe efficient motion indirectly.

5) The vehicle’s perspective on the crossing order: Unlike
the pedestrian, who has a state ξt to represent who he/she
considers to be crossing first, the vehicle has no such explicit
state. Instead, the POMDP maintains a distribution over the
entire state space, i.e., a belief state. When all dimensions
of the state other than ξt are marginalized out, what remains
is a probability that represents the vehicle’s estimate of the
pedestrian’s conception.

VI. EXPERIMENTAL SETUP AND DETAILS

We construct a continuous world describing a crossing
scenario and employ DESPOT [38], [39] as a POMDP solver
to create a safe and efficient crossing policy for the vehicle.
(DESPOT is an online solver that uses a belief-tree–based
approach in which sampled scenarios produce nodes that
are connected via edges to produce approximate policies.)
Both the simulator (or autonomous vehicle) and solver are
connected through the Robot Operating System (ROS) [40].
We implemented them as ROS nodes with inter-process
communication handled by them subscribing to one another.

A. Experimental flow

We treat the crossing scenario depicted in Fig. 1. Each
experimental trial begins with both the vehicle and the pedes-
trian in the simulator moving steadily towards the crossing.
A trial concludes when the vehicle finishes crossing from one
side to the other. As our approach is designed for the purpose
of resolving crossing ambiguity, the POMDP solver is only
triggered once a pedestrian is detected heading towards the
crossing. The POMDP solver solves for vehicle-pedestrian
interaction when the vehicle is 14m or less away from the
crosswalk. For every execution step, the solver considers the
current state of the world, including both the vehicle and the
pedestrian information, and outputs an acceleration value.
The vehicle enacts the new acceleration and the aspects
pertaining to the pedestrian evolve as per the transition model
detailed earlier in Sec. V-B.2. The solver continues to output
new acceleration values based on new inputs until the trial
finishes.

B. Experiment Parameters

For the DESPOT solver, we used 500 sampled scenarios
with the maximum depth of the belief tree as 100, and the
discount factor set to 0.98. The solver was given 1 s to



(a) Cautious pedestrian (b) Reckless pedestrian

Fig. 2: Simulation results showing a vehicle executing a policy, interacting with a cautious pedestrian (a) and a reckless pedestrian (b).
The plotted variables evolve in each belief update time step.

construct the search tree and choose an action. The experi-
ments were executed on an Intel Core i7-6670HQ 2.6GHz
processor with 32GB of RAM running Ubuntu 16.04.

VII. IMPLEMENTATION DETAILS AND EXPERIMENTS

In this section, we first summarize an extensive and
carefully controlled evaluation conducted in simulation. The
performance of the simulated autonomous vehicle will be
discussed by analyzing the resulting behavior in terms of
the overall safety and further, for non-observable states, the
dynamics of the vehicle’s belief. We then show that with
the minimal model constructed, the results of our imple-
mentation of the solver running on an autonomous vehicle
possesses some hallmarks of social competence. Finally,
we briefly discuss experiments where the vehicle may also
generate actions that are explicitly communicative.

A. Simulation setup

We developed a custom simulator to model the crossing
setting of Fig. 1. It simulates pedestrian motions using the
pedestrian crossing behavior model described in Sec. V-
B. Pedestrian transitions at each step consider the vehicle’s
state as well as the pedestrian’s characteristic. (Recall, these
represent contextual and habitual factors respectively; the
latter is set manually at the start of the simulation.) Both
are needed to simulate the dynamics, which is achieved by
sampling in proportion to the associated probabilities.

The vehicle and pedestrian’s position state space is gen-
erated by discretizing continuous space into intervals of
1.75m and 0.75m. The velocity state for the vehicle contains
values from 0m/s to 3m/s with an interval of 1m/s. The
pedestrian has three velocity states: {0.0, 1.4, 2.5}. We define
the action space of the POMDP model as {−1.0, 0.0, 0.5},
where each is an acceleration value that can be executed by
the vehicle.

B. Analysis simulation results

We present the simulation results via detailed plots of
a variety of variables as they evolve in time. Figs. 2a
and 2b depict runs of a cautious and a reckless pedestrian,
respectively. The position of both pedestrian and vehicle are
shown in the graph with the title ‘continuous position.’ The
vertical axis of the graph is the relative position from the
crossing, where negative values represent positions that are
before the crossing point.

1) Crossing safely: We can see that whether interacting
with a reckless or a cautious pedestrian, the lines for the
vehicle and the pedestrian positions are never seen to be
between the crossing region, 0 to 4, simultaneously. This
indicates that no collision occurs.

2) Beliefs over non-observable states: In our scenario, the
key to communication is the inference of behavior, which re-
solves to a question about the pedestrian’s crossing decision
(ξt). Where ξt is calculated based on the perilousness of
the crossing for the pedestrian and also their habitual char-
acteristics (Hchr). Since neither this characteristic nor ξt are
observable, the vehicle’s knowledge of these two elements is
understood in terms of the belief state (or distribution) over
both variables. The third plot in the results figures shows how
the belief of the characteristic converges to the correct trait.
As for the belief distribution of ξt, it appears (along with
the actual pedestrian’s ξt value for comparison) as in the
fourth plot of the result figures. Notice that ξt changes, but
the vehicle’s belief distribution is shown to track the changes
in the pedestrian’s ξt.

3) Implicit communication — an interpretation: To help
comprehend the results, we chose to compare the behavior
of simulated autonomous vehicle with human drivers under
circumstances where they are uncertain of the pedestrian’s
sense of who should cross. Fig. 3 is a summary of the be-
havior of our simulated vehicle; it is redrawn from [21], using
their style of summarization, along with some modifications



to improve clarity, but with numbers reporting results from
our experiments. The percentages and speed values are based
on data from simulations using a reckless pedestrian. (One
example of the strategy is shown in Fig. 2b.)

Fig. 3: Strategies of the vehicle in ambiguous situations with a
reckless pedestrian simulated for crossing. (Based on [21].)

Schneemann and Gohl [21] report that human drivers re-
solve ambiguous situations by initially reducing their speed,
and then decide to whether to speed up or come to a
stop depending on the pedestrian’s response to their speed
reduction. We see that the vehicle’s strategy is less conser-
vative compared to human drivers. Fig. 3 can be interpreted
as the vehicle trying to gain efficiency rewards but also
balancing uncertainty. Instead of slowing down to passively
learn the pedestrian’s crossing order decision, the vehicle
remains at moderately high speeds, seemingly expressing its
desire to cross first. This communicates with the pedestrian
and the pedestrian’s following movement can be explained
as a reply to the crossing arrangement. In Fig. 2a, the
cautious pedestrian is shown to slow down, giving the vehicle
permission to cross first. In Fig. 2b, the reckless pedestrian
accelerated to express disagreement on the vehicle crossing
arrangement. Both the vehicle and the pedestrian continue to
adapt their maneuvers thereafter in order to reach agreement
on crossing order.

Readers interested in a planner that always yields to the
pedestrian are referred to [41], where no uncertainty in the
pedestrian’s intention was modelled. Observations of that
work show the autonomous vehicle to be more conservative
when facing non-communicative pedestrians who insist on
crossing ahead of the vehicle.

C. Autonomous vehicle experiment setup
We carried out experiments at our university autonomous

vehicle testing ground. A virtual crossing was setup in the
system that is 5m×4m overseen by the camera mounted on
a lamp post on the side of a roadway. (See Fig. 4.)

Our test vehicle is a Ford Lincoln MKZ with auto-driving
enabled. The auto-driving system is capable of following a
pre-recorded path with GPS and vehicle orientation included
by sending command through ROS to the low-level vehicle
controller to control the throttle, brake and steering.

Our pedestrian is a manikin mounted on a pole installed
on a remote control car. It is operated by people with the
intent to either cross before the vehicle or after the vehicle
has passed the crosswalk.

Fig. 4: Cartoon depicting the experimental infrastructure. The drawn
crosswalk is just an representation of all the different types of
unsignalized intersection.

Our sensors include a camera mounted on a lamp pole
overseeing the crossing area and an RTK GNSS receiver,
Piksi. With infrastructure enabled autonomy [42], we coordi-
nated both sensors to provide the location of the vehicle and
pedestrian relative from the base station. The information
gathered from the sensors becomes observations for the
planner to locate the current state in the belief state space
and output an acceleration value as the action to the vehicle
(as shown in Fig. 5).

Fig. 5: System architecture employed for the Lincoln MKZ.

Both pedestrian and vehicle’s motion, and sensor readings,
are imperfect owing to factors such as friction, bumps on the
road, wind, sunlight, etc., in the world affecting both agents.
Seeking to balance between decision quality and computa-
tional expediency, observations of the vehicle and pedestrian
information are discretized. The prior has a resolution of
1.5m for position and 1.0m/s for speed and the later has a
resolution of 1.0m for position and 1.0m/s for speed and
The vehicle actions are sparse: 0.5m/s2, −1.0m/s2, and
−2.0m/s2. The maximum planning time per step is 0.2 s,
and the planning horizon is 100 steps.

D. Results from the autonomous vehicle experiment

Though extensive tests (46 trials) were conducted in this
environment, we can only report some illustrative instances
here due to the limited space. Once the vehicle is as close as
70m, it receives input from the camera sensors for pedestrian
detection. If the pedestrian is detected to be approaching
the crossing, the vehicle slows down to 3m/s; Otherwise,
it continues at the same speed, proceeding to approach and
cross the crossing. Once the vehicle slows down and is within
14m before the crossing, it activates the behavior planner to
interact with the pedestrian and begins to maintain a belief
distribution over the pedestrian’s crossing intention. In the
case of interacting with a reckless pedestrian, the vehicle
slows down in advance (Fig. 6a) with an initial belief that
the pedestrian will cross first. While slowing down (Fig. 6b),



(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Fig. 6: In figures (a)–(d), the vehicle encounters a reckless pedestrian who speeds up to start crossing before vehicle arrives. In figures
(e)–(i), the vehicle encounters a cautious pedestrian who stops to wait for vehicle to cross. Histogram indicates beliefs over pedestrian
crossing intentions and characteristic: blue for pedestrian crosses first, green for vehicle crosses first, yellow for a pedestrian who is
characteristically reckless, red for a cautious one. The length of the arrow above the vehicle expresses vehicle’s velocity, in which, a circle
indicates that the velocity is approximately zero. The color of the arrow describes the acceleration value: green for accelerate, yellow for
maintain, and red for decelerate.

the vehicle’s belief in the pedestrian being reckless increases
which leads to it later picking up speed (Fig. 6c) and crosses
(Fig. 6d). As for the cautious pedestrian case, the vehicle
slows down due to the initial belief the pedestrian intends to
cross first (Fig. 6e). Before it comes to a stop, the vehicle
changes its belief distribution over the pedestrian’s charac-
teristic and intention as it now observes the pedestrian to be
slowing down before the crossing (Fig. 6f). The vehicle’s
acceleration changes from decelerating to maintaining speed
as the majority of the weighting of belief shifts toward the
pedestrian being cautious and who, thus, intends to let the
vehicle cross first (Fig. 6g). Then, passing by the cautious
pedestrian slowly, the vehicle gradually gains speed (Fig. 6h).
Finally, the vehicle accelerates once past the pedestrian
(Fig. 6i)

These examples from our autonomous vehicle trials in-
dicate that the planner produces effective crossing behavior
and that it performs well at managing uncertainty for states
of the pedestrian that are not directly observable.

E. Explicit communication

We also conducted a simple experiment to analyze the
value of communicating crossing order by creating an action
that communicates ξt explicitly. In Fig. 7, an action is added
where the vehicle may flash its headlights. We model the
pedestrian as understanding this as indicating that the vehicle
intends to let the pedestrian cross first. Additionally, to have
the vehicle’s policy be deliberate in choosing to communicate
intent in establishing ξt, we penalize using the lights.

The result, in Fig. 7, shows that the vehicle opts to flash its
lights (quite frequently) despite the negative reward incurred.
Moreover, as we compare the third graph in Figs. 2b and 7,
it is clear that knowledge of the pedestrian’s characteristic
is recognized faster with explicit communication. The fourth
graph in both figures shows that ξt stabilizes sooner too.
And, as the ambiguity is resolved, the result is that both the
vehicle and pedestrian cross the crosswalk more efficiently.

VIII. CONCLUSION

Social interaction is valuable in resolving ambiguity in
traffic; it is necessary for autonomous vehicles if they

Fig. 7: A reckless pedestrian interacts with a vehicle equipped to
flash its lights, communicating explicitly.

are to operate harmoniously within the existing systems,
infrastructure, and norms. This paper has examined how
an uncertainty-aware planner can help an autonomous ve-
hicle interact competently. We have examined a scenario
involving ambiguity, formulating a decision-theoretic model
that captures elements related to a pedestrian’s intent as
a form of uncertainty, which is ultimately expressed as
non-determinism and partial observability. A state-of-the-art
solver is then used to produce a plan. Our implementation
(planning and executing in both simulation and on a Ford
Lincoln MKZ) produces results indicating that the vehicle’s
belief of the pedestrian’s intention converges correctly.

Further work might consider multiple pedestrians and
different sensing assumptions, and conduct more extensive
real-world experiments. Determining whether this simple
‘lumped parameter’ model will suffice for more complex
scenarios, and whether other indicators might help identify
intentions, are interesting next steps. Much research remains



to done to better realize social and understandable behavior
in vehicles among multiple other road users.
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