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Abstract— This paper addresses the problem of generating
the simplest plans that solve robotic planning problems. Most G
robotic planning algorithms are concerned with producing
plans that minimize execution cost, or generalizations of such
costs. Motivated by circumstances with severe computational

resource limits (e.g., memory or communication constrained S
settings), we instead address the problem of producingoncise

plans. In this work, conciseness is a measure of plan size that re-

flects the complexity of representing the plan explicitly. We seek G

a plan with minimal representational size, subject to correctness
and completeness. We introduce a planning algorithm that

generates concise plans for planning problem that may involve Fig. 1: [left] A planning problem in which a robot with a goaktector
both non-determinism and partial observability, and also show moves from S to G. [middle] A plan graph for this problem that miizies
that finding the most concise plan is an NP-hard problem, execution time. [right] A plan graph for this problem of minirsize.

excusing the possible sub-optimality of our algorithm’s output.
We describe an implementation of the algorithm, along with
empirical results on the run time and solution quality for both

manipulation and navigation problem domains. valuable insights into those problems. As a simple

example, one might assess the value of a particular
. INTRODUCTION sensing or actuation primitive by comparing the size

Broadly speaking, autonomous task-oriented behavior re-  ©f the most concise plans that respectively use or omit
quires robots to select and execute actions on the basis of that capability.
the limited information available to them. This informatio ~ An illustrative example of this concept, in the context of
includes the history of what has been sensed, the history @ idealized robot moving on a grid and in possession of
actions executed in the past, and any prior knowledge thatgoal detection sensor, is shown in Figure 1. The robot's
might be available. The overwhelming majority of existinggoal is to travel from its starting location (marked 'S’)rest
work in robotic planning seeks plans that optimize soméf the two goals (marked ‘G’). In this case, the plan with
measure (such as time, energy consumption, or safety) 6 smallest execution time travels directly to the lower
a plan’s execution cost. This paper considers an orthogor@@al. However this plan—informally, “Down, left, down,
view of the planning process, in which the objective is t¢lown, right, stop”—is more complex than the alternative that
optimize expression complexitgf the generated plans. The travels to the upper goal using a plan informally expressed a
underlying question is “What is the most concise plan théAlternate up and right until reaching the goal.” The objeet
solves a given planning problem?” of this paper is formalize this idea, and to investigate roésh

At least three factors motivate a search for concise planfr generating concise plans that solve a very general class

1) In situations where robots have severe memory lim@f robotic planning problems. _
tations (such as those stemming from extremely small Aﬁ?f reviewing .related V\{0rk (Section 11) and formally
space, weight, or energy budgets), finding a conciddefining the concise plannlng_prqblem (_Sectlon I, thl_s
plan may be more imperative than finding one whosB2P€r makes two major contributions. First, we prove in
execution cost is low. Section IV that that the problem of finding tlsenallestplan

2) Plan size is also important when the plan is beingqat solves a given problem is NP-hard. The proof, which

relayed over a noisy channel. This case may be familidfSes @ reduction from the problem of 3-coloring a graph,
to anyone who has communicated driving direction€Xtends and generalizes the authors’ earlier result o filte

to another human: A common strategy is to provigdninimization [12]. _ _ _ _
instructions that minimize the number of turns, in lieu S€cONd, we present in Section V an algorithm that rapidly

of instructions that follow a faster but more complexd€nerates concise plans, albeit without any guarantee of
route. optimality. Our approach involves two pieces} {eduction

3) Finally, understanding the size and structure of conci<d & 9iven plan to express it as concisely as possible, and
plans for a given family of problems may provide,(”) an mcre.mental search for plans that exploits structure
in the solution space by reusing sub-parts of plans. The
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may result from sub-plans that, for their sub-problems, a® be separated, but permitting any others to be merged.
not maximally concise. As a consequence, our algorithi@enerating a partition that obeys these constraints became
stores a collection of candidate sub-plans at each verteyaph vertex coloring problem where vertices which have the
including separate containers for plans that are themselveame color are identified, forming a more concise expression
concise (a local criterion) and plans than score well on af the given filter. This algorithm is used as a subroutine in
heuristic estimate of their reusability (a global critefioThe  Algorithm 3 to reduce candidate sub-plans by treating them
number of plans associated with each vertex is bounded by as filters.

algorithm parameter that encodes a tradeoff between soluti
quality and the time and memory consumed by the planner.

A further important difference is that, because constngcti  We consider problems in which a robot interacts with
and reducing a sub-plan is a relatively expensive process,its environment by executingctions selected from a finite
behooves one to leverage that effort as much as possible. Guation spacel/. We assume that the action space contains a
algorithm accomplishes this by associating each generatsgecialtermination actionut, which signals that the robot
sub-plan withall of the I-state graph vertices for which it is has completed its execution. In response to each action,
a correct solution. In this way, partial solutions are teelssis the robot receives ambservation selected from a finite
first-class objects, and there is a many-to-many relatipnshobservation spac&’, from its sensors.
between sub-plans and I-state graph vertices. )

Section VI describes an implementation of this algorithrf®: INformation state graphs
and shows its effectiveness an a collection of planning The robot may haveprediction uncertaintthat is, un-
problems, including instances of both manipulation and-navcertainty about the results of its actions—asensing un-
gation problems. The paper then concludes with a discussioertainty—uncertainty arising from incomplete sensor data,
of future work in Section VII. along with uncertainty about its initial conditions. We en-
capsulate all three forms of uncertainty using tinéor-
mation space (I-spacefprmalism, which was codified by

The idea of understanding problems by examining the refpaValle [11]. This approach uses the temformation state
resentational complexity needed to solve them can be tracfestate) to refer to any representation of the (generally
at least as far Kolmogorov’'s definition of the complexityincomplete) knowledge available to the robot. As the robot
of a sequence in terms of size of the smallest problem thekecutes actions and receives observations, it can ugdate i
outputs that string [10]. Another family of well-known rétsu  current I-state to reflect new knowledge that can be inferred
considers the “power” of various sensors, such as abstrdnbm those events.
compasses [2] and pebbles [1], for exploration tasks. Ih tha In discrete time systems in which both the action space
work, the power of a sensor is measured in terms of thend observation space are finite, including the systems we
amount of memory (finite, finite augmented with a singleconsider in this paper, we can model the progression of
counteretc) required for an agent to explore its environment-states as a walk on an |-state graph.
using that sensor.

The class of planning problems we consider in this paper
is equivalent to the class of nondeterministic graphs th&t i .
appears in Erdmann’s recent topological conditions on the 1) the vertex set, of which each member is called an
existence of plans that succeed in such graphs [5]. Such I-state, can be partltlone.d into a set adction vertices
graphs, commonly represented asiD-OR graphs, have Vi and a set ofobservation vertices’, _
received attention by Al researchers employing heuristics 2) the edge set can be partitioned into a set aition
to find a solution to reach a goal [3], [9]. The results we  ©€dgesE, C Vi, x V; and a set ofobservation edges
present here are orthogonal, in the sense that our reselts ar By CVy X Va, . . )
algorithmic, and focused constructing on optimally coacis 3) €ach action edge is labeled with an actioni(e),
rather than merely extant, plans. Likewise, the kinds plan 4) €ach observation edgeis labeled with an observation
graphs we use here to represent the robot’s strategy as a y(e), qnd o _ )
finite state machine have also been used in the context of9) NO pair of distinct edges (neither action edges nor
POMDPs [g]. observation edges) share both a source vertex and a

As discussed in the introduction, prior work by the authors ~ 1abel.
addressed the related problemfifer reduction Given an
l-space partition, the goal is to find the smallest finiteestatB: Plan graphs
machine that maintains enough information to identify the Given an I-state graph, we can trace the evolution of
cell in the partition that a robot’s current |-state resides the robot’s I-state by following the appropriately labeled
We showed that this problem is NP-complete and providegldge each time the robot executes an action. Notice that
an algorithm for solving it efficiently. The intuition of tha this formulation does not require the I-state graph to be
algorithm is to compress filters by recognizing vertices thd’complete,” in the sense that each action vertex does not
must remain distinct in an correct filter and forcing thermecessarily have an out-edge for each action in the action

I11. DEFINITIONS AND PROBLEM FORMULATION

Il. RELATED WORK

Definition 1: Anl-state graphl = (V, UV,,E, UEy) is
bipartite directed multigraph in which



space; those missing actions are considered “illegal” fropProblem: Concise Planning €P)

those I-states. Likewise, an observation node need not hgvelnput: A planning problenP.

out-edges for each observation in the observation spa¢eQutput: A plan graphP that solvesP, such that the
which can occur if the underlying structure of the problem number of vertices i is minimal.

dictates that certain observations cannot occur from angiv
I-state.

NOt? that, because we are interested plans that sucp_ee('lin this section, we prove that the concise planning problem
even in the worst case, we do not attach any probabllltl)(1

;T : . troduced in Section lll is NP-hard. In keeping with the
models to the observations; any observation for which an oo .
. L . : usual practice in complexity theory, our approach stadmfr
observation edge exists is considered possible, and dil s . .
. . .the related decision problem:
observations are treated equally by our algorithms. We dis-
cuss the potential for probabilistic extensions in Seckitin | Decision Problem: Concise Planning ¢P-DEC)
Input: A planning problemP and an integek.
Output: Trueif there exists a plan grapR of at mostk
vertices that solves th®; False otherwise.

IV. HARDNESS OFCONCISEPLANNING

Definition 2: A planning problem is a 3-tuple
P=Tuvs, V), in whichI = (V, UV, E, UE,) is
an I-state graph,u; € V, is called thestart nodeand
Vg C V4 is called thegoal region We show thatcp-DEC is NP-complete, which directly

The objective is to generate a strategy that, when executiBPlies thatcpis NP-hard. To accomplish this, we first show
starting fromuv,, will terminate at some I-state i, re- that cp-DEC is in class NP (Section IV-A), and then show,

gardless of the observations received along the way. Su¥lft reduction from a graph coloring problem, thae-DecC

strategies, which operate in discrete time and with finité NP-hard (Section IV-B).
memory, are naturally expressed as transition graphs.

A. Concise Planning is in NP

Definition 3: A plan graphP = (V,, E,) is a directed To show thatcp-DEC is in NP, it is sufficient to find a
graph in which polynomial-time algorithm that determines, given a plaigni
problem P, an integerk, and a plan graphiP, whether
(i) G has at most nodes and (ii)G solves the planning
) X »  problem. The former condition requires a simple count of the

3) each edgec € E; is labeled with an observation \erices. A technique to check the latter condition appears

y(e) G.Y’ an_d . as Algorithm 1.

4) no pair of distinct edges share both a source VerteX tq jnyition of the algorithm is to enumerate all reachable

and a label. I-state/plan node pairs via a forward search, and to return

To execute the plan described by such a graph the robbtue only if the set of reachable pairs is exhausted without
should, starting froms, execute the action(vs), and then finding any failures or incorrect terminations.
follow the edge corresponding to the observation received. It is straightforward to see that, for each iteration of the
This process repeats until: outer while loop, the algorithm does work bounded by the
. . number of observations. The outer while loop can perform
1) The plan attempts fo execute an action that is n(?{[o more than one iteration per unique pair of plan and I-state

?r:fvgiie?]tcethgf :Ezogzrrzgggggi:]';titgggr;gictﬁ;e?_s?ggéaph vertices, and therefore the whole algorithm has time-
graph), or the plan lacks an edge labeled with th mplexity in O([V|[Vu[[Vy| + [Y][V,[|V;]). Because this

, : . . Igorithm exists and executes in polynomial time, we have
robot’s observation outgoing from its current vertex

. “the desired result.
In either case, the result of the plan for that execution

is afailure. Lemma 1:cp-DEC is in complexity class NP.
2) The plan executes actianr. In this case, the plan’s _ o

execution is successf the current I-state is a member B Concise Planning is NP-complete

of the goal region, or ailure otherwise. To show thatcp-DEC is NP-complete, we next present a
reduction from the standard problem of 3-coloring a graph:

1) one vertexs € V;, is designated as atart plan vertex
2) each vertew €V, is labeled with an actiom(v) € U,

We are interested in plan graphs that succeed inibest

casefor a given planning problem: Decision Problem: Graph 3-Coloring GRAPH-3C)
Definition 4: A plan graphP solvesa planning problem | Input: An undirected graplG. .

P = (I, v, V) if there exists an integek, such that every Output: Trueif there exists coloring QG using at mos't

execution ofP successfully terminates i, after at mostk three colors, such that no pair of adjacent vertices

steps. shares the same coldfalse otherwise.

Finally, notice that the size of a plan graph is a direct This problem is known to be NP-complete [4], so it only
indicator of the plan’s conciseness. This motivates the& coremains to give a polynomial time reduction froeRAPH-
problem addressed in this paper: 3c to cp-DEC. Given an instance o6RAPH-3C, hamely an



Algorithm 1 Verify Plan Correctness

Input:

A problemP = (I,v,, V) and a plan graph .
Output:

True if P solvesP; False otherwise.

1. Q + empty queue
2: Q.insert(vs, v5(P))
3: while @ is not emptydo

4 (vi,vp) < Q.pop()
5. if (v;,vp) IS its own ancestothen
6: return False{Plan may never terminate.
7 end if Fig. 2: [top] An examp!e instance of 3-coloring. [bottom] Thstéte graph
. constructed from that instance.

8 if u(vy) = ur then
9: if v; & V, then
10: return False{Plan terminates outside of gogl.
11: end if
12:  else
13: for each out edge; 4, v} of v, do
14: if P has an edge, —- v, and (v}, v}) has not

be inserted inta) yet then Fig. 3: A plan that solves the planning problem in Figure 2cd@ese the
15: Q.insert (v}, 1}})) original graph is 3-colorable, the problem can be solved lay pvith only
16: else 7 vertices.
17: return False whetheru or u_ is the correct choice.

{Plan is not prepared for observatipn. The time to perform this construction is linear in the si;e

18: end if of G. We must now argue that the constructed planning
19: end for problem is equivalent to the original graph, in the sense tha
20:  end if the graph has 3-coloring if and only if the planning problem
21: end while admits a solution of at most vertices.
22: return  True {No incorrect terminations or failures. Lemma 2: For any instanc& = (V, E) of GRAPH-3C

for which the correct output is “True,” the correct output of
the cp-DEC instance described above is also “True.”

undirected graphG = (V, E), we construct an instance Proof: Let ¢ : V — {1,2,3} denote a 3-coloring oG.

(I, vs, Vy), k of cp-DEC with the following elements if: Let P denote the plan graph of exactly 7 vertices with the

1) A starting action node. following elements:
2) An observation nodey; and an edgev, —% w, 1) A start vertexv, labeled with actionu.

connecting it tovs. 2) Three vertices, vy, andvs (one for each of the colors
3) For each vertexa of G, an action nodev,, and of &), all labeled with actionu;.

observation node,, and edges); 2% v, andv, —% 3) Three vertices, andv_, andv,, labeled with action

W, uy, u_, andur respectively, along with edges. LN
4) Two action nodesy; and v_ and two observation vy andv_ LN V.

. . u

nodesw.. andw-, along with action edges;. — wy 4) For each vertex of G, an edgev; —* v(q).

andv. — w_. . 5) For each edge — b of G, edgesv.,) ~% u; and
5) For each edges — b of G, two observation edges ) Yab,

Yab, Yab, U(:(b) — U_.

we —— vy andw, = v_.
6) An action nodey,, and two observation edges, LN
vy andw_ LN vg.

Figure 3 illustrates this construction for the example
introduced in Figure 2.

To show thatP is indeed a plan graph, we must confirm
We complete thecp-DEC instance by choosings and{v,}  that none of its vertices has multiple outgoing edges labele
for the start node and goal region respectively, and settingith the same observation. The only vertices at which this
k=T1. could occur arevy, v, and vy. Suppose such a vertex

Figure 2 shows an example of this construction. Thexists, with two distinct outgoing edges for observatigp.
intuition is that only two action sequences allow the roboBecausev, and v_ are the only two possible targets for
to successfully reach the goal, namely, u;,u,ur and edges outgoing fromy, these two edges must connect those
ug, u1, u_,ur. Moreover, in any given execution, only onetwo vertices.
of these two choices will succeed. The construction forces By constructionp must also have incoming edges fram
any successful plan graph to “remember” enough to knofor observationg, andy,. Note that because observatians



andy, both lead tov, we know that in the coloring of, we ~ Algorithm 2 TRYSUBPLAN

havec(v,) = c¢(vs). However, the existence of edges labelednput:

with observatiory,;, implies thatG has an edge between A plan graphP and an action node.
andw,. Sincev, andv, are adjacent itG but have the same 1. Compute metadata fdp.

color in ¢, we have a contradiction to the supposition that 2: for i € {1,2} do

c is a proper 3-coloring ofz;. ThereforeP is a legitimate 3. s,(v).insert(P)

plan graph. 4. if s;(v) holds more thark plansthen

Finally, it is straightforward to see th#& correctly solves s: remove worst plan, according td;, from s;(v)
the planning problem by examining each of the finitely manyes: end if
possible execution traces. O 7: end for

8: if P remains in anys;(v) and each out-neighbor of

Lemma 3: For any instanc& of GRAPH-3C for which
Y holds at least one platihen

the correct output is “False,” the correct output of thep-

DEC instance described above is also “False” o Q.push(v)
10: end if

Proof: Prove by contrapositive. Suppose there exists a——
seven-node plan graph that solves this planning problem, Algorithm 3 PLAN CONCISELY
in order to show that there exists a 3-coloring of thdnput:

original G. A problemP = (I, vg, V).
First, note that any correct plan for this problem mus©Output:
contain at least one distinct node labeled with eachigf A plan graphP that solvesp.

uy, u_, andur. Moreover, because each of these actions is1: ) < empty set of observation nodes
executed at most once in any correct plan, we can (withoug: Pt < single vertex labeledr
loss of generality) assume that each of these actions is tha for each action node € V, do
label for exactlyone vertex inP. Therefore, there are a most 41  TRYSUBPLAN (v, Pr)
three vertices oP labeled withu,. Denote these vertices, 5: end for
vo, andvs. Letvs denote theéP vertex labeled withyg, which 6: while @ is not emptydo
must be the start vertex @. 7. w <+ Q.pop()
For each vertexa in G, note that there must exist in 8: for each in-neighbov € V;, of w do
P a unique edgey, 2% v; to somew; labeled withu;. 9 build candidate plans starting atthroughw.

Let ¢ : V — {1,2,3} denote the vertex-labeling d& that 10: for each candidate plaR and each’ € V, do
maps each vertex to the index of the target vertex of this 11: TRYSUBPLAN (v, P)

associated edge. Sineg, vs, andvs are the only candidates 12: end for

for v;, this labeling uses only three colors. 13: end for

Let us prove by contradiction thatis a proper coloring 14: end while

of G. Suppose not, and I€t;, b) denote an edge d& with  15: return smallest reduced plan stored-at if any.

c(a) = ¢(b). By constructionP has edges, 2% Ve(q) @nd

vg 2% ver). Observe that the target vertices of these two

edges are identical. However, notice that in a correct plan, V. ALGORITHM DESCRIPTION

the observation sequenggy,, must lead to the plan node

labeled ., whereas the observation sequengg,, must The previous section proved that, unleBs= NP, no

lead to the plan node labeled . In P, these observation efficient algorithm can optimally solve the concise plagnin

sequences lead to same plan node. TherefBrés not a problemcp. Therefore, we turn our attention now to a new

correct solution to the planning problem. This contradicti algorithm that solves the problem approximately, in thessen

demonstrates thatis a proper 3-coloring of=. that the plans the generate remain correct in the worst-case

0 sense, but cannot be guaranteed to be optimally concise.
The idea of the algorithm is to use the structure of the

] ) . ) I-state graph to generate a series of candidate plans, each

The partial results in Section IV-A and IV-B lead directly of \which can successfully reach the goal from at least one

C. Statement of results

to our main hardness results. |l-state. This process starts with a trivial “Terminate imme
Lemma 4:cp-DEC is NP-hard. diately” plan, which is correct from the goal region. From
) . there, the algorithm maintains a collection of observation
Proof: Combine Lemmas 2 and 3. | ’ .
nodes for which all of the out-neighbors have at least one
Theorem 5:cpP-DEC is NP-complete. associated plan, and repeatedly constructs new plansabsit p
Proof: Combine Lemmas 1 and 4. o though each successive observation node extracted frdm tha
] set. The plans generated in this way—all of which have
Theorem 6:cpis NP-hard. the form of a rooted tree with leaves labeleg—each

Proof: This is a direct consequence of Lemma 4. [0 undergo a plan reduction step, which mutates a given plan



P . . .
Y ! from v. The sets, likewise stores thé best plans according

to H,. The subsequent sections introdude and Ho.

v P 1) Local heuristic: Reduced plan siz8totice that each of
the plans constructed as described in Section V-A will have
Yn ' the form of a rooted tree but that, in most cases, concise
P, plans have cycles. In fact, there is no reason to suspect that

these trees will be concise plans. Figure 1 illustrates this

Fig. 4: [left] A fragment of an I-state graph, for which a nevaplcan _be idea. As a result, as part of the “compute metadata step”
constructed, as long as all ef,v2,...,v, have at least one associated .

plan. [right] The constructed plan copies and grafts thetiag plans into 1N Algorithm 2 (line 1), we use @lan reductionalgorithm
a tree rooted at a new node with actian whose input is the original rooted tree plan grdphand the
intended output is the smallest plan gragl?) that produces
identical behavior.
into an approximately-optimally-concise plan equivalémt  This problem is equivalent to tHéter reductionproblem
the original. from the authors’ prior work [12]—the only difference is
As this process proceeds, the algorithm maintains, for eaghat the description of the existing algorithm refers to the
action node, a small finite collection of such sub-plans thafertex labels as abstract “colors” instead of actions—and we
reach the goal from that node. Our algorithm prioritizes themploy the algorithm from that paper to reduce plans. Note
plans to retain based on heuristic evaluations of both thfat because filter reduction is NP-hard, we settle for reduc
local concision and global applicability of each sub-plan. plans that can be generated efficiently and are guaranteed to
The algorithm terminates when its queue is exhaustegle correct, but are only approximately optimal.
at which time it returns the most concise plan associated The size of these reduced plans represents local, greedy
with the start vertex of the I-state graph. Pseudocode feneasurement of the usefulness of a plan. Therefore, we
this approach appears as Algorithms 2 and 3. The followingefine the local heuristic as
subsections explain and clarify the details. H,(P) = —size(r(P))

A. Candidate plan construction Notice that, at the conclusion of the algorithm, the smalles

plan in the set (vs) represents the most concise plan start-

to-goal we have found. As a result, this plan becomes the
final output of the algorithm.

Beyond the initial trivial plan, Algorithm 3 constructs
additional plans in the following way. It identifies action

nodesu for which (i) there exists an action edge— w, 2) Global heuristic: Reuse potentialunfortunately, the
and(ii) all of the out-neighborsy, . .., v;, of w have at least |oc4) heuristic introduced in Section V-B.1 is not suffidien
one associated plan. In this situation, we can form a new plgfacause it cannot account for the idea of choosing actions
graph that reaches the goal framas follows: Start with & 4t one action node expressly because those plan nodes can
vertex that executes action and attach plan out-edges forpe re_ysed in other portions of the I-state graph. This notio

y .
each of the out-edges — o' of w in the I-state graph. f the reuse of plan fragments motivates our second, global
Each of these edges connects to a copy of a plan associaggristic.

with », which by construction reaches the goal from there. The idea is to compute theutcome functiorOp : V,, —
See Figure 4. _ 2% of a planP. This function considers the potential results
To efficiently locate portions of the I-state graph at whichgm executingP starting at each action node mapping
this construction is possible, the algorithm maintaing, fogzch to the set of action nodes at which that plan might
each observation node, a set of “incomplete” (that is, terminate, or to the empty set if the plan might fail when
planless) out-neighbors, and inseutsnto the globaly each executed fromv. This function can be computed by a forward
time a new plan is stored at one of its out neighbors, providegharch of reachable action node/plan node pairs, veryasimil
that w’s incomplete list is empty. In this way, the algorithmy Algorithm 1.
ensures that every plan it generates is complete and correctrhe appeal of the outcome function is that it shows, from
for the v at which it is generated. a global perspective, how much potential for reuse a plan
possesses. Fofl; we use a straightforward measure of

reusability based on the total average distance adrdkat
As mentioned above, Algorithm 3 maintains a boundeg plan can achieve. Specifically, we define

size collection of “promising” plans for each action node.

Specifically, at action node, we storetwo plan setss; (v) Hy(P)= 1 Z d(v,v")

andss(v), each of which holds at mogt plans, in whichk Ve (Val Orey (0) 20} Or(p)(v) V€O, (v)

is a tunable glgorlthm paran']e.ter. ) ) in whichd(v,v") denotes the number of edges in the shortest
Below, we mtroduc_e heuristic functiond; (which mea-  girected path connecting to v’ in 1.

sures thelocal conciseness of a plan) anfl; (which )

measures the global reusability of a plan). As the algorithy- Algorithm summary

proceeds,s;(v) always contains thé or fewer plans that  This completes the overall picture of Algorithm 3. To

maximize Hy, across all generated plans that reach the goaummarize, it tracks a set of observation nodes throughtwhic

B. Plan evaluation heuristics

)



new complete plans can be constructed. As long as this set 65 S,q—

is not empty, it removes an arbitrary observation node, \
It then constructs new plans that pass througtstarting
from each of its in-neighbors, using all combinations ofgla
stored in both the; ands, sets of the resulting action nodes.
For each such plaR, we compute the heuristic functior,
andH,, and inserP into thes; and/ors, sets aeveryaction
node for whichP successfully reaches the goal and improves

upon the existing plans ar@ is updated appropriately. This ° @ 0 o

process continues untd) is exhausted, at which point the

best start-to-goal reduced plan is returned. Fig. 6: [top] The I-state graph for the problem of orientirge tFourgon
polygon with a binary sensor measuring whether the jaws ofjthpper are
VI. EXPERIMENTAL RESULTS more thanz =10.5cm apart or not. Observation arcs are labeled ‘0’ or ‘1’;

. . . . the latter is returned when the diameter of object in its stablentation
We implemented Algorithm 3 to test its efficiency andexceeds the distance threshold, and ‘0’ is returned otisengThe remainder

the concision of the plans it produces for both manipulationf the graph follows the format of Fig 5.) [bottom] The most caecplan
(Section VI-A) and navigation (Section VI-B) domains. Our®"%:
implementation uses C++ and all of the executions used a
single core of a 2.5GHz quad-core processor.

A. Manipulation

In the spirit of the established techniques for2Es

(nearly-)sensorless manipulation [7], [13], we execute \ s : "
. . . . G 5 10 15 20 25

the algorithm on a family of problems in which the goal Time (s)
is to orient a polygonal shape using a series of squeezgg. 7: An example with multiple goals. The same (optimal) sohutis
from a parallel-jaw gripper. Given a description of thefound with all values of parametér, which bounds the number of subplans
convex-hull of an object we followed the steps (detailed©red & each action node.
in [6]) for treating such problems: (1)we computed thed: Navigation
diameter function for the polygon, (2) identified minima Second, we considered a simplified navigation domain
in this function, giving the stable orientations that occuin which a robot moves within a grid of discrete cells
after a squeeze operation, and (3)computed the so-callesing actionaup, down, | eft, andri ght, each of which
squeeze function mapping a pre-squeeze orientation ieto theliably moves a single cell in the desired direction unless
post-squeeze orientation. For these problems we condidewmn obstacle impedes that motion. The robot's observation
small sets of actions of the form “rotate gripper byand space is¥” = {00, 01,10, 11}, in which the first bit indicates
squeeze.” This is sufficient to construct an I-state graph favhether the robot bumped on obstacle on its previous move,
sensorless problems. and the second bit is the output of a goal-detect sensor.

The left part of Figure 5 gives an example using one of This family of problems is interesting because many
the objects we evaluated: the “fourgon” shape. The figur@stances admit very concise plans. In particular, small
provides intuition for how the local minima in the plot
represent stable orientations after a squeeze operation is
performed by the frictionless parallel-jaw gripper. Figus
shows the form of the I-state graph generated for the probles
of orienting the fourgon using rotations of only and65°,
and squeeze operations; the resulting plan produced by t
algorithm is also shown. Note how, although the geometr
of the object is simple, determining a concise open-loop ple S S S

. . . . G 0 30 60 90 120 150 180 210 240
given those actions remains far from obvious. Time (s)

Sensing mform"?‘tlon can 'also be .|nco'rpora.ted n thlsFig. 8: A switch-back pattern affords opportunity for plaonmpression.
problem. We considered a simple setting in which one can
specify a set of binary sensors, each determining whetleer th
distance between jaws of the gripper exceed some threshmis
or not. Figure 6 extends the preceding example by adding
single diameter threshold sensor with distance 10.5cm. Tl
I-state graph observation edges (in blue) are now labele
with the output from the threshold sensor. The resulting pla- 5 " = o T
exploits this information and is smaller than the senserle¢ Time (s)

plan, which has been seen in plans for orienting other abjedctig. 9: An example in which many concise plans can navigateutitrahe
too. open field, but only one can navigate the narrow corridor.
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Fig. 5: [left] The diameter function computed for the Fourggufe (shown inset in three orientations). Local minima in thé ppresent stable orientations
for the object when squeezed by a parallel-jaw gripperhfrigtop] The I-state graph for the problem of orienting theufgmn polygon without sensors,
constructed automatically using classical techniques. ftaek arcs leading from square vertices are where an acti®t baiselected, the blue arrows
represent transitions based on a observation (but are emghjsi example); the shaded vertex is the goal. The ‘S’ symbpbts a squeeze action by
the gripper; ‘5’ and ‘65’ denote rotations of the gripper byps$e many degrees, respectively. [right, bottom] An opep-ldan found believed to be the
most concise solution, found using Algorithm 3.

plans tend to exist for instances in which short sequencesFirst, one might relax the requirement of worst case
of actions, terminated by appropriate observations, carorrectness and, after assigning a probability distrdouti
be repeated to make progress toward the goal. We coover the out-edges of each observation node, instead form
structed several grid navigation problems in order to evaplans whose success probability is less than unity. An-nter
uate Algorithm 3. Space limits us to the three examplessting question is to understand the impact of increasiag th
in Figures 7—9. The figures show the performance of theequired success probability on plan conciseness.
method with different limits on the number of plans associ- Additionally, it is worth noting that generally one wishes
ated with each action node. This is indicated with the value have an understanding of the tradeoff between plan execu-
of the k parameter (used on Line 4 of Algorithm 2). tion cost and expression cost. Existing work emphasizes the
Figure 7 is the same environment as Figure 1, but thatter factor, but the algorithm presented ignores the &rm
I-space differs because the earlier example had no bumagpect. Joint consideration both criteria—via scaladzatir
detector. The plot shows that an optimal 3 state solutioRareto optimality concepts—would be useful results.

's_ found for ea_ch value of:. F'Q“re 8 Is an environment Acknowledgments This material is based upon work supported
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