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Abstract— A fundamental challenge in multi-robot systems
is that global information is needed to succeed in some tasks,
while the system’s computation and sensing are fundamentally
distributed. This paper considers the problem of estimating
the relative density of robots in particular regions of the
environment, but without wishing to incur the cost of obtaining
a consistent metric representation. We compute a probability
density function that describes positions of the robots within
the system by leveraging properties of the underlying commu-
nication network. We introduce three different strategies for
using and combining local measurements via a modified Parzen
window kernel density method. The result is a representation
that is most accurate near to the querying robot but which
maintains qualitative properties of the global density. We argue
that this a useful relaxation of the problem because it is
meaningful from the perspective of the robots within the system
itself. Validation takes the form of simulations with hundreds
of simple robots.

I. INTRODUCTION

A multi-robot team has the potential to outperform a single
robot through the synergy of the efforts and capabilities of
the constituent robots. But in many situations, even when the
computation is not centralized, decision making still depends
on knowledge of the whole system. We are particularly
interested in collecting statistical descriptions of system wide
properties in order to aid in performing these types of tasks.
This work considers the problem of estimating the spatial
density of a completely distributed multi-robot system.

Density estimation is a technique for constructing an
estimate of an unobservable underlying probability density
function (p.d.f.) based on limited observations. The way
mobile robots are spread throughout a space can be modelled
as a density function over Cartesian coordinates. Density
estimation is traditionally used to visualize and understand
the structures and patterns underlying some data. While
this is usually done with conventional metrics, in this work
we explore algorithms that provide density estimates that
are topo-geometric (first coined in [1]), bringing together
complementary aspects of both global topological and geo-
metrical properties for large scale networks. We posit that
such metrics are particularly useful for robots autonomously
making decisions in a “fog” of uncertainty. Topo-geometric
methods use a standard metric locally to provide accurate
measurement in neighborhood around each robot, but which
are more qualitative further out. Because “globally topo-
geometric, locally metric” densities can be meaningfully
employed by the robots in reasoning about their teammates,
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it is useful to apply techniques that allow one to estimate
such densities in a distributed way.

Although a variety of methods of density estimation over
distributed data already exist [2], [3], [4], [5], [6], global
density estimation for the specialized problem of estimating
the spatial positions for distributed mobile robots has not yet
been addressed adequately. In particular, existing methods,
among which most are related to sensor networks, remain ill-
suited because they make assumptions which do not reflect
reality in a multi-robot system. Distinctions of density esti-
mations between distributed multi-robot systems and sensor
networks are described and compared in Section III.

We develop one such technique in this paper: the global
p.d.f. is estimated by using non-parametric statistics—
namely, the Parzen window density estimation method. In-
spired by this method, communication is used to collect
measurements for each sample and emulate each window
(the windows, for which the method gets its name, are
usually centered on data points). Local observations are
aggregated via a tree structure through which the data flow.
Both global and local spatial features are captured by the
combination of the data-flow tree and the local observations.
In addition, time complexity (running iterations) and commu-
nication complexity (total number of end-to-end connections)
are reduced by fusing data on the compact data-flow tree.

The proposed method has dual features: it is locally metric
but globally topo-geometric. In essence, metric consistency
is achieved exactly only locally (i.e., the usual properties are
maintained in a local patchwork represented by the commu-
nications network), while the topo-geometric aspect identifies
global structures by linking the local patchworks together
(see also [1]). The idea that one gains from complementary
topological and metric representations has been use in several
ways in robotics including mapping and localization [7],
[8], coverage control [9] and motion planning [10]. We are
not aware of any work, however, for employing topological
properties with a view to density estimation. Conventional
density estimation employs traditional metrics and the very
definition of density is meaningful over a space (e.g., with
well-defined metric). In contrast, a deformed density function
in the topological sense can be appropriately and meaning-
fully interpreted for the robot’s themselves. This is because
these operations use exactly the same connectedness relation
(e.g., the same data-flow tree). Our primary motivation lies
in that such estimated densities can be effectively used for
operations such as the density-based clustering or partition-
ing, as well as gradient-based redistribution of the distributed
multi-robot systems, etc.



II. PROBLEM DESCRIPTION

A. Parzen Window Density Estimation
The goal of density estimation is to make inferences about

the p.d.f. underlying a finite set of data samples, despite the
fact that there are locations where no data are observed. We
employ a popular non-parametric kernel density estimation
(KDE) technique called the Parzen window method. KDE is
a data-driven approach where the contribution of each data
point is smoothed out from a single sample point into a
region of space surrounding it. Aggregating the smoothed
contributions yields a p.d.f. which reflects the structure of
the data.

More formally, given a set of d-variate data samples
{Xi, i = 1, · · · , N,Xi ∈ Rd} drawn from a density f , the
kernel density estimate for this set is:

f̂(x,H) =
1

N

N∑
i=1

φ(x,Xi;H), (1)

where x = (x1, x2, · · · , xd)T and Xi =
(Xi1, Xi2, · · · , Xid)

T , i = 1, 2, · · · , N . H is symmetric and
positive-definite and termed the bandwidth matrix, which is
used for smoothing and scaling purposes. φ(x,Xi;H) is a
kernel with location Xi and H:

φ(x,Xi;H) = |H|−1κ(H−1(x−Xi)), (2)

where κ(x) is a symmetric probability density function
called kernel function. Specific choices for kernel functions
are not critical to our considerations here, so long as the
contributions of individual sample points are smoothed. In
our work we use κ ∼ Nd(0, I), namely:

κ(x) =
1

(2π)d/2
exp(−1

2
xTx). (3)

Let Σ be the covariance matrix of vector x. We consider
the simple and common case, where H and Σ are restricted
to diagonal matrices, i.e., H = diag(h1, h2, · · · , hd) and
Σ = diag(σ2

1 , σ
2
2 , · · · , σ2

d), then the rule of thumb (Scott’s
rule [11]) for choosing the bandwidth is

hj
.
= σj

(
4

(d+ 2)N

)1/(d+4)

j = 1, 2, · · · , d. (4)

We are interested in estimating the spatial density
function, so the data samples are bivariate vectors, i.e.,
Xi = (xi, yi)

T , where xi, yi are the coordinate values of the
i-th robot’s position. Following Equation (4), the bandwidth
estimate along the x, y directions simplifies to

ĥx = σ̂xN
−1/6, ĥy = σ̂yN

−1/6. (5)

The concept of Parzen window suggests that one might
measure the local observations within a “window” with
circular boundary. Let radius Rw of the window be

Rw = K ·max(ĥx, ĥy), (6)

where K is an empirically determined parameter depending
on the quality of final estimated density functions. It is
difficult to derive a theoretical K because the bandwidths hx
and hy are computed via the Scott’s rule which is empirical.
Further discussion of K is given in experimental section.

(a) (b)
Fig. 1. (a) N represents the north direction sensed by the compass, and red
arrows denote the robot heading directions relative to N (assuming clock-
wise angular direction). Absolute bearing of a neighbor can be calculated
by α+ β; (b) an illustration of IR signal occlusion.

B. Neighbors: Sensing, Measurement and Communication
We assume the robots are homogeneous and without

any centralized controller. The sensing information that we
use for spatial density estimation is limited: distances and
bearings to neighboring robots. This can be obtained via an
array of ranging sensors such as IR or sonar. A compass is
used to compute absolute bearing information (see Fig. 1(a)
for an illustration). Robots are also required to be able to
communicate with their neighbors. These requirements are
minimal so as to be cheap and reflect existing hardware; for
example, e-puck robot with an e-RandB (range and bearing
miniature board [12]) is available and permits the robots
to identify, detect and communicate with a small subset of
nearby robots.

All local communications are treated as message pass-
ing; sent messages are received by all the robots within
the communication range, and a communication channel is
established after a handshake by verifying the identifiers
and/or the computed absolute bearings of nearby robots.
Occlusion poses a challenge. Since our method requires the
spatial information of all robots within the Parzen window,
the accuracy of the estimate decreases as robots within the
window are occluded. Fig. 1(b) shows how two robots (at the
top of figure) are blocked by the one in the center, rendering
them invisible to the robot in the lower-right corner. Such
occlusions are dealt with at the slight cost of increased
communication.

We assume each robot has bidirectional communication
and model the system as a sparse undirected graph G =
(V,E), where the vertices V represent the positions of the
robots (|V | = n), and the edges E represent the connections
of directly communicable robot pairs (e(v, u) ∈ E is an edge
between vertex v ∈ V and u ∈ V ). Two parameters that are
useful to us are: (1.) the degree of a vertex deg(v), which is
the number of edges connected to this node; (2.) the diameter
of the graph diam(G), that measures the maximum distance1

between any two nodes in G.

III. LOCAL OBSERVATIONS, GLOBAL COMBINATION

Unlike the original Parzen window method, where the
global density function is an average of kernelized densities
drawn from all samples, our method considers local obser-
vations of each sample (robot), and all local observations
contribute to correct the measurement errors that deform the

1The distance here means the geodesic distance, i.e., the minimal number
of edges between two vertices in a graph. See [13], [14] for applications of
diameter in multi-robot systems.



(a) (b)
Fig. 2. (a) A data-flow tree showing messages traversals. Numbers on the
nodes denote the hop distance from the root. Bigger ellipses indicate larger
estimation errors; (b) Messages traversing the network. Light blue nodes
are unexplored whereas dark blue nodes are recently explored. Red nodes
denote visits by DT-Msgs in backward traversals starting from leaf nodes.

p.d.f. Spatial density estimation of the multi-robot systems
has a unique set of challenges:

1) The network may be incomplete. The robots can only communi-
cate with others within their vicinity;

2) Data are not ready-made. An important part of the problem
involves the robot performing the measurement itself, which it
must do before the results can be sent to the data collectors;

3) Communication costs are significant and should be minimized.
Communication reductions produces a more responsive system.

4) Data have measurement errors. Additionally, errors may accumu-
late or be magnified as part of the data collection procedure.

The following subsections provide the solutions to adapt
to these particular characteristics.
A. Data Flow Tree—Addressing the Incomplete Network

To estimate the global density, the broad perspective we
employ is the local estimations/observations, global com-
bination framework already used elsewhere for distributed
systems (see [4], [5] for examples). Unlike existing methods
within the framework, we design a communication protocol
based on a tree-like structure which aids in managing the
flow of messages. We call the tree a data-flow tree (DFT),
where the query robot at the root represents a “sink” and the
other nodes are sample locations, see Fig. 2(a).

A DFT is constructed by identifying the parent-children re-
lationship. The DFT-construction message (DC-Msg) makes
this possible. A DC-Msg package contains the following:
• the preceding (parent) robot’s ID and derived absolute position;
• the hopping distance from the root;
• a short queued history of recently visited robots.

A DFT is constructed only upon request of a query
robot (for our purposes, an arbitrary robot). The query robot
acts as the root, initiates multiple DC-Msg packages, and
distribute them to a subset of the nearest neighbors that
are directly communicable. A robot that has received a DC-
Msg immediately flags its state as having been explored and
will not accept other DC-Msgs. All such robots update their
DC-Msg, replicate it, and distribute it to other robots in the
same way. Successive robots naturally have larger numerical
labels, each being identical to the distance (in hops) from
the root, as shown in Fig. 2(a). A DC-Msg ends its life
when it reaches a leaf node (no other neighbors can be
explored), and a DFT is fully constructed once all DC-Msgs
have disappeared.

One detail worth mentioning is that not all communicable
neighbors are passed DC-Msgs. Instead, we predefine a
probability p ∈ (0, 1] to control the degree of DFT nodes.

This means that for a node v, if deg(v) > 1, it distributes the
DC-Msg to at most dp ·deg(v)e of the nearest communicable
neighbors (which also depends on the availability of unex-
plored nodes). The remaining edges in the communication
graph but not in DFT are used for data fusion, which is
discussed in following subsections.

Once the DFT has been established, a DFT-traversal
message (DT-Msg) can be used to convey data along the
DFT branches, either in a forward (away from the root)
or backward (toward the root) direction. The differences
between DT-Msg and DC-Msg are: (1.) a DT-Msg does not
have a limited lifetime and contains extra state recording the
current traversal direction; (2.) at each node with more than
one child, DT-Msgs can be replicated in a forward traversal
as well as merged in a backward traversal.

After all the data have been collected by DT-Msgs, the
query robot then computes the global p.d.f., and, if necessary,
may broadcast it to the whole system. We call the process
in which a DFT is completely traversed both forward and
backward a single round.

B. Local Measurement—Collecting the Data
During the construction of the DFT, the robots are linked

together. A DC-Msg records the absolute coordinate ~P0,a

(relative to root 0) of robot a which sent it out, and the
successor b that receives this message is able to derive its
absolute coordinate ~P0,b based on the relative coordinate
~Pa,b between a and b (associated with immediate range and
bearing observations):

~P0,b = ~P0,a + ~Pa,b, (7)
thus, if we fix the absolute position of the root of the tree,

all other robots at hopping distance m in a chain can be
localized along the DFT:

~P0,m =

m−1∑
i=0

~Pi,i+1, ∀m ≥ 1. (8)

Once a robot receives a DC-Msg and flags its state as in
the DFT tree, it needs to prepare the data (local observations)
that will be collected by a backward traversing DT-Msg. We
propose three strategies to obtain such local statistics:

1) No Local Metric: Each robot simply reports its own
absolute position that it estimated along the message traver-
sals of DFT construction. For a system with n robots, the root
will finally get n data samples. This is a traditional “local
estimation, global combination” method to collect distributed
data and works well when sensing error is small. In essence,
this strategy uses only the “connectedness” of the network
topology; it is cheap in terms of communication messages
and fast in running time.

2) Coarse Local Metric: We can extend the strategy
above if we add a little extra local measurement: i.e., each
robot i considers the neighbors j (j 6= i) it can sense locally
to form a window (with radius at most the sensing range Rs)
instead of only itself. These neighbors form a set S:

S = {j | ‖ Xi −Xj ‖≤ Rs}, ∀ sensible j. (9)
Explicit communication with these neighbors is not neces-

sary, instead, their positions are derived with observations of



(a) (b)
Fig. 3. (a) A local DFT. Red branch is part of the parent branch and
is obtained from forward DT-Msg traversal. Green branches are part of
children branches and are obtained from backward DT-Msg traversals;
(b) Fusion of local observations from different incomplete local DFTs.

their relative ranges and bearings. This strategy requires extra
observations and computation, but no extra communication.

3) Fine Local Metric: We add extra communication to
overcome occlusion, allowing a robot to “see through”
the obstacles and include measurements for robots that
are farther away, i.e., observations of neighboring robots
are combined via communication. This local exploration
is achieved by building a miniatured DFT rooted at the
measuring robot i which only grows as large as the border
of the Parzen window (with radius Rw). The set of robots
on such miniatured DFT can be expressed as:

S = {j | ‖ Xi −Xj ‖≤ Rw}, ∀j on DFT. (10)

The above three strategies are given in order of depen-
dence on metric information to nearby agents (and therefore
also communication). The locally measured data are then
aggregated and “kernelized” by the root robot in the final
stage and a p.d.f is computed by considering all local
observations. Mathematically, a sample (robot) Xi can be
observed in different windows, with observed values X̂(j)

i in
the j-th window subject to robot j. Let Ji denote the set of
robots who can observe Xi, then Ji = {j}, and a local p.d.f.
contributed by Xi is averaged from all these observations:

f̂(x, X̂i) =
1

|Ji|
∑
∀j∈Ji

φ(x, X̂
(j)
i ;H), (11)

where the kernel for an observation is

φ(x, X̂
(j)
i ;H) = |H|−1κ(H−1(x− X̂

(j)
i )), ∀j ∈ Ji, (12)

and the final p.d.f. becomes

f̂(x,H) =
1

N

N∑
i=1

f̂(x, X̂i), (13)

which in essence is averaged from all estimated kernels.

C. DFT Data Fusion—To Reduce Communication
As mentioned in Subsection III-B, a good local measure-

ment for a data sample can be obtained by constructing a
local miniatured DFT rooted at that sample. However, since
many other robots—including the neighboring robots—are
performing exactly the same work simultaneously, this can
cause communication traffic conflicts. Even if the conflicts
can be alleviated through serialization, it remains possible
for a communication edge to be used many times to convey
the same information.

To solve this problem, we implicitly construct such minia-
ture DFTs by selectively recording those local measurements
along with the DT-Msg passing in one round of DFT
traversals. More specifically, in the forward traversal, the
message queues a short history of the preceding robots’

information, such that a parent branch is used to serve as
a tree-branch of local DFT (see the red branch in Fig. 3(a)).
Similarly, histories of the child branches can be recorded in
the backward traversal (green branches in Fig. 3(a)).

However, the method described will not necessarily cap-
ture all the robots in the Parzen window, e.g., in Fig. 3(b),
there are three independent branches within the window, and
none of them can contain the correct local measurements
alone. To solve this problem, we employ a technique to
“fuse” the data by constructing the union of sets. The robot
updates its local DFT by detecting and adding new robots
within the window. A measuring robot i ∈ S communicates
with the neighbors j ∈ S′

that are not in the same branch
and exchanges the information on related robots (S and S

′

are sets from different local DFTs). The spatial positions for
the set of exchanged robots are re-derived and the ones that
are inside a Parzen window are incrementally added to the
local DFT, i.e.,

S = S ∪ {j | ‖ Xi −Xj ‖≤ Rw}, ∀j ∈ S
′
. (14)

Since a robot (e.g., node v) has at least (1 − p) · deg(v)
local connections that are not on DFT, approximately (1 −
p) · deg(v) times this fusion will be successful. In this way,
the utility of each communication edge can be maximized:
conflict need not happen since the fusion communications
over the off-DFT edges are (pairwise) single hops.

The high-level pseudo-code is summarized in Algo-
rithm IV.1. The algorithm uses two rounds of DFT traversals:
the first round is responsible for constructing the DFT
and collecting the N data points without any local metric
measurements. The coarse data are used to approximate
bandwidth with the rule of thumb; then the second round
using specific local metrics further refines the estimation.

IV. EXPERIMENTS

In order to validate the approach, we simulated the al-
gorithm with hundreds of robots on our simulator written
in C++ and MATLAB. All the robots are homogeneous and
have identical sensing and communication ranges. Each robot
is capable of recognizing its neighbors if they are within the
sensing/communication range and there is no other obstacle
in between (robots do occlude communications of others).
For these recognizable neighbors, communication edges are
established with them, and their ranges and bearings can be
directly observed. We also simulate measurement errors, and
perturb each neighbor’s sensed distance by a random value
in the range [−50cm, 50cm] and perturb every neighbor’s
sensed bearing by a random value in the range [−30◦, 30◦].

Fig. 4(a) is an example of a multi-robot swarm (N = 500)
carrying out tasks under two Gaussian distributions (practical
scenarios can be, for instance, marine surface robots cleaning
oil or a red tide formed with measurable distributions). Along
with the task commitment, the positions of robots may drift
and the distribution of the whole swarm can change over
time. Therefore, immediate estimation of the global p.d.f.
based on real-time measurements is required to monitor the
system and adapt the densities of robots. In order to best



Algorithm IV.1 Spatial density estimation algorithm
Input: capabilities of local localization and communication
Output: global p.d.f.

{/* 1st round traversal */};
1: DFT construction (forward);
2: coarse data aggregation (backward);

{/* at the root */};
3: bandwidth computation using rule of thumb;

{/* 2nd round traversal */};
4: obtaining parent branches of local DFTs (forward)
5: obtaining children branches of local DFTs (backward)
6: data fusion to perfect local DFTs (backward)
7: aggregation of local observations (backward)

{/* at the root */};
8: p.d.f. computation by query robot.

Notes: Lines 4—6 can be substituted with coarse metric.

(a) (b)
Fig. 4. An example of a 2-peak Gaussian-distributed swarm in an
100m×100m planar space (a) The constructed DFT with root on the
left (worst case for estimation). Red circles denote robots; (b) The true
probability density function estimated from the ground truth coordinates.

estimate the global density, we require the majority of the
robots be connected. To demonstrate the worst case, the
query robot is chosen from the perimeter of the network, as
the big black nodes on the far left. Fig. 4(b) is the estimated
p.d.f. based on the ground truth positions.

To compare the three local metrics, contours from each
strategy are plotted, as shown in Fig. 5. Fig. 5(a) is the
contour generated from the ground truth positions, and the
other three are the ones that use no local metric, coarse local
metric and fine local metric, respectively. Comparing the four
contours, we can see that none of the last three are identical
in shape or in scale to that of the ground truth. However,
if we count the number of peaks, only Fig. 5(d) (the one
that uses fine local metric) has the same number as that of
the ground truth, although the contour shape of the right
Gaussian is wider than the left. Intuitively, one can imagine
that the right Gaussian contour in Fig. 5(d) is the stretched
counterpart of Fig. 5(a). The shape is deformed, but it is
not split into pieces. Such a property is conceptually similar
to the notion of topological deformation. Thus, the “fine
local metric” resolves issues arising in the first two local
measurement strategies in this case.

One thing worth mentioning is that, as the number of
samples in the same space increases, the size of Parzen
window decreases. When the Parzen window is smaller than
the robot’s sensing/communication range, the coarse local
metric is able to cover the area to take into account enough
neighbors. In that case, estimation using the local coarse

(a) (b)

(c) (d)
Fig. 5. Contours from differing local metrics. (a) Ground truth (No Mea-
sure); (b) No metric; (c) Coarse local metric; (d) Fine local metric.

metric can reach the same accuracy as that from the fine
local metric, which is illustrated in Fig. 6.

It is difficult to find a meaningful distance metric to
compare our p.d.f. with that of the ground truth (see a survey
for possible distance metrics in [15]), since the data are
deformed (errors are embedded) before the estimation step.

One possible way to quantify the differences among these
deformed density functions is to compare the p.d.f. values
of the original samples (robots’ positions): f̂(X), where
X = {Xi, i = 1, · · · , N}. The rationale is that, although the
spatial positions and scale are changed due to measurement
errors, the topology is expected to be unchanged (as the two
peaks vs. three peaks in Fig. 5). If we locate the samples
in the corresponding deformed p.d.f.’s, they should have
similar values. However, such sampling on a p.d.f. is not
very meaningful since the samples are finite, but the p.d.f.
is continuous. In a sense this form of comparison is akin
to comparison of two vectors, nevertheless, some sense of
similarity between the two estimations can be grasped. We
use three distance metrics from differing families: Euclidean
distance dE from the Lp Minkowski family, Sorensen dis-
tance dS from the L1 family, and Fidelity distance dF from
the Fidelity family, as below:

dE =

√√√√ N∑
i=1

(f̂1(Xi)− f̂2(Xi))2, (15)

dS =

∑N
i=1 |f̂1(Xi)− f̂2(Xi)|∑N
i=1(f̂1(Xi) + f̂2(Xi))

(16)

dF =

N∑
i=1

√
f̂1(Xi)f̂2(Xi) (17)

We set f̂1(·) to the ground truth density function, and
f̂2(·) to the density functions to be compared, which can
be the estimated p.d.f.’s of using no local metric, coarse

(a) (b)
Fig. 6. Spatial density estimations for a large system with 1000 robots
distributed in four Gaussian clouds (query robot is near the coordinate
origin). (a) Coarse local metric; (b) Fine local metric.



(a) (b) (c)
Fig. 7. Similarities analysis using different distance metrics. (a) Euclidean;
(b) Sorensen; (c) Fidelity.

local metric, or fine local metric. Fig. 7 shows the results
for testing the scenario of two Gaussian peaks formed by
500 robots, using the three local measurement methods, each
of which is compared with the ground truth with the three
distance metrics of (15)– (17). All three distance metrics
show that the measurements of fine local metric are much
better than the methods with no or coarse local metrics.

Similar to the bandwidth computation in various Parzen
window approaches, our window radius Rw is also an empiri-
cal value. As described in Equation (6), we need to determine
the constant K. We have investigated the influences of
window radius with the mentioned three distance metrics, as
summarized in Fig. 8. The three curves have a consistent
trend: as the radius of our Parzen window increases, the
estimated p.d.f. is closer to the truth. This reflects the trade-
off between the computation/communication and the fineness
of estimated density function. We tested various cases with
different numbers of peaks, and the results show that when
Rw is 1 ∼ 2 times the bandwidth (max(hx, hy)), the global
density features can be clearly captured and corrected. This
corresponds to the “radii bandwidth” of 8–16 along x-axis
of sub-figures in Fig. 8. For the window radii larger than
16, the distance changes tend to flatten out. Therefore, to be
conservative, K should be set to be 2 for an unknown set of
samples.

V. DISCUSSION AND CONCLUSION

Both time complexity and communication complexity are
important for the applications we envision. The time com-
plexity is measured by the time steps for message passing
hops. There are two rounds of message traversals, in each
round the running time is O(diam(G)), where diam(G)
can be approximated with O(logN). Therefore, the overall
running time is approximately O(logN) on average. For
instance, in our experiment the running time for estimating
a system of N = 1000 is only ∼ 200 time steps. The
worst case for this method costs O(N) time steps, when all
robots are arranged in a straight line. The communication
connectivity complexity is O(|E|): the messages traversing
along the DFT only use the edges in the tree while the data
fusion steps use the remaining edges.

This paper introduces an effective algorithm to estimate
the p.d.f. of mobile robots’ spatial positions. The density esti-
mation utilizes two complementary parts: a measure captures
the detailed metric features of the local neighborhood, an a
global topo-geometric measure characterizes the overall large
scale structure. The deformed p.d.f in the topological sense
captures density information that can be well utilized in other
operations which use the same connectedness relation (e.g.,

Fig. 8. The distances between the estimated density and the ground truth
density. y-axis is the distances, and x-axis is the window radius for local
metric. Each result is averaged from 10 experiments.

partitioning, gradient-based system redistribution). Finally,
we verified the algorithm within a large-scale multi-robot
simulation and interpreted both quantitative and qualitative
aspects of the results.
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