
Minimalist Robot Navigation and Coverage using a Dynamical System Approach

Tauhidul Alam†, Leonardo Bobadilla†, Dylan A. Shell‡

†School of Computing and Information Sciences ‡Department of Computer Science and Engineering

Florida International University Texas A&M University

Miami, FL 33199, USA College Station, TX 77843, USA

Email: {talam005, bobadilla}@cs.fiu.edu Email: dshell@cse.tamu.edu

Abstract— Equipped only with a clock and a contact sensor,
a mobile robot can be programmed to bounce off walls in
a predictable way: the robot drives forward until meeting
an obstacle, then rotates in place and proceeds forward
again. Though this behavior is easily modeled and trivially
implemented, is it useful? We present an approach for solving
both navigation and coverage problems using such a bouncing
robot. The former entails finding a path from one pose to
another, while the latter combines different paths over desired
locations. Our approach has the following steps: 1) A directed
graph is constructed from the environment geometry using
the simple bouncing policies; 2) The shortest path on the
graph, for navigation, is generated between either one given
pair of initial and goal poses or all possible pairs of initial and
goal poses; 3) The optimal distribution of bouncing policies is
computed so that the actual coverage distribution is as close
as possible to the target coverage distribution. Finally, we
present experimental results from multiple simulations and
hardware experiments to demonstrate the practical utility of
our approach.

Keywords: Navigation; Coverage; Minimalist robot;

Cell-to-Cell mapping; Dynamical system.

I. INTRODUCTION

The problem of navigation is finding a path between an
initial pose and a goal pose. The coverage problem of the

environment is passing over all locations of interest using a
robot. These problems are important for many applications,

such as surveillance, vacuum cleaning, environmental de-

contamination, demining, and searching and rescue. The
motivation of our work is to find solutions to common

robotic problems using a minimalist robot.

Minimal sensing robots have been used to solve different
tasks such as localization [1], navigation [2] [3] [4], and

mapping [5]. In sensor-denied environments, some extrin-

sic sensors such as GPS will not work properly, and com-
pass readings can be disturbed by electromagnetic fields.

In some cluttered environments, vision-based perception

can also be ineffective and expensive. In these cases, we
rely on inherent sensing robot as it avoids using error-prone

sensors and actuators. So, for solving navigation tasks in an

environment, our robot uses only limited linear and angular
sensing. In the case of coverage, probabilistic coverage

strategies can be useful in adversarial environments [6].
So, we consider the nondeterministic angular rotation of

the robot for solving the coverage task.

Although sensors are cheap now but the overuse of
sensors requires powerful computation system and abun-

dant memory inside the robot. Instead, we use a little-

brained robot that can feed minimal sensor outputs directly
to motors. So, in this work, we investigate two robotics

tasks by proposing navigation and coverage for a robot

that has only a contact sensor and a clock, after its
localization. Here we apply a dynamical system method

called generalized cell-to-cell mapping (GCM).

Fig. 1. A navigation plan generated by our algorithm between the
initial configuration (red circled location facing South) and the goal
configuration (green circle location facing East) using a bouncing robot
that bounces with angles 45◦ , 90◦, and 135◦ .

The robot moves in a known polygonal environment and

has a simple behavior which is characterized by a set of

angles with an error range. We term this set of angles as
the set of bouncing angles. The robot moves straight in the

environment and once it discovers walls, by driving into

them, it rotates counterclockwise by a bouncing angle with
respect to its current moving direction, including the error

in rotation.

Our work makes the following contributions:

• We propose an algorithm based on the generalized
cell-to-cell mapping method to find the minimum

navigation plan for a minimalist robot between an

initial and a goal configuration in the environment.
• We generate all minimum navigation plans between

all possible initial and goal configuration pairs in the

environment.
• We develop a method for finding a probability dis-

tribution of bouncing policies for the best possible

coverage of the environment with respect to a target
coverage distribution.

The remainder of our work is organized as follows.
Section II reviews the related literature of minimalist robot

navigation and coverage. Section III defines the robot

model, explains cell-to-cell mapping, and gives formal
problem statements. In Section IV, we describe the method

of our work in detail. Then Section V illustrates our

simulation results and physical implementations of our
work. Finally, we conclude in Section VI with discussion

and a preview of our future work.

II. RELATED WORK

This section discusses related literature first on naviga-

tion of minimalist robots and secondly on the simple robot

coverage.

A. Robot Navigation

Early works on landmark-based robot navigation in-

clude [7] [8]. In these works, authors consider that the

robot goes from one landmark to another with the explicit
sensing of landmarks. However, in our work, we use the

geometric description of the environment for navigation
instead of the explicit sensing of landmarks.

More recent works on the robot navigation are belief
roadmaps [9], randomized belief space trees [10], and

feedback-based information roadmaps [11] which consider

the robot’s uncertainty in its navigation. In our work, we
have used a simpler robot model compared to those used in

these other works. The works [2] [3] [4] use a robot model
which is much closer to ours. In these works, authors use

a robot equipped with a compass and a contact sensor

whereas we use a robot equipped with a clock and a contact
sensor. In their work, the robot can orient itself using

the compass in the desired direction relative to a global

reference frame which makes their robot stronger than
our robot. Our robot instead follows a simple bouncing

behavior to get to the goal configuration from its initial

configuration. While they do not consider the weight of
the navigation path, we minimize it.

B. Robot Coverage

The problem of coverage by a mobile robot has been

investigated in different studies. In one survey on cov-
erage path planning [12] studied where the approaches

are evaluated based on whether they can be used online

or offline and on the type of environments they can
handle. In [13], an online topological coverage algorithm

for mobile robots is presented that uses the detection
of landmarks. Again, explicit sensing of landmarks is

required so that the area of the environment will remain

uncovered where no landmarks are available. Also their
method cannot find the critical points of concave landmarks

as obstacles. In [14], a coverage solution for mobile robots

is presented which finds critical points of obstacles in
unstructured environments and gives the entry and exit

critical points for each obstacle.

In [15], the authors propose fast coverage of the envi-

ronment based on the unpredictable trajectory of a mobile
robot with the use of a Logistic map and provide a

chaotic random bit generator for a time-ordered succession

of future robot locations. However, in their work, some
parts of the environment stay uncovered. In an adversarial

setting, the probabilistic method can optimally cover the

environment and maximize the chances of detecting adver-
saries [16]. Hence, in this work, we are interested in finding

the optimal distribution of the bouncing policies used by

our robot to get our intended coverage of the environment.

III. PRELIMINARIES

In this section, we introduce our robot model, describe

cell-to-cell mapping with required notation and definitions,
and formulate the navigation and coverage problems of

interest.

A. Robot Model

We consider a polygonal workspace W which contains
an inaccessible region (obstacle region), denoted O ⊂ W .

The robot can move in a subset of workspace that excludes
the obstacle region which is called the free space, E =
W \O. Let ∂E ⊂ E be the boundary of E.

In the environment E, we have a differential drive robot
modeled as a point robot. We assume that the robot has

a map of E and a finite set of angles Φ by which it can

rotate reliably. This robot is equipped only with a clock
and a contact sensor.

The robot travels forward in the environment and records
the number of steps using the clock as a limited linear

odometer which we call a pedometer. It continues the

forward motion until its bump sensors bump into the
boundary of the environment ∂E. After bumping at ∂E,

the robot uses the clock again as a limited functional angu-

lar odometer to rotate counterclockwise, by one bouncing

angle φ ∈ Φ including the error range ±ǫ, from the current

direction of the robot. Then, it travels forward until it
bumps at ∂E again and repeatedly follows this simple

behavior.

B. Cell-to-Cell Mapping

The configuration space of the robot is X = E × S1,

where S1 is the set of directions in the unit circle that
represents the robot’s orientations. Let x ∈ X denote

the configuration of the robot, in which x = (xt, yt, θ)
where (xt, yt) represents its position and θ provides its
orientation. Let A(x) ⊂ W be a closed set that defines the

robot. The obstacle region Xobs ⊂ X in the configuration

space [17] is defined as

Xobs = {x ∈ X |A(x) ∩ O 6= ∅} (1)

and the leftover configurations constitute the free space

which is denoted Xfree = X \Xobs.

The configurations of the robot are limited to a subset

of the whole configuration space. This subset of the con-
figuration space is denoted by Xfree. We discretize Xfree by

dividing it into equal sized 3-dimensional box cells. Let N
be the total number of cells. This discretized configuration
space is also called a cell configuration space. Each cell

represents an indivisible unit in the cell-to-cell mapping

system entity. The configuration of the system is indexed
by a cell index z ∈ {1, . . . , N}. Let Z = {1, . . . , N}
denote the set of all cells.

In the cell-to-cell mapping [18], the system dynamics

are described by

p(n+ 1) = Pp(n) or p(n) = Pnp(0) (2)

the above dynamical system evaluation is called the gen-

eralized cell-to-cell mapping (GCM) that creates finite

Markov chains where P is the one-step transition prob-
ability matrix and Pn is the n-step transition probability

matrix, p(0) is the initial probability distribution vector

over the cell configuration space, and p(n) is the n-step
probability distribution vector over the same configuration

space. Let p
(k)
ij denote the k-step transition probability from

cell i to cell j and be (i,j)-th element of P(k). If it is

possible through the mapping to go from cell i to cell
j, we say that cell i leads to cell j, symbolically i =⇒ j.

Analytically, cell i leads to cell j if and only if there exists

a positive integer k such that p
(k)
ij > 0. The cells i and j

are said to communicate if and only if i =⇒ j and j =⇒ i
which is denoted by i⇐⇒ j.

To make our work complete, here are some important

definitions of the GCM method. More definitions and

descriptions can be found in [19] [20] [21].
Definition 2.1: (Persistent Cell) A cell z is called a

persistent cell if it has the property that when the system
is in z at a certain moment, it will return to z at some time

in the future.
Definition 2.2: (Transient Cell) A cell that is not

persistent is called a transient cell. It leads to a persistent
group in some number of steps.

Definition 2.3: (Persistent Group) A set of cells that
is closed under the mapping is said to form a persistent

group if and only if every cell in that set communicates

with every other cell. Each cell belonging to a persistent
group is called a persistent cell.

C. Problem Formulation

We define a finite observation space Y which is a set of

discrete observations. The robot observes {0} if it moves
forward, and observes the angle of rotation φ ∈ Φ if it

rotates, therefore, the observation space is Y = {0} ∪ Φ.
Based on the resolution and the clock time between two

bumps, our robot measures the linear distance traversed by
the number of steps up to some quantization error. From

this measurement, robot receives a string of 0s as a stream

of observations. During a bump event, the robot measures
the bouncing angle φ using the clock time, resets the

clock, and receives the value of φ as a discrete observation.

Therefore, the sequence of observation of our robot, called
the observation string ỹ, is encoded as a string of 0s

interspersed by a value of φ.
Let xI ∈ Xfree be the initial configuration of robot

A, and xG ∈ Xfree be its desired goal configuration.

We assume that A knows xI and xG for the navigation
between xI and xG, and rotates reliably. In this context, a

single query (xI , xG) navigation problem is formulated as
follows:
Navigation Problem 1: Finding Minimum Plan

Given an environment E, a set of bouncing angles Φ,

an initial configuration xI, and a goal configuration xG,

find the observation string ỹ as a minimal navigation plan

for the robot from the shortest path involving the minimum

number of bouncing angle changes along the path, if one

or more paths exist.
Each bouncing angle represents a separate bouncing

policy for the robot. For answering multiple (xI , xG) nav-

igation plan queries for the robot, we can extend the single
query navigation plan problem by finding all possible

shortest paths between the initial and goal configuration

pairs using the given set of bouncing angles. As such, the
multiple queries navigation problem is formulated as:
Navigation Problem 2: Generating All Minimum Plans

Given an environment E, a set of bouncing angles Φ,

generate all observation strings as minimum navigation

plans for the robot from all possible shortest paths for all

(xI , xG) pairs in the Xfree, involving the minimum number

of bouncing angle changes along these paths.

In the coverage problem scenario, A does not need to
know about xI and xG. However, A has a target coverage

distribution over E which is denoted by b and its bouncing

angle has a small error range. To combine the bouncing
policies for coverage, the best solution is to find the optimal

bouncing policy distribution of the robot based on the

long-term robot’s behavior resulting from the application

of these policies. Let α be the bouncing policy distribution

of the robot. So, the coverage problem is formulated as:
Coverage Problem: Finding Optimal Bouncing Policy

Distribution

Given an environment E, a set of bouncing angles Φ,

an error range ±ǫ, and a target coverage distribution b,
find the optimal bouncing policy distribution α to get as

close coverage as possible to b.

IV. METHODS

This section describes the methods that solve the navi-

gation and coverage problem introduced in Section III.

A. Finding Roadmap and Minimum Navigation Plan

Let a topological graph G = (V,E) be a weighted,

directed graph and the weight function w : E → N
+ assign

the nonnegative edge weight. Each vertex v ∈ V represents
a configuration (cell) x ∈ Xfree and each edge (u, v) ∈ E
where u, v ∈ V , represents a configuration transition from

x ∈ Xfree to x′ ∈ Xfree. This topological graph is also
called a roadmap. If any path exists between the initial

configuration xI and the goal configuration xG on G, then

there will be one or more paths among (xI , xG) ordered
pairs for the set of bouncing angles Φ. Let a shortest path

of the robot A be τ : [0, 1] → Xfree such that τ(0) = xI ,
τ(1) = xG. After the robot’s bump event, if the bouncing

angle is preserved, the weight of the configuration transi-

tion is w1 for the robot. Otherwise, if the bouncing angle
changes, the weight of the configuration transition is w2

for the robot.
In our approach, we modify the generalized cell-to-

cell mapping method to find the roadmap G and the

minimum navigation plan between xI and xG in the cell

configuration space Xfree.
To attain these, Algorithm 1 receives as input the geo-

metric description of the environment E, a set of bouncing

angles Φ, zero error range ǫ = 0, the initial configuration
xI , and the goal configuration xG. It produces the roadmap

G and the observation string ỹ, which is the minimal
navigation plan as output.

In Algorithm 1, for each bouncing angle with zero error

range φi±0 where i ∈ {1 · · · |Φ|}, from the set of bouncing
angles Φ, each cell z ∈ Z computes the configuration

of the cell that represents the location (centroid) and the

orientation of a cell (line 6). The next mapped cell z′

represents the subsequent cell after z (line 7) which is

calculated as:

xz′ = xz +
r

2
(ul + ur) cos θ,

yz′ = yz +
r

2
(ul + ur) sin θ,

θ′ =

{

θ, if (xz′ , yz′) ∈ E,

(θ + φ) mod 2π, otherwise.

(3)

where (ul, ur) = (1, 1) specifies the left and right wheel

velocities and r = 1 is the wheel radius of the robot.
If the new orientation of the cell θ′ is equal to the

previous orientation of the cell θ then the cell number

of z′ is calculated from the new cell center location and
previous orientation, (xz′ , yz′ , θ), of z′ (line 9). Cells z, z′

are added to vertices set and their ordered pair (z, z′) is

added to edges set of the directed graph Gi and weight of
the corresponding edge is updated with w1 on Gi (lines 10–

12). Otherwise, Algorithm 1 calculates the set of possible

bouncing cells with respect to the given bouncing angle set

Φ. For the processing bouncing angle, we compute the next

cell z′ using the new cell center location and orientation
of the cell with zero error range (xz′ , yz′ , θ′ ± 0) (line

16). Both cells, their ordered pair as an edge, and weight

of their edge are added to Gi as before (lines 17–19).
For all other bouncing angles that represent the change

of bouncing angles, we compute the next cell z′ again

from the previous cell center location using Equation 3,
the previous orientation, and the bouncing angle with zero

error range (xz , yz, θ, φ±0) (line 21). Both cells and their

ordered pair as an edge are added to Gi but the weight of
their edge is updated with w2 on Gi (lines 22–24).

Algorithm 1 ROADMAP&PLAN(E,Φ, ǫ, w1, w2, xI , xG)

Input: E,Φ, ǫ = 0, w1, w2, xI , xG {Environment, a set of
bouncing angles, error range, weights, initial, and goal
configuration}

Output: G, ỹ {Roadmap, Observation String}
1: G ← ∅
2: for i = 1 to |Φ| do
3: Gi.V ← ∅, Gi.E ← ∅
4: for j = 1 to N do
5: z ← j
6: xz , yz, θ ← CELLCONFIGUARTION(z)
7: xz′ , yz′ , θ′ ← NEXTCELL(xz, yz, θ, φi)
8: if θ == θ′ then
9: z′ ← CELLNUMBER(xz′ , yz′ , θ)

10: Gi.V ← Gi.V ∪ {z, z′}
11: Gi.E ← Gi.E ∪ {(z, z

′)}
12: w(z, z′)← w1
13: else
14: for k = 1 to |Φ| do
15: if k == i then
16: z′ ← CELLNUMBER(xz′ , yz′ , θ′ ± 0)
17: Gi.V ← Gi.V ∪ {z, z′}
18: Gi.E ← Gi.E ∪ {(z, z

′)}
19: w(z, z′)← w1
20: else
21: z′ ←OTHERCELL(xz, yz, θ, φk ± 0)
22: Gi.V ← Gi.V ∪ {z, z′}
23: Gi.E ← Gi.E ∪ {(z, z′)}
24: w(z, z′)← w2
25: end if
26: end for
27: end if
28: end for
29: G ← G ∪ Gi
30: end for
31: τ ← SHORTESTPATH(G, xI , xG)
32: ỹ ← NAVIGATIONPLAN(τ)
33: return G, ỹ

We repeat the same process for all the bouncing angles
in the given set Φ and create the roadmap G from the

geometry. In line 31, we use Dijkstra’s shortest path
algorithm [22] to find the shortest path τ on the roadmap G
from all ordered pairs of initial configuration xI and goal

configuration xG for different bouncing angles in Φ. The
function NAVIGATIONPLAN finally returns the observation

string ỹ based on the shortest path τ (line 32). In this

function, if the consecutive cell distance in the shortest path
τ is less than N , it implies “forward movement” and gives

‘0’ as one discrete observation. Otherwise, it implies the

“bump” event and gives the bouncing angle φ as another
discrete observation. This observation string ỹ provides the

solution of single (xI , xG) navigation query.

B. Generating All Minimum Navigation Plans in Roadmap

We generate all minimum navigation plans from all
possible shortest paths among all (xI , xG) pairs in the cell

configuration space Xfree.

To obtain all possible shortest paths, Algorithm 2 takes

the roadmap G constructed from Algorithm 1 as input
and generates all minimum navigation plans M from their

shortest paths if one or more paths exist among ordered

(xI , xG) pairs and their path weights L as output.

Algorithm 2 ALLPLANGENERATION(G)

Input: G {Roadmap}
Output: M,L {Navigation Plans, Path Weights}

1: let M [1..N, 1..N], L[1..N, 1..N] be 2D lists
2: for i = 1 to N do
3: for i = 1 to N do
4: M [i][j]← NIL
5: L[i][j]← 0
6: end for
7: end for
8: for i = 1 to N do
9: for j = 1 to N do

10: if i 6= j then
11: τ, l← SHORTESTPATHANDWEIGHT(G, i, j)
12: if τ 6= NIL then
13: L[i][j]← −1
14: else
15: ỹ ← NAVIGATIONPLAN(τ)
16: M [i][j]← ỹ
17: L[i][j]← l
18: end if
19: end if
20: end for
21: end for
22: return M,L

Algorithm 2 initializes M and L lists (lines 2–7). From

xi ∈ Xfree on the roadmap G to all other xj ∈ Xfree on

G, we run Dijkstra’s algorithm to find τ and minimum
weight l among the (xi, xj) ordered pairs for the set of

bouncing angles Φ on G (line 11). If τ is none, which
means that there is no path among the (xi, xj) pairs,

Algorithm 2 assigns −1 to the (i, j)-th entry of L (lines

12–13). Otherwise, it encodes the shortest path τ into an
observation string ỹ as a minimum navigation plan (line

15) and then assigns the plan ỹ and minimum path weight

l to the (i, j)-th entry of M and L respectively (lines 16–
17). We find minimum navigation plans and path weights

for all x ∈ Xfree. Finally, Algorithm 2 returns M and L
lists. These minimum navigation plans and path weights
can then be used to answer multiple (xI , xG) navigation

plan queries and their comparison.

Algorithm Analysis: The running time of the Algo-
rithm 2 is O(N2logN) since it applies Dijkstra’s shortest

path algorithm to all (xI , xG) pairs for each x ∈ Xfree.

C. Finding Bouncing Policy Distribution for Coverage

We combine all bouncing policies represented by the set

of bouncing angles Φ for the given environment E to get
the closest coverage to a target coverage distribution b over

E. Let the probability of reliable rotation of the robot be r.

We apply GCM method that uses the bouncing angle set Φ,
the probability of reliable rotation r, and the nonzero error

range ±ǫ. This method finds a number of persistent groups

starting from all transient cells for each bouncing angle
with an error range φ±ǫ. Since the persistent groups are the

long-term behavior of the GCM, we consider the coverage

distribution of these persistent groups of a bouncing policy

as the coverage of the environment by that bouncing policy.

So, the transient cells are not considered for the coverage
of the environment. A persistent group is an irreducible

Markov chain as all its cells form a single communicating

class. So, all persistent groups for a bouncing policy create
a finite Markov chain P . The limiting distribution π of P
represents the coverage of E for each bouncing policy.

First, we find the limiting distribution set Π for all the
bouncing policies and then, using Π, we compute the

bouncing policy distribution α of all bouncing policies

through optimization.
In order to obtain the limiting distribution set Π, Al-

gorithm 3 takes as input the geometric description of the

environment E, the set of bouncing angles Φ, the error
range ǫ, the probability of reliable rotation r. It returns Π
as output.

Algorithm 3 PolicyDistribution(E,Φ, ǫ, r)

Input: E,Φ, ǫ, r {Environment, a set of bouncing angles,
error range and probability of reliable rotation}

Output: Π = {π1, π2, · · · , π|Φ|} {A set of limiting dis-

tributions}
1: for i = 1 to |Φ| do

2: G.V ← ∅, G.E ← ∅
3: for j = 1 to N do

4: z ← j
5: xz , yz, θ ← CELLCONFIGUARTION(z)

6: xz′ , yz′ , θ′ ← NEXTCELL(xz, yz, θ, φi)
7: if θ == θ′ then

8: z′ ← CELLNUMBER(xz′ , yz′ , θ)
9: G.V ← G.V ∪ {z, z′}

10: G.E ← G.E ∪ {(z, z′)}
11: else

12: Z ′ ← CELLSET(xz′ , yz′ , θ′ ± ǫ)
13: G.V ← G.V ∪ Z ′ ∪ {z}
14: G.E ← G.E ∪ {(z, z′), z′ ∈ Z ′}
15: end if

16: end for

17: S ← STRONGLYCONNECTEDCOMPONENT(G)
18: T ← TRANSITIVECLOSURE(G)

19: P ← MCFROMPERSISTENTGROUP(S, T, r)
20: πi ← NORMALIZEDLIMITINGDISTRIBUTION(P)
21: Π← Π ∪ πi

22: end for

23: return Π

In Algorithm 3, for each bouncing angle with error range
φ ± ǫ from the set of bouncing angle Φ, we create a

unweighted directed graph G following the same graph

creation procedure of Algorithm 1 without adding weight
to the edges of G. Additionally, for each cell z ∈ Z
when the new orientation of the cell θ′ is not equal to the
previous orientation of the cell θ, Algorithm 3 calculates

the set of possible bouncing cells Z ′ where Z ′ ⊂ Z , using

the new orientation of the cell with error range θ′± ǫ (line
12). All cells z, Z ′ are added to the vertices set and their

ordered pairs (z, z′), where z′ ∈ Z ′, are added the edges

set of G for the processing bouncing angle (line 13-14).
Then, it finds the strongly connected component S

from G using Tarjan’s strongly connected component al-

gorithm [23] (line 17). It also constructs the reachability
matrix T , finding the transitive closure from G (line 18).

From S and T , Algorithm 3 finds persistent groups using

the function MCFROMPERSISTENTGROUP (line 19). In

this function, if each vertex in a strongly connected com-

ponent is reachable from all other vertices in the strongly
connected component then this strongly connected compo-

nent is found as a persistent group and each cell of this

persistent group is classified as a persistent cell. If a vertex
in a strongly connected component is reachable from a

subset of vertices in the strongly connected component

then each cell of this strongly connected component is
classified as a transient cell.

Further, in MCFROMPERSISTENTGROUP function, an
adjacency list is created from all persistent groups of the

processing bouncing angle φ. Based on this adjacency list
and reliable rotation probability r, the function creates the

one-step transition probability matrix P . To obtain this, the

function uses the probability pij = r for reliable rotation

from cell zi to cell zj , pij =
(1−r)
2ǫ for unreliable rotation

from cell zi to cell zj , and pij = 1 for forward movement

from cell zi to cell zj . In the last step, it calculates the
limiting distribution π of P for the processing bouncing

angle with the error range φ ± ǫ, normalizes π, and adds

it to Π (line 20-21). Finally, Algorithm 3 returns Π for all
bouncing policies.

The probability distribution of choosing the bounc-
ing policies for the robot can be represented as an m-

dimensional vector where m = |Φ|,

α = (α1, α2, · · · , αm) (4)

Equation 4 should satisfy: 1) αi ≥ 0 for all i ∈ {1...m},
and 2) α1 + α2 + + αm = 1. The value αi is the
proportion of the robot choosing the i-th bouncing policy.

We obtain the optimal bouncing policy distribution α
from the limiting distribution set Π to achieve as coverage

as close as possible to the target coverage distribution b.
We create the matrix A based on Π. We use the constrained
least square [24] to compute the optimal bouncing policy

distribution α which is given by the following optimization

equation:

minimize ‖Aα − b‖2

subject to Cα = d, α >= 0
(5)

Here A is an n × m matrix, b is the n-vector where

n = N , α is the m-vector, C is an 1×m matrix.

The bouncing policy distribution α is the optimal for
obtaining the coverage closest to the target coverage dis-

tribution b because it minimizes the norm of the residual

error ‖Aα− b‖ having the constraints of Equation 5.
This bouncing policy distribution α states the time-based

switching among the bouncing policies to cover the envi-

ronment.

V. EXPERIMENTAL RESULTS

In this section, we present the simulation result and the
physical implementation of our algorithms.

A. Minimal Navigation Plan Result

We have tested Algorithm 1 by developing a simulation

and deploying it on a physical robot platform in the

hardware experiment. We used the iRobot Create Roomba
as a differential drive robot in an artificial laboratory

environment of Fig. 2(a). The Roomba has many sensors

but we utilized only the bump and clock sensors. In
the simulation, the configuration space of the laboratory

environment is computed analytically for the disk robot

Roomba, as illustrated in Fig. 2(b). The cell configuration

space Xfree is discretized into N = 384 cells. In the

simulation and experiment of navigation plans, we con-
sidered 8 different orientations of S1 with 45◦ between

each orientation.

We ran our simulation for the above discretized cell
configuration space Xfree using the set of bouncing angles

Φ = {45◦, 90◦, 135◦} and the error range ǫ = 0◦. We
set the weight of using the same bouncing angle, w1 = 1
and the weight of changing the bouncing angle, w2 = 100
in our simulation. The illustrations of the first navigation
plan between xI = 9 and xG = 1 and the second

navigation plan between xI = 104 and xG = 9 are

shown in Fig. 3. In Fig. 3(a), the first navigation plan of
the robot uses only one bouncing angle, 90◦, to navigate

from the bottom right corner of E, facing East, to the

bottom left corner of E, facing East. In Fig. 3(b), the
second navigation plan of the robot uses two bouncing

angles, 90◦ and 135◦, to navigate from the bottom left

corner of the obstacle that is touching ∂E, facing North
to bottom right corner of E facing East. Our simulation

gives two observation strings as output for two navigation
plans; ỹ1 = 00000090◦000000000000090◦00000090◦ and

ỹ2 = 000000135◦135◦000000135◦135◦00000090◦.

(a) (b)
Fig. 2. A laboratory environment: (a) an environment using floor and
bricks that includes one completely interior obstacle and one obstacle
touching the boundary of the environment; (b) the configuration space
of the environment shown in (a).

(a) (b)
Fig. 3. Simulation results of two navigation plans in the environment of
Fig. 2: a) the path from the initial configuration (bottom right corner of
E, facing East) to the goal configuration (bottom left corner of E, facing
East). b) the path from the initial configuration (bottom left corner of the
obstacle attached to ∂E, facing North) to the goal configuration (bottom
right corner of E, facing East).

Afterward, we deployed the two generated observation

strings ỹ1 and ỹ2 on the Roomba to navigate in the
environment depicted in Fig. 2(a). We show snapshots

of the two hardware experiments of the corresponding
simulated navigation plans in Fig. 4 and 5. In our first

hardware experiment of Fig. 4, we have placed the Roomba

in xI = 9 and it follows the observation string ỹ1 to get to
xG = 1. In our second hardware experiment (Fig. 5), we

have also put the Roomba in xI = 104 and it successfully

reaches to xG = 9. In these hardware experiments, the
Roomba uses its clock to measure the number of zeros as

it moves forward and the duration of rotation for different

bouncing angles. It also uses bump sensors for detecting
the “bump event”.

To test Algorithm 1 in a more complex environment, the

configuration space, as illustrated in Fig. 6, is discretized

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. Snapshots of different configurations of the robot executing the
first navigation plan of the simulation result of Fig. 3(a): a) the initial
configuration; 90◦ rotations are illustrated by the snapshot transitions
a–b, c–d, f–g, and h–i; after snapshots b, d, e, and g, the robot moves
forward; i) the goal configuration.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. Snapshots of different configurations of the robot executing the
second navigation plan of the simulation result of Fig. 3(b): a) the initial
configuration; 135◦ rotations are illustrated by the snapshot transitions
b–c, c–d, e–f, f–g; a 90◦ rotation is illustrated by the snapshot transition
h–i; after snapshots a, d, and g, the robot moves forward; i) the goal
configuration.

into N = 1464 cells considering 8 different directions of

S1 that are 45◦ apart of each other. For two pairs of initial
and goal configurations in the given cell configuration

space, Algorithm 1 finds two navigation plans using the

same set of bouncing angles Φ = {45◦, 90◦, 135◦}. In
Fig. 6(a), the first navigation plan of the robot uses two

bouncing angles, 90◦ and 135◦, to get to the goal configu-

ration xG from the initial configuration xI where locations

of xG and xI are illustrated with ‘red’ and ‘green’ circles

respectively. They face East-ward, and the navigation path
is depicted with ‘blue’ arrows . In Fig. 6(b), the second

navigation plan of the robot uses all bouncing angles,

45◦,90◦, and 135◦, to complete its navigation task from
xI to xG where the navigation path and its initial and goal

configuration are illustrated the same way as before.

(a) (b)
Fig. 6. Simulation results of two navigation plans in a complex
environment between pairs of initial configurations (‘red’ circle locations
of the environment, facing East) and goal configurations (‘green’ circle
locations of the environment, facing East).

B. All Minimum Navigation Plans Generation Result

We generate all feasible minimum navigation plans for

all (xI , xG) pairs in the cell configuration space Xfree of

the environment depicted in Fig. 2 from the simulation
of Algorithm 2. All minimum navigation plans and path

weights on Xfree using Φ are stored. We use all of these

navigation plans to answer multiple (xI , xG) navigation
plan queries. Then, we compare the total number of mini-

mum navigation plans using different numbers of bouncing

angles. The comparison result is shown in Fig. 7. This
result suggests that most of the minimum navigation plans

use only one bouncing angle, three bouncing angles are

used more than two bouncing angles, and few of them use
no bouncing angle, i.e., it does not bounce to get to the

goal configuration.

Fig. 7. Comparison of using each number of bouncing angles for
generated minimum navigation plans in the environment depicted in
Fig. 2.

We demonstrate one possible generated navigation plan

from Algorithm 1 between the ‘red’ circled initial con-
figuration xI and the ‘green’ circled goal configuration

xG in the environment, as illustrated in Fig. 1. We also
generate all feasible minimum navigation plans for all

pairs (xI , xG) in Xfree of the environment depicted in

Fig. 1 from Algorithm 2. In this simulation, Xfree has
N = 432 cells considering the same 8 directions of S1

with 45◦ between them and the set of bouncing angles Φ =
{45◦, 90◦, 135◦}. Again, we store all minimum navigation
plans and path weights, and compare the total number of

navigation plans based on the number of bouncing angles.

The comparison result is shown in Fig. 8. The result shows
that most of its navigation plans use three bouncing angles.

Fewer plans use two, one, or no bouncing angle. So,

both comparison results show that the number of bouncing

angles for all feasible navigation plans depends on the type

of the environment or its complexity.

Fig. 8. Comparison of using each number of bouncing angles for
generated minimum navigation plans in the environment depicted in
Fig. 1.

In our simulation result, we do not have navigation paths

for all pairs of (xI , xG) because for some of (xI , xG)
pairs there is no path on the roadmap G. However, the

inclusion of more reliable bouncing angles in the set, Φ,

will guarantee the navigation path for all pairs of (xI , xG).

C. Result of Bouncing Policy Distribution for Coverage

We have used the same complex environment E of
Fig. 6 for finding the bouncing policy distribution α to

get as close to the uniform target coverage distribution b.
The configuration space of the given environment Xfree

is discretized into N = 65880 cells considering S1 =
[0, 2π). We ran the simulation of Algorithm 3 on Xfree

for the bouncing angle set Φ = {30◦, 75◦, 315◦} as three
bouncing policies, the rotation error range ǫ = ±5◦,

and the probability of reliable rotation r = 0.8. Based

on the output from Algorithm 3, the visualizations of
persistent groups in E for different directions of S1 and

their corresponding heatmaps of the limiting distribution

set Π for bouncing angles including error 30◦ ± 5◦,
75◦±5◦, 315◦±5◦ are demonstrated in Fig. 9, 10, and 11

respectively. The heatmaps show the probability of visiting
different locations in the environment over time by a robot

starting from any location.

(a) (b)
Fig. 9. Persistent groups visualization in E for different directions of S1

and their corresponding heatmap of limiting distributions for the bouncing
angle including error range, 30◦ ± 5◦.

(a) (b)
Fig. 10. Persistent groups visualization in E for different directions
of S1 and their corresponding heatmap of limiting distributions for the
bouncing angle including error range, 75◦ ± 5

◦ .

We apply the constrained least square method of Equa-

tion 5 using the result of the limiting distribution set Π and

(a) (b)
Fig. 11. Persistent groups visualization in E for different directions
of S1 and their corresponding heatmap of limiting distributions for the
bouncing angle including error range, 315◦ ± 5◦ .

the uniform target coverage distribution b. As a result, the

optimal probability distribution α of all bouncing policies

is computed, and is tabulated in Table I. This result implies
that the robot has to use the bouncing policy of angle 315◦

about 50% of the time, and either the bouncing policy of

angle 75◦ or the bouncing policy of angle 30◦ around 25%
of the time.

TABLE I

OPTIMAL BOUNCING POLICY DISTRIBUTION RESULT

Bouncing policies, Φ Proportion of choosing bouncing policies α

30◦ 0.22138172
75◦ 0.28005791
315

◦ 0.49856037

VI. CONCLUSION AND FUTURE WORK

In this work, we have proposed navigation and coverage
methods for a robot equipped with a clock and a contact

sensor in a given environment. We constructed a directed

graph from the environment using a set of bouncing
policies. We found the minimum navigation plans on the

graph between either one given pair of initial and goal

configurations or all possible pairs of initial and goal
configurations. The optimal bouncing policy distribution

is calculated from the given set of bouncing policies to get

the best possible coverage of the environment with respect
to a target coverage distribution. We presented hardware

experiments and simulation results of our method, which
shows the usefulness of our work. However, there are still

some future directions to extend our work.

We can include error in the rotation of the robot for
navigation between the initial and goal configurations.

Our navigation method can be extended for finding the

navigation plan in an environment with dynamic obsta-
cles. More reliable bouncing angles can be added to the

set of bouncing angles for getting additionally minimal
navigation plans. However, it is still an open problem to

develop a complete navigation method for both rectilin-

ear and non-rectilinear environments using the minimalist
bouncing robot. Though we have done experiments in a lab

environment but we should undertake these experiments in

a more realistic office environment.
The coverage method can be augmented for a multi-

robot version of our work. Each robot can cover different
parts of interest in the environment without any coor-

dination among these robots. This could be useful for

developing distributed multi-robot patrolling methods in
the environment too. Instead of finding the bouncing policy

distribution, we can find particular number of best bounc-

ing policies from all the bouncing policies represented by
all bouncing angles in S1. We could also develop a method

to merge different bouncing policies into a single bouncing

policy for a single robot to follow that policy in covering
the environment effectively.

We plan to solve the mapping problem, constructing

the map of the environment accessible by our robot using

its simple bouncing behavior. We will develop a method
for the searching problem utilizing the bouncing robot’s

movement around the environment until it gets to a specific

spot in the environment.

ACKNOWLEDGMENTS

This work was supported in part by ARO grant

67736CSII. This work was also supported in part by NSF

awards IIS-1302393, IIS-1527436, and IIS-1453652.

REFERENCES

[1] J. M. O’Kane and S. M. LaValle, “Localization with limited
sensing,” IEEE Transactions on Robotics, vol. 23, no. 4, p. 704,
2007.

[2] J. S. Lewis and J. M. O’Kane, “Guaranteed navigation with an
unreliable blind robot,” in Proc. of IEEE International Conference
on Robotics and Automation, pp. 5519–5524, 2010.

[3] J. S. Lewis and J. M. O’Kane, “Reliable indoor navigation with
an unreliable robot: Allowing temporary uncertainty for maximum
mobility,” in Proc. of IEEE International Conference on Robotics
and Automation, pp. 160–165, 2012.

[4] J. S. Lewis and J. M. O’Kane, “Planning for provably reliable
navigation using an unreliable, nearly sensorless robot,” The In-
ternational Journal of Robotics Research, 2013.

[5] B. Tovar, L. Guilamo, and S. M. LaValle, “Gap navigation trees:
Minimal representation for visibility-based tasks,” in Algorithmic
Foundations of Robotics VI, pp. 425–440, Springer, 2004.

[6] T. Alam, M. Edwards, L. Bobadilla, and D. Shell, “Distributed
multi-robot area patrolling in adversarial environments,” in Inter-
national Workshop on Robotic Sensor Networks, 2015.

[7] A. Lazanas and J. C. Latombe, “Landmark-based robot navigation,”
Algorithmica, vol. 13, no. 5, pp. 472–501, 1995.

[8] N. Roy, W. Burgard, D. Fox, and S. Thrun, “Coastal navigation-
mobile robot navigation with uncertainty in dynamic environments,”
in Proc. of IEEE International Conference on Robotics and Automa-
tion, pp. 35–40, 1999.

[9] S. Prentice and N. Roy, “The belief roadmap: Efficient planning in
belief space by factoring the covariance,” The International Journal
of Robotics Research, 2009.

[10] A. Agha-mohammadi, S. Chakravorty, and N. M. Amato, “On the
probabilistic completeness of the sampling-based feedback motion
planners in belief space,” in Proc. of IEEE International Conference
on Robotics and Automation, pp. 3983–3990, 2012.

[11] K. Hauser, “Randomized belief-space replanning in partially-
observable continuous spaces,” in Algorithmic Foundations of
Robotics IX, pp. 193–209, Springer, 2010.

[12] E. Galceran and M. Carreras, “A survey on coverage path planning
for robotics,” Robotics and Autonomous Systems, vol. 61, no. 12,
pp. 1258–1276, 2013.

[13] S. C. Wong and B. A. MacDonald, “A topological coverage al-
gorithm for mobile robots,” in Proc. of IEEE/RSJ International
Conference on Intelligent Robot Systems, pp. 1685–1690, 2003.

[14] E. Garcia and P. G. De Santos, “Mobile-robot navigation with
complete coverage of unstructured environments,” Robotics and
Autonomous Systems, vol. 46, no. 4, pp. 195–204, 2004.

[15] C. K. Volos, I. M. Kyprianidis, and I. N. Stouboulos, “Experimental
investigation on coverage performance of a chaotic autonomous
mobile robot,” Robotics and Autonomous Systems, vol. 61, no. 12,
pp. 1314–1322, 2013.

[16] N. Agmon, G. A. Kaminka, and S. Kraus, “Multi-robot adversarial
patrolling: facing a full-knowledge opponent,” Journal of Artificial
Intelligence Research, vol. 42, pp. 887–916, 2011.

[17] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006. Available at http://planning.cs.uiuc.edu/.

[18] C. S. Hsu, “A theory of cell-to-cell mapping dynamical systems,”
Journal of Applied Mechanics, vol. 47, no. 4, pp. 931–939, 1980.

[19] L. Hong and J. Xu, “Crises and chaotic transients studied by
the generalized cell mapping digraph method,” Physics Letters A,
vol. 262, no. 4, pp. 361–375, 1999.

[20] C. S. Hsu, Cell-to-cell mapping: a method of global analysis for
nonlinear systems, vol. 64. Springer Science & Business Media,
2013.

[21] J. A. W. Van Der Spek, Cell mapping methods: modifications
and extensions. PhD thesis, Eindhoven University of Technology,
Netherlands, 1994.

[22] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms. MIT Press, Cambridge, MA, 2001.

[23] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
Journal on Computing, vol. 1, no. 2, pp. 146–160, 1972.

[24] B. Gustafsson, “Least square problems,” in Fundamentals of Scien-
tific Computing, pp. 125–133, Springer, 2011.

