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Abstract
Typically to a roboticist, a plan is the outcome of other work, a synthesized object that realizes ends defined by some
problem; plans qua plans are seldom treated as first-class objects of study. Plans designate functionality: a plan can
be viewed as defining a robot’s behavior throughout its execution. This informs and reveals many other aspects of
the robot’s design, including: necessary sensors and action choices, history, state, task structure and how to define
progress. Interrogating sets of plans helps in comprehending the ways in which differing executions influence the
interrelationships between these various aspects. Revisiting Erdmann’s theory of action-based sensors, a classical
approach for characterizing fundamental information requirements, we show how plans (in their role of designating
behavior) influence sensing requirements. Using an algorithm for enumerating plans, we examine how some plans for
which no action-based sensor exists can be transformed into sets of sensors through the identification and handling of
features that preclude the existence of action-based sensors. We are not aware of those obstructing features having
been previously identified. Action-based sensors may be treated as standalone reactive plans; we relate them to the set
of all possible plans through a lattice structure. This lattice reveals a boundary between plans with action-based sensors
and those without. Some plans, specifically those that are not reactive plans and require some notion of internal state,
can never have associated action-based sensors. Nevertheless, action-based sensors can serve as a framework to
explore and interpret how such plans make use of state.
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1 Introduction
In his venerable paper Understanding Action and Sensing

by Designing Action-Based Sensors, Michael Erdmann1

defines a class of abstract sensor that describes the
information a sensor ought to provide a robot; his paper
identifies a type of canonical choice for such ideal sensors.
Summarizing that classic contribution to the literature,
Donald (1995) writes:

Erdmann (1995) demonstrates a method for
synthesizing sensors from task specifications.
The sensors have the property of being
“optimal” or “minimal” in the sense that they
convey exactly the information required for the
control system to perform the task.

Action-based sensors embody the philosophy that sensors
should be designed not to recognize states, only what actions
must be taken to reach a goal. Utility in reaching goals
is defined via progress measures and associated progress
cones. These notions of progress are themselves computed
from plans. The sequence goes like this: problems/tasks
require plans to the solve them, plans give progress measures,
measures give cones, and cones lead to sensors.

Erdmann’s work focuses on a subclass of all plans, those
created from backchaining, which yield “special” sensors.
The backchained plans in his work codify the fastest way
to reach the goal from any starting location. This naturally
leads to the question of what would happen if one applied

this method to other types of plans, as it would seem that
doing so would open up a much larger family of action-based
sensors. We shall show that this is indeed the case.

Part of our motivation for exploring new families
of sensors is that generally, analyzing the information
requirements of robotic tasks has yielded fundamental
scientific insights in the past (cf. (Blum and Kozen 1978;
Donald 1995; O’Kane and LaValle 2008)). Construction of
Erdmann’s “minimal” sensors assumes that all information
needed for task completion can be sensed in the environment.
If the information available is insufficient, then the robot
must make use of state. Through extension of the problem to
other plans, we see that the required memory of the robot and
the abilities of its sensors are linked in a way that different
action-based sensors give a new, unique way to explore.

Moreover, making choices about sensors that are
informed by information requirements is also important
for practitioners, who need to balance considerations of
cost, manufacturability, and reliability (Censi 2015; Zhang
and Shell 2020). Considering additional plans helps make
the theory of action-based sensors more applicable for
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roboticists by, for instance, allowing one to model some
limits imposed by physical or technological constraints.

The theory’s incompleteness, in not being able to obtain
all action-based sensors, is irksome. This is true, whether
one’s concern is primarily theoretical (previously overlooked
sensors that have an equal claim to being “minimal”) or is
purely practical (sensors that can respect design constraints).
The first part of this article, thus, is concerned with
identifying further action-based sensors through considering
the full set of plans for a given planning problem.

This analysis-oriented treatment differs from the typical
approach to plans, which adopts a synthesis standpoint that
asks how to find plans to realize some ends. Instead, the
concept of a plan is used as the basis for the design of
sensors. We present an algorithm, CLIP, that transforms a
plan for which we cannot define an action-based sensor into
a set of plans for which we can. We extend our earlier
theoretical work (McFassel and Shell 2020), and associated
algorithmic methods and our implementation, to allow
consideration of partially observable planning problems.
Such cases lead to the identification of certain plans that are
guaranteed to solve some given planning problem, but for
which no Erdmann-like progress measure can be produced.

Such plans are the aforementioned plans that require state.
To discuss the relation between these “stateful” plans and
action-based sensors, we first define a lattice structure with
which to organize the set of all plans. Action-based sensors
are then placed within the lattice as a type of reactive
plan. The action-based sensors to which a plan is related
then becomes a basis for defining “stateful” sensors, further
broadening the original concept of action-based sensors and
allowing for one to examine state requirements alongside
information requirements.

The approach followed in this paper is, after some
broader context and preliminary formalization of plans
and planning problems generally (Sections 2 and 3),
to reexamine Erdmann’s classic theory of action-based
sensors through that lens (Sections 4 and 5). Because
the generalized treatment we offer (especially with partial
observability) helps make the theory more practical,
we discuss relationships to problems of sensor design
(Section 6) and also LaValle’s Sensor Lattice concept
(Section 7). Having done that, the paper pivots (Section 8)
so that action-based sensors, now in the guise of reactive
plans, become a way to improve our understanding the
space of plans (Sections 9–10), culminating in an example
(Section 11), before concluding (Section 12).

2 Related Work
Our motivation for revisiting action-based sensors stems

from an interest in what sensing, fundamentally, is. Often we
take sensors for granted: as a distance sensor, or wall sensor,
and so on. But as Brooks and Matarić (1993) note: “The data
delivered by sensors are not direct descriptions of the world.
They do not directly provide high level object descriptions
and their relationships.” How easily we say that a sensor
can detect “walls”! These mental categories are ingrained so
deeply as to have a pernicious influence on our thinking.

In conceiving his theory, Erdmann (1995) asked the
question of what sensors are for. The action-based sensor,

then, relates what a robot should do with what it
needs to perceive. The approach conceptualizes sensors
as abstractions which entirely sidestep issues with the
representation of information to provide what is required:
what action to take next.2 His definition appeared to give
the utmost leeway in its requirements, being most relaxed
or unconstrained so the set of sensors seems to be maximally
inclusive — forming a sort of ‘free object’ for sensors. It is
hardly surprising, then, that little work has sought to expand
directly upon Erdmann’s highly-original paper, for it looks
to be the final word on the subject.

This task-focused approach to sensor design puts at the
forefront of consideration the close link between the robot’s
desired operation and the sensors needed to accomplish it.
Rather than plans being solved for, given a certain robot,
a robot is designed to be well-suited to completing its
task. Taking such an approach allows for the incorporation
of restrictions, such as defining planning problems (and
therefore obtaining plans) which exclude certain movement
or sensing. Robots can then be designed based on these
limitations on how it should behave or what can be sensed.

One approach to designing ‘well-suited’ robots is
to simultaneously optimize controller and body design.
Biologically-inspired work, such as Banarse et al. (2019)
and Lipson and Pollack (2000), employ iterative evolutionary
methods in the search of optimality, in each case with change
driven by a pre-defined fitness metric. Pervan and Murphey
(2021) take a different approach, beginning with either the
sensor or actuator space, and then minimizing the other, also
taking into consideration the question of design limitations,
in which a designer may have a particular set of sensors or
actuators to choose from. Overall, the goals of these works
are similar to our own: understanding the impact of robot
design on sensing requirements and plan complexity.

Zardini et al. (2021), in scaling-up and extending previous
work (Censi 2016), approaches the link between plans
and the resulting robot requirements through a co-design
problem which integrates controller dynamics into the
problem. This work includes the controller and performance
bounds within the set of what to optimize. The result is
that the system is then designed closely with its intended
behavior. Though the co-design problem is not directly the
same as our search for sensing and state requirements,
identifying these requirements places bounds on what
components will satisfy the constraints.

To explore how changes in sensing capabilities affect a
given problem, a structure for comparing sensors to each
other is valuable. The sensor lattice described by LaValle
(2019) is one approach to this, defining a lattice which
contains the set of all possible partitions of a given state
space. This framework allows for precise comparison of how
sensors may be stronger or weaker than each other, or if one
sensor can be used to solve a problem instead of another.
A longer discussion of his sensor lattice and its relationship
to the present work appears in Section 7. We show that his
sensor lattice also contains the set of action-based sensors
within it, and use it as an inspiration for a lattice with which
to compare plans by their executions.

At the extreme end of reducing what information is stored
and what is sensed, reactive plans and action-based sensors
are particularly valuable for robots with hard restrictions on
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their resources. Work by O’Kane and Shell (2017) explores
methods of searching for minimal plans, which are valuable
for these resource-restricted systems.

Ultimately, the close link between what a robot must
do and how it must be designed to do it impacts a
broad spectrum of problems within the robotics community.
Extending Erdmann’s work to a larger family of plans
allows for the concept of action-based sensors to be
applied where it previously could not be. This provides
designers and theorists with another tool for analysis of
information requirements, particularly with the theory now
being applicable to plans for which the robot must keep state.

3 Preliminaries
In this paper, the environment and robot inhabiting

it are described in terms of two symmetric structures:
planning problems and plans. The former defines both the
world and task, while the latter defines the robot and
its operation. Mutual interaction between the world and
the robot determines whether the plan solves the planning
problem. Operating in discrete time, a robot receives
observations and chooses an action to take. This action
is then performed upon the world, which has its own
structure that decides the action’s outcome. This outcome
then determines what observations are next received by the
robot. Both can be conceived of, speaking intuitively about
casualty, as instances of “choice.” Thus, there is a back-
and-forth between the choice the robot makes (the action
selected to be executed), and the choice the world makes (the
action’s outcome and subsequent observation). A bipartite
graph called a procrustean graph, or p-graph, will be used
to formalize these aspects next. Definitions 1–4 are slightly
less general versions of those from Saberifar et al. (2019);
we refer the reader to that original reference for more
comprehensive discussion.

Definition 1. p-graph (Saberifar et al. 2019). A procrustean
graph (p-graph) P = (V, Vinit, Y, U,E) is a finite edge-
labeled bipartite directed graph in which:

1. a finite vertex set V can be partitioned into two
disjoint subsets, called the action vertices Vu and the
observation vertices Vy, with V = Vu ∪Vy,

2. a non-empty set of vertices (Vinit ⊆ Vy) are desig-
nated as initial vertices,

3. each edge e ∈ E originating at an observation vertex
is labeled with a set of observations Y(e) ⊆ Y and
leads to an action vertex,

4. each edge e ∈ E originating at an action vertex is
labeled with a set of actions U(e) ⊆ U and leads to
an observation vertex.

With a p-graph, we can model both planning problems and
plans. A planning problem (or, as we write interchangeably,
world) models goal attainment tasks that require the robot to
arrive in some condition in the world.

Definition 2. planning problem. A planning problem W =
(V, Vinit, Y, U,E, Vgoal) is a p-graph W equipped with a
goal region Vgoal ⊆ V (G).

Vgoal

Figure 1. Initial working example: A mobile robot navigates in a
planar environment amongst obstacles. For simplicity, a
generalized Voronoi graph is superimposed over the top; the
robot can start anywhere and we desire that it navigate toward
the region represented by the rightmost vertex. (This is part of
the University of Freiburg campus, with thanks to Cyrill
Stachniss and Giorgio Grisetti for making the dataset available.)

A plan prescribes actions for particular circumstances in
order to solve planning problems. As it is a directed graph,
it is potentially governed by internal state, encoded directly
into its branching structure.3

Definition 3. plan. A plan P = (V, Vinit, Y, U,E, Vterm)
is a p-graph P equipped with a termination region
Vterm ⊆ V (P ).

Since both planning problems (i.e., worlds) and plans
involve p-graphs, we have used (W ) and (P ) respectively
to help designate to which p-graph some thing belongs, e.g.
the vertices V (W ), or V (P ). Although it was not strictly
necessary given the scoping implicit in the definitions above,
we will persist with this convention.

The preceding two definitions have exactly identical
form: a p-graph and a set of vertices. The p-graph
describes dynamics, while the set of vertices describe
some notion of termination. A termination semantics (made
precise in Definition 4) ties these two objects together,
and differs slightly between plan and planning problem.
It is expressed in terms of an execution, a sequence of
alternating observations and actions, and (for this paper)
always beginning with an observation, or is the empty
sequence. We trace execution s = y0u1y1u2 . . . yn over a
p-graph Q by beginning at some vertex in Vinit(Q), and
following an edge labeled with some set containing the
observation y0 in the execution, and proceeding by following
an edge labeled with a set containing action u1, and so on for
the whole sequence. If an execution is possible on both plan
and world, it is a joint-execution. Joint executions describe
the dynamic intermeshing of the plan and the world. We
desire that either such a sequence must lead to vertices that
are in Vterm on the plan and in Vgoal on the world, or the
execution must be a prefix of a longer execution which does.
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Figure 2. The example world from Figure 1 as a p-graph with
goal region. Here, we consider every observation vertex (filled
circle) to be a possible initial configuration. Observation vertices
give distinct observations as output, while the actions include
movement in the cardinal and intercardinal directions. Labels
showing these have been omitted for clarity of the figure.

Definition 4. solves. A plan (P, Vterm) solves the planning
problem (W,Vgoal) if:

1. P is finite on W . The length of all joint-executions
must be bounded.

2. P is safe on W . In tracing executions, P must never
have an action leaving a plan vertex if there is no
outgoing edge with that action at the vertex reached in
the world. Additionally, the plan must always be ready
to receive observations as can arise from possible
executions on W , starting at Vinit(W ), with actions
chosen via P .

3. P is live. Every joint-execution y0u1 · · · yk or
y0u1 · · ·xk of P on W either reaches a vertex in
Vterm, or is a prefix of some execution that reaches
Vterm and, moreover, all the joint-executions reaching
a vertex v ∈ Vterm(P ), when traced on W must reach
a vertex w ∈ Vgoal(W ).

Occasionally we will be interested in the vertices reached
by some given execution. Then one traces the execution
following the process outlined above, and those vertices
reached by tracing sequence s on Q will be designated VQ

s .
When tracing any such sequence, if, as one proceeds, at
most one edge can be traversed, the p-graph is deterministic.
Otherwise it is nondeterministic. The language of a p-graph
Q (or plan and world), denoted L(Q), is the set of all
executions.

3.1 Example
We give an extended example to make the preceding

definitions more concrete. Figure 1 depicts part of the
University of Freiburg campus via a map constructed using
a robot equipped with a laser rangefinder (Stachniss and
Grisetti 2010), and available as part of the Robotics Data Set

Repository (Howard and Roy 2003). Shown superimposed
is an (approximate) generalized Voronoi graph (Choset and
Burdick 1995) that has been constructed to help reduce
complexity and aid with discussion of the space. We will
assume for the purposes of this example that the Voronoi
graph vertices correspond to locations that our hypothetical
robot can clearly and reliably distinguish from each other,
e.g., using unique range signatures. We will suppose that our
robot can start anywhere in the environment and we wish for
it to reach the position represented by the rightmost vertex.

The p-graph depicted in Figure 2 shows this scenario
modeled as a planning problem. In this example, each
point on the original figure has become an observation
vertex (shown as filled circles), which has an associated
action vertex (shown as white squares). At each observation
vertex, the transition for the robot is determined by what
observation is received from the world. Owing to the ability
to reliably distinguish locations, here edges departing any
circular vertex will bear a label directly corresponding to that
vertex. At each action vertex, the robot can select an action
that labels any of the outgoing edges. For this example,
they are the cardinal and intercardinal directions, although
sophisticated motion primitives might also be involved.

Figure 3a and Figure 3b show different kinds of plans
for reaching the rightmost vertex (the goal). These plans
specify a certain subset of actions available from the original
planning problem—each selects actions for the robot to take
at different locations within the world. Figure 3a shows
a plan derived through backchaining from the goal, while
Figure 3b shows a more arbitrary plan. Looking at these
plans, the backchained plan’s routes are significantly shorter.

3.2 Generality, Scope, and Problem Variations
Quite apart from cluttering the diagram, the use of separate

action and observation vertices in the previous example
seems unnecessary. So too, the fact that plan’s actions are
not simply shown as direct prescriptions on the planning
problem itself; perhaps selecting and highlighting a subgraph
of Figure 2 could have sufficed to describe Figure 3a? But
the preceding definitions are rather more general, and that
generality will be put to use. The definitions permit, for
instance, the plan to track “beliefs” about potential world
vertices that are consistent with the execution sequence
(for instance, consider a nondeterministic world p-graph
with nondeterminism arising from aliased sensor readings,
unreliable action outcomes, or both). Later, important
conditions will be examined in detail when the resemblance
between plan and planning problem is limited. The example
above emphasizes familiarity, but the added generality will
come to the fore as we examine more exotic plans which
yield additional action-based sensors.

Without further forestalling, we add some detail here by
touching particularly on considerations of observability. In
Figure 2, the p-graph has observation and action vertices
which form a direct correspondence with the original points
on the graph in Figure 1. For this example, each observation
vertex yields a distinct observation, allowing the robot
to localize itself directly throughout its execution via the
last observation received. Full observability, as here where
observations uniquely map to vertices in the world, simplifies
matters in searching for (and expressing) a plan, because
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(a) A plan derived via backchaining from the goal.
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(b) A different set of choices that also always reach the goal.

Figure 3. Two plans, as p-graphs with termination regions, that
solve the planning problem in Figure 2. Progress measures
(Section 4) are labeled in red.

plans need only prescribe actions on the basis of vertices.
This is the familiar understanding of full observability in
regard to planning problems when considering plans as
objects that we (or our algorithms) seek.

As we shall see, action-based sensors partition the world
into regions which can be conflated without risk of task
failure. Plans can yield action-based sensors and when
the underlying planning problem is fully observable, this
observability expresses a different aspect, though still in
the nature of a simplification. Instead, it places no a priori
limits on what the robot could in principle distinguish. When
an action-based sensor conflates regions of the world as
partitions, it represents a degree of acceptable additional
partial observability. To apply the theory when there are
known limitations owing to features of the environment,
or because of other considerations (e.g., technological,
practical resource limits, or design constraints), then partial
observability can be used to specify particular perceptual
limits. Modeling the constraints of existing sensors results
in a different interpretation: the existence of an action-based

sensor then implies that the existing sensor can enable the
robot to complete the task without additional information.

We will further discuss impact of partial observability
in defining progress measures and deriving action-based
sensors. Here we have emphasized that it is a mistake
to believe that because the preceding example is fully
observable, the theory which follows does not consider
partial observability. In fact, action-based sensors are directly
concerned with giving a degree of non-destructive partial
observability. Starting in Section 8, a subclass of plans for
which no action-based sensors exist, and for which none can
be derived, is considered. This non-existence can be directly
tied to the requirement of additional information which a
sensor cannot provide, and hence to complete the task, plans
will require internal state.

4 The Progress Measure
Erdmann’s sensors are defined using progress measures,

which are real-valued functions on the state space of a
planning problem that indicate how movement between
states leads toward a goal. Given such a function, for
each action, one labels regions of state space where that
action makes progress, forming what are called progress
cones. These regions must be distinguished sufficiently for
the robot to determine which action to execute. This can
be realized via action-based sensors, sensors that output
actions guaranteed to make progress, which describe a
subset of the progress cones containing the current state.
As an abstraction of information attainment, such sensors
do not specify which environmental features or associated
technologies are actually used to compute (or evaluate) these
functions. Erdmann formalizes the idea that the information
a robot needs is precisely and solely that which is needed to
determine how to act now.

To determine how plans make progress toward a goal, we
start with defining what it means to make progress. Erdmann
uses a framework of progress measures to develop progress
cones. Given a task, to get from planning problems via
progress to sensors, Erdmann (1995) prescribes:

“ 1a. Determine a sequence of actions that
accomplishes the task.

1b. Define a progress measure on the state
space that measures how far the task is
from completion, relative to the plan just
developed.

1c. For each action, compute the region in
state space at which the action makes
progress. ”

The first step requires one to construct a sequence
of actions, and subsequently in his paper Erdmann uses
a very specific kind of plan when discussing progress
measures — those obtained via backchaining from the goal.
However, plans created using backchaining yield a unique
progress measure corresponding to the fastest strategy which
Erdmann calls “very special”. Our agenda is to broaden this
set of plans, and doing so has implications for progress
measures. In particular, we require a little more nuance,
which manifests as two separate definitions in what follows.
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Definition 5. execution progress measure. A progress
measure over executions on a solution P to a planning
problem W is a function φ : 2V (W )→ R+ such that:

a) φ(V ) = 0 =⇒ V ⊆ Vgoal;

b) at least one V ⊆ Vgoal satisfies φ(V ) = 0;

c) for any two joint-executions p and q, if p is a prefix of
q, then φ(VW

p ) > φ(VW
q ).

The execution progress measure applies to sets of vertices
in the world. All sets that take the value of 0 are required to
have only goals within them, and there must also be at least
one goal with value 0. We restrict joint-executions, requiring
that if one is a prefix of another, its value must be strictly
greater. In this way, the executions of the plan visit vertices in
the world such that the resulting progress measure is strictly
decreasing.

Definition 6. vertex progress measure. A progress measure
over vertices on a solution P to a planning problem W is a
function g : V (W )→ R+ such that φg(V ) := max

w∈V
{g(w)}

is an execution progress measure.

The intuition here is to give a measure on singleton
vertices and require that we get an execution progress
measure when it is lifted, in a natural way, to sets. When
discussing the existence and properties of either kind of
progress measure, we will simply use progress measure;
when necessary, we disambiguate between an execution
progress measure or vertex progress measure, or provide
context to resolve any ambiguity.

Progress measures can be seen in the red numerals in
Figures 3a and 3b. Progress measures are defined in terms of
the plan’s actions on the world, which can lead to a measure
in which making progress leads away from the goal (in terms
of increasing physical straight line distance) before reaching
it. Such an example can be seen in Figure 3b, exemplifying
the difference between a progress measure and a metric of
physical distance from the goal region.

4.1 Progress Measures and Crossovers: Lack
of Uniqueness and Existence

For clarity in the following section, we will put aside the
planning problem in Figure 2 to consider a minimal example.
Figure 4 shows a small, seven-vertex planning problem with
a single goal G, as well as three plans which are able to
solve it from any starting region in the world. The three
plans here give three different progress measures; Erdmann’s
concentration on backchaining is but one choice.

The pair of plans in Figures 4c and 4d are worth
contrasting. These two plans have some vertices where they
take the same action, and some where they differ. There is
little intrinsic reason to prefer one over the other, and we
could even have a plan that considers both of the routes such
as the plan in Figure 5, which chooses one of the two routes
arbitrarily (via nondeterminism) and commits to that route
once it has been selected. Even within this small example,
the plans will construct contradictory progress measures, and
so the plan which combines them has no progress measure at
all. This stems from the fact that, though the plan informs
our definition of progress, the progress measure is ultimately
defined on vertices in the world.

a

b c

d

e f

(a) A small world.

G

(b) A solution derived via backchaining.

G

(c) A plan which solves the planning problem of reaching the goal, G,
from any vertex in the world.

G

(d) Another solution.

Figure 4. A small world with goal vertex G, along with three
plans that solve it. As we will see, this is sufficient to
demonstrate the existence and handling of crossover conflicts.
For each plan, the red integers are a progress measure.

Figure 5’s plan contains executions that go in opposite
directions from each other; for example, the ‘Z’ route
(which represents the movement according to Figure 4c)
visits the location b before d; however the ‘ Z’ motion
(akin to Figure 4d) visits d before b. For the p-graph to
represent a solution, the finiteness requirement means it
must be structured such that the robot could never actually
cycle infinitely. Indeed, it meets this requirement. But
the progress measure, considering only the corresponding
world vertices, has the impossible task of satisfying
φ({b}) < φ({d}) < φ({b}).
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Figure 5. A single plan in p-graph form that solves the problem
of reaching the goal in Figure 4a. The letters a–g here serve to
expose the correspondence to locations in the world. It includes
both the ‘Z’ route of Figure 4c and the ‘ Z’ one of Figure 4d.
Every (circular) observation vertex is in Vinit and, at the start of
its execution, the robot receives an observation that can be
traced to no more than two possible observation vertices. Once
an action is chosen (the choice is resolved arbitrarily), the robot
is ether committed to the blue or the red subgraphs. This plan
induces numerous crossovers, arising from the lack of a global
ordering on when vertices are visited.

Progress measures fail to exist when there are contradic-
tory requirements on the values that the execution progress
measure must take. We refer to this issue as a crossover
conflict, or simply as the existence of crossovers, due to the
fact that the lack of progress measure extends from the fact
that plan executions “cross over” each others’ paths when
traced over the world. Crossovers can be thought of as cyclic
dependencies induced on the world by the plan. If a plan is
a solution (like Figure 5) then the set of joint executions (or,
equivalently, the intersection of its language with that of the
world) must be finite. To re-visit a vertex in the world, such
a plan must can make use of multiple vertices to distinguish
executions. But, the progress measure’s definition considers
all potential paths to and from a world vertex. Therefore,
executions that visit vertices in differing orders create a
cyclic dependency.

Definition 7. crossover conflict. A plan P that solves a
planning problemW has a crossover conflict if there are two
distinct joint-executions s1, s2 such that:

1. s1 and s2 both visit the world vertices v and v′, and

2. s1 requires an execution progress measure where
φ({v}) > φ({v′}), while s2 requires an execution
progress measure where φ({v′}) > φ({v}).

Crossovers are the primary cause of failure in a plan that
does not produce a progress measure.

Theorem 1. A progress measure exists iff there is no
crossover within the plan.

Proof.

⇐= A Crossover Implies no Progress Measure
Exists. The previous discussion has shown that the
existence of a crossover induces an unsatisfiable
condition on the progress measure.

=⇒ The Lack of a Progress Measure Implies a
Crossover Exists. Consider a plan P that solves a
planning problem W , and which lacks a progress
measure. Then, by definition of the execution progress
measure, one of the following must be true:

(a) φ(V ) = 0, V 6⊆ Vgoal,
(b) there is no V ⊆ Vgoal where φ(V ) = 0,
(c) there exist joint-executions p and q with p a

prefix of q, and φ(VW
p ) ≤ φ(VW

q ).

For a progress measure it is enough to conceive of an
ordering on the vertices of the world. At least one goal
must come last in the ordering. For executions, the
requirement of prefixes having a higher measure than
sequences which they precede imposes an ordering on
those vertices, as well.

To attempt to fix the progress measure, we first assign
a goal (the final element in the ordering) value 0 and
increment up as one goes earlier in the order. This
resolves the issues presented by (a) and (b), should
they exist.

Assume we try to correct (c) in such a way. If we
are able to do so, obeying the induced ordering and
assigning values to the vertices reached by p and q
such that they no longer fulfill the condition of (c),
then a progress measure does in fact exist. Otherwise,
however, because we were assigning values to the
ordering of vertices based on back-tracking from the
goal, we must have seen the vertex reached by p in the
ordering before the vertex reached by q and assigned
it a value accordingly. If p is a prefix, that means
the vertex reached by p is visited by an execution
both before and after it visits the vertex reached by
q. Therefore, there is an unsatisfiable requirement of
φ(VW

p ) ≤ φ(VW
q ) ≤ φ(VW

p ), which is a crossover.

The presence of crossovers is the necessary and sufficient
condition for the non-existence of a progress measure, and
their existence impedes our ability to craft action-based
sensors. To identify crossovers, the relationship between plan
vertices, plan executions, and world vertices must be made
explicit, ideally without directly enumerating the plan’s
language. Next, we introduce an algorithm, based on a graph
product construction, that is useful in this regard.

5 Removing Crossovers and Enumerating
Progress Measures

Given a plan that solves a planning problem and which has
no progress measure, we now discuss a method to produce
the set of all plans which can be derived from this initial plan,
which have progress measures, and which are also solutions
to the planning problem. To make precise what we mean
when we say one plan is derived from another, we define a
set of actions from the world called the operative action set.

Definition 8. operative actions. For a plan P that solves
planning problem W , an action uk is an operative action if
there exists a function uP : V (W )→ 2U(W ) such that uP (v)
includes an action uk if and only if P and W have a joint-
execution e = y1u1y2 . . . uk−1yk for which:
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• e arrives at w ∈ V (W ) when traced on W ;
• action uk is a label on an outgoing edge from w;
• e arrives at p ∈ V (P ) when traced on P ;
• action uk is a label on an outgoing edge from p.

For a given world, intuitively, the operative action set at
any vertex in that world consists of only those actions that
the robot (using its plan) may actually end up taking during
its execution. When a plan doesn’t induce any progress
measures, we will consider alternate plans with the property
that they select the same actions in the same places in the
world as that original plan. Operative actions formalize this:

Definition 9. derived plan. Given world W , a plan P ′ is
derived from another plan P if the operative action set of P ′

is contained in the operative action set of P ; that is for all
v ∈ V (W ), uP ′(v) ⊆ uP (v).

Next, we generate all possible plans without crossovers
from some other plan, but using only actions from the
operative action set. The algorithm we describe next, named
CLIP, has two parts: first, given a plan and a planning
problem, builds an intermediate data-structure (a graph)
through which all of the crossovers can be identified.
Secondly, it enumerates resolutions to these crossovers. For
edges that are not involved in any crossover, we may take any
subset of them so long as we ensure it is a solution. Thus, as
an object on which various combinatorial operations act, this
graph implicitly represents a large number of plans.

5.1 The Plan-World Interaction Graph
CLIP starts by constructing a type of product graph we call

the Plan-World Interaction Graph, or simply the I-Graph. It
is formed by corresponding plan and world vertices, while
also encoding information about the operative action set in an
organized fashion. In the original plan, different executions,
possibly separated and obscured by the plan’s structure, may
interact so as to obstruct the existence of progress measures.
These various instances are collapsed within the I-Graph,
which records when multiple plan vertices map to the same
world vertex, transforming crossovers into explicit cycles.

The I-Graph is itself a p-graph, but its structure is defined
by the joint-executions of the plan and world. Algorithm 1
provides pseudo code for the incremental construction of
the I-Graph. To know which plan vertices correspond to
certain world vertices at different points in execution, the I-
Graph starts as a single vertex that corresponds to the initial

start
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Figure 6. An I-Graph for the plan seen previously in Figure 5.
Plans may have multiple vertices that correspond to the same
vertex in the world. The I-Graph merges these into a single
vertex.

Algorithm 1: Constructing the Plan-World I-Graph
Data: World W = (VW , VinitW , YW , UW , EW , Vgoal),

Plan P = (VP , VinitP , YP , UP , EP , Vterm)
Result: I-Graph I = (VI , VinitI , YI , UI , EI , Vterm)

1 Procedure I-GRAPH CONSTRUCTION(W , P):
2 igraph← New PGraph()
3 igraph_vtx← New Observation_Vertex(I-Graph)
4 world_vtxs, plan_vtxs← VinitW , VinitP

5 I-GRAPH SEARCH(world_vtxs, plan_vtxs, igraph,
igraph_vtx)

6 Function I-GRAPH SEARCH(world_vtxs, plan_vtxs,
igraph, igraph_vtx):

7 if no outgoing edges for world_vtxs, plan_vtxs then
8 return I-Graph
9 if vertices are type “observation” then

10 world_tgts = New Set()
11 plan_tgts = New Set()
12 foreach world vertex vW do
13 foreach outgoing edge from vW do
14 observation← outgoing edge label y
15 add edge.tgt to world_tgts
16 foreach out edge from plan_vtxs do
17 if plan edge has label y then
18 add plan edge.tgt to plan_tgts

19 else
20 world_tgts = New Set()
21 plan_tgts = New Set()
22 foreach plan vertex vP do
23 foreach outgoing edge from vP do
24 action← outgoing edge label u
25 add edge.tgt to plan_tgts
26 foreach out edge from world_vtxs do
27 if world edge has label u then
28 add world edge.tgt to world_tgts

29 if world_tgts corresponds to existing vertex vI ∈ VI

then
30 if world_tgts ⊆ Vgoal(W ), plan_tgts ⊆ Vterm(P )

then
31 add vI to Vterm(I)
32 if vertices are type “observation” then
33 label_set← outgoing obv. from world_vtxs
34 else
35 label_set← outgoing act. from plan_vtxs
36 for each label n in label_set do
37 backlabel← label
38 add edge (igraph_vtx→ vI , with label) to

igraph
39 I-GRAPH SEARCH(world_tgts, plan_tgts,

igraph, vI)
40 else
41 if vertices are type “observation” then
42 label_set← outgoing obv. from world_vtxs
43 new_vtx← New Observation_Vertex(IGraph)
44 else
45 label_set← outgoing act. from plan_vtxs
46 new_vtx← New Action_Vertex(IGraph)
47 if world_tgts ⊆ Vgoal(W ), plan_tgts ⊆ Vterm(P )

then
48 add new_vtx to Vterm(Igraph)
49 for each label n in label_set do
50 backlabel← y/u
51 add edge (igraph_vtx→ new_vtx, with label

y/u) to igraph
52 I-GRAPH SEARCH(world_tgts, plan_tgts,

igraph, new_vtx)
53 returnI-Graph
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vertices of both the plan and the world. Each vertex in the
graph will have a pair (vP , vW )— for this initial vertex,
(Vinit(P ), Vinit(W ))— indicating what vertices within the
plan and world it corresponds to. This single observation
forms the initiating layer of the I-Graph, modeling the
moment execution begins and the robot has yet to receive
any observations.

The rest of the graph is constructed by tracing the
possible executions of the plan, alternatingly giving priority
to the plan and world when determining structure. For
each observation vertex, the current set of world vertices
determines the outgoing edges. The plan is safe on the
world, and therefore for each observation that might occur
from any of these outgoing edges, the plan has at least one
corresponding edge labeled with the same observation from
each vertex within the set under consideration. For each
of these edges, an action vertex is added to the I-Graph,
consistent with the world and plan vertices reached by that
observation.

In the examples discussed above, a single observation
completely localized the robot to one vertex in the world.
However, one observation need not isolate the robot to a
single vertex within the plan as there may be multiple ways
(e.g., the blue and red routes in Figure 5) from which our
robot may have chosen arbitrarily. For the plan in Figure 5,
the initial observation is (for most cases) consistent with up
to two possible plan vertices.

As per the earlier discussion of partial observability, this
can also be true within the world itself: information in an
observation may correspond to multiple places within the
world. In such cases, vW is a set of vertices, just as vP is
in the example shown here.

For each action vertex in the I-Graph, unless it is a
terminating vertex, each corresponding plan vertex in vP
has outgoing edges with actions the robot can take. (It is
also possible that vertices in Vterm have their own outgoing
actions, indicating the option to terminate.) These actions are
added as outgoing edges, leading to a new set of observation
vertices for the plan and world. If a vertex within vP does not
have that action as an outgoing edge from itself, it is dropped
from the current plan sets, as our robot has committed to a
certain part of the plan.

Again at an observation vertex, the process repeats until
we have explored all possible executions of the plan. Should
the execution return the robot to a set of world vertices
already encountered, the edge connects back to the existing
vertex. If new plan vertices are associated with this set of
world vertices, they are appended to the existing list of
associated vertices.

The result is a graph with three layers: the initiating layer,
the plan layer, and the world layer. The I-Graph for the
running example is shown in Figure 6. The initiating layer
is our single starting vertex that corresponds to all possible
starting locations. (Although illustrated with a diamond,
this is simply to highlight that this observation vertex is
differs from the others.) The plan layer consists of all
action vertices, and derives its name from the fact that
actions are the part of execution dictated by the plan. Its
departing edges go to the world layer. Although there may be
multiple observations a robot may receive, the various edges

correspond to the world’s choice of observation to provide.
The edges from this layer return to the plan layer.

The I-Graph mimics the structure of the world and its
connections, but is restricted by the operative action set of P .

Lemma 1. The set of all actions for I-Graph I generated
from plan P has the same operative action set as P on the
original planning problem W .

Proof. Beginning the construction, the algorithm starts with
the set of initial world vertices Vinit(W ) and the set of initial
plan vertices Vinit(P ). The set of all outgoing observations
from the vertices in Vinit(W ) represent observations the
robot can receive initially. As the plan is presumed to be safe
on the world, each vertex in Vinit(P ) has an outgoing edge
labeled with the possible observations.

Therefore, for each possible observation y, the algorithm
obtains the result of tracing a joint-execution consisting of
that single observation as a new set of world and plan
vertices: (VP

y ,VW
y ).

For uk to be an operative action at vertex vw ∈ V (W ),
there must exist a joint execution e arriving at vw and also
vp ∈ V (P ), where both vw and vp have an outgoing edge
labeled with uk. The two sets of vertices just reached by the
algorithm, (VP

y ,VW
y ), comprise action vertices. As shown

in lines 19–28 in Algorithm 1, the outgoing edges for each
action vertex in VP

y are considered, and their targets collected
into a set. As the plan is presumed to be safe on the world,
an outgoing action from a vertex v ∈ VP

y indicates that each
vertex in VW

y has an outgoing edge with the same label.
These edges indicate the operative action set for each world
vertex within our current set under the joint-execution y, by
definition.

Now, for each outgoing action u, following the edges
labeled with u leads to the set of vertices obtained by tracing
yu on the plan and world: (VP

yu,VW
yu). As y is an element

in the larger set W (Y ), and u is an element in the set
P (U), each set (VP

yu,VW
yu) is a subset of all vertices which

can be reached by joint-executions of length two. As the
algorithm has considered all possible observations that could
be obtained from the world, as well as all possible actions the
plan could take, it has visited all vertices resulting from any
joint-execution of length two.

For each y, u pair, the algorithm passes (VP
yu,VW

yu) to
a recursive call of itself, upon which the same process is
repeated. As the incoming actions do not impact which
outgoing edges may be obtained, (VP

yu,VW
yu) can be treated

within the iteration in the same way as the initial set, without
regard to the prior actions or observations received.

The algorithm continues until the joint-executions end,
which they must as they have bounded length, and further
they end in termination (i.e., in Vterm(P )). Thus, the
algorithm obtains the operative action set for all sets of world
vertices visited. As each vertex within the constructed I-
Graph corresponds to a pair of sets (VP

e ,VW
e ), and all actions

found by the algorithm are appended as outgoing edges from
the vertex associated with that pair, the I-Graph captures the
full operative action set of the original plan P .

A subset of the I-Graph vertices are also designated as
terminating vertices, just as for plans. During construction,
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if the set of plan vertices for the current execution are all
within Vterm(P ), and the corresponding world vertices are
all within Vgoal(W ), then the vertex is included in Vterm(I).
Termination is not required for every set of plan vertices that
reaches this vertex, as a robot may pass through goal vertices
before actually stopping. However, it must guarantee goal
achievement when it eventually does terminate.

This not only handles cases in which the robot is unsure if
it has reached the goal or not, but also permits cases in which
the robot may bypass one goal to reach another. In such a
case, the robot’s plan has two trajectories: one which goes
to the goal vertex and terminates, and another that passes
through that vertex to reach another goal further along. In
the I-Graph, both will be terminating vertices, but the first
will have outgoing edges, providing the robot the ability to
terminate the execution or continue.

Though the I-Graph is a p-graph augmented with a set
of terminating vertices, and is constructed from a plan, it
is not necessarily a plan itself. It satisfies the same safety
requirements as a plan, but crossovers from the source plan
manifest as cycles, which may mean that the set of joint-
executions with the world is not finite. Resolution of all these
cycles within the I-Graph will result in a plan that is derived
from the original plan P and which both solves the planning
problem W and has a progress measure. (Later we will show
that the resolution of the crossovers demands goal vertices
be reached, retaining the requirement that our plans have no
dead ends.)

5.2 The Comes-Before Relation
The essence of the proof of Theorem 1, in dealing with

progress measures, only used an ordering property and then
constructed a function from that ordering. (The definitions
for progress measures are written in terms of functions to
closely retain Erdmann’s original form.) Next, we describe a
relation put on the action vertices of the I-Graph, which helps
determine whether those vertices can be ordered. We focus
on the I-Graph’s action vertices because actions are the sole
means by which the robot exercises control and hence has
the power to split apart crossovers.

We call this relation the comes-before relation, denoted
K ⊆ Vu(I)× Vu(I). For action vertices v1 and v2 within the
I-Graph, we say v1 comes-before v2 (written 〈v1, v2〉 ∈ K)
if, after an action taken from v1, the observation vertex
reached by that action has v2 as a target. Also, that K is
transitive: 〈v1, v2〉 ∈ K and 〈v2, v3〉 ∈ K means 〈v1, v3〉 ∈
K.

The I-Graph itself is used in initial construction; once
the transitive closure of K is computed, this gives, for each
action vertex of all vertices that it precedes. There two points
of note: firstly, the nature of the I-Graph means that its
vertex set is constantly changing during its construction.
Additionally, the I-Graph’s p-graph form means that it is
similar to the plan and world from which it derives; as
mentioned previously, this means that the resolution of
crossovers results in a new plan that is already expressed
using the same structure as the original plan.

However, once the vertices and edges of the I-Graph are
fully established, experience has shown that an adjacency
matrix representation provides simple, compact way of
representing the relation between vertices. It also affords

computationally attractive optimization (e.g., obtaining the
transitive closure via linear algebraic methods).

Also, for the purposes of resolving crossovers, we consider
each vertex within the I-Graph, and not the sets of vertices
they correspond to in the world. As a result, a vertex v1 in
the I-Graph ‘comes before’ another vertex v2 if there is a
path in the I-Graph between two vertices which correspond
to v1 and v2, respectively.

When dealing with fully observable planning problems,
this matrix has a one-to-one correspondence to world
vertices, and resolving the crossovers present in the I-Graph
yields a vertex progress measure. In some instances of
partially observable problems, it is possible for the same
vertex in the world to correspond to multiple vertices in the
I-Graph. In these cases, resolution of the crossovers in the
I-Graph may yield only an execution progress measure on
sets of vertices, as opposed to a vertex progress measure
on individual vertices in the world. The impact of this is
discussed starting in Section 8, with important implications
following.

5.3 Resolving Crossovers
When the I-Graph collapses down all executions,

conflicting orderings on world vertices that only existed
conceptually now present as cycles within the I-Graph itself.
Resolving crossovers now becomes a matter of “clipping”
away some of the edges that constitute these cycles, which is
the function of the second part of CLIP.

Each cycle within the I-Graph yields a set of edges, which
can be further reduced. For each set, we consider a subset
called the candidate edges. Edges are disqualified from being
a candidate for removal if the algorithm can determine in
advance that their removal will result in a non-solution.

If the planning problem is both fully observable and
requires that the robot is capable of starting from anywhere,
then edges are excluded from candidacy if their removal
would leave a non-goal vertex with no outgoing edges, which
would leave the robot stranded at the corresponding world
vertex.

In all other problem cases, removing edges and stranding
certain vertices in the I-Graph may only result in a change
in executions. Therefore, the only edges which can be
immediately disqualified are those that are the sole outgoing
edge from an action vertex at the start of execution, as the
robot must have choice in action from all starting locations.
The algorithm also removes cycles that are fully contained
within larger cycles in the I-Graph, so that the same sets of
vertices are not considered multiple times.

In our implementation, since even moderate sized
problems can give a search space that will be very large,
the user also has the option of manually resolving some
cycles before the main search. As the user often has
additional insight into the problem structure (for instance,
understanding how choices taken in one cycle may impact
desired choices in future cycles), this knowledge can be used
to help the algorithm search a reduced and more relevant
space.

CLIP constructs a search tree starting from the original I-
Graph, using the sets of candidate edges for each crossover.
The search tree considers the powerset of the candidate edge
set for removal. For each set of edges from the powerset, we
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add to a list of proposed edges to remove from the original
I-Graph. We include the empty set within this set, as it is
possible for cycles within the graph to have edges or vertices
in common, and therefore the choice of a cycle to remove no
edges effectively defers the choice of which edges to remove
to later.

In addition to limiting the set of edges considered, CLIP
also prunes branches of the search tree once it is known that
they will have no solutions. As CLIP only removes edges, if
the I-Graph’s initial vertex cannot reach the goal, this is an
irreversible disconnection and it will continue to fail to be a
plan given any additional removals. Therefore, the validity
of each currently proposed set of removed edges is checked
to see if the current node in the tree still permits the initial
vertex within the I-Graph to reach the goal before CLIP
generates its children.

5.4 The Output of CLIP

We call the output plans of CLIP the representatives, or
individually a representative or representative plan. CLIP
produces numerous subgraphs of the I-Graph, each of which
has a method of resolving all crossovers that is different from
the other outputs. Each representative plan in the output set
is both a plan derived from the I-Graph by CLIP, and has an
operative action set that is a subset of that of the I-Graph used
to generate it.

These output plans are representatives of the full set of all
solutions in the sense that they capture all possible ways of
resolving the crossovers. Any plan in the full set of solutions
that is not directly generated by CLIP can be derived from a
representative.

Theorem 2. All plans generated by CLIP using a plan P
are derived from P , have progress measures, and solve the
planning problem W .

Proof:
1. All plans generated by CLIP are derived from the

plan P .

CLIP only removes edges from an input plan, and
cannot add actions to output plans that are not part
of the input. CLIP creates an I-Graph, which via
Lemma 1 has the same operative action set as P , and
then generates plans from subgraphs. Therefore, any
plan CLIP generates must have an operative action set
that is equivalent to the operative action set of P , or a
subset.

2. All plans generated by CLIP have a progress
measure.

By the comes-before relation, CLIP verifies that no
cycles in the world exist before acceptance. As the
lack of cycles is indicative of a lack of crossovers, by
Theorem 1 all plans generated by CLIP have a progress
measure.

3. All plans generated by CLIP solve the planning
problem.

By definition, before accepting any solution, CLIP
calculates the comes-before relation. If, for any world
vertex, that vertex does not ‘come before’ at least one

goal vertex, CLIP rejects it. CLIP also rejects any plans
with cycles still present. Therefore, any plan CLIP
accepts is a solution.

�

Theorem 3. All plans derived from CLIP’s representatives
are in the solution set.

Proof. We define plans derived from CLIP’s results as any
plans constructed from a subset of edges from a result
produced by CLIP. Unless removal of an edge results in the
breaking of all paths from an initial vertex to the goal, edge
removal will not result in a plan no longer being a solution.
In addition, as removing action edges cannot induce a cycle
on a plan that does not have one, the resulting plan keeps a
progress measure, ensuring that it is also part of the solution
set.

Theorem 4. Every plan in the solution set can be derived
from a representative plan.

Proof. Assume that there is a plan P ′ that is not generated
by CLIP nor derived from CLIP’s solutions. Then P ′ must
solve the original planning problem W , use actions found
only in the operative action set of P , have a progress
measure, and not be a representative produced by CLIP or
derived from these results.

We define two sets: Eloop and Estatic. Eloop is the set of
edges in the world that are part of the operative action set of
all cycles in the I-Graph. By definition, CLIP considersEloop

as candidates for removal.Estatic is the set of all other action
edges in the operative action set. As P ′ uses the operative
action set that is also used to generate the solutions of CLIP, it
must differ from any given plan provided by CLIP in Estatic

or Eloop (or both).
If P ′ differs in Estatic, it can be in one of two ways: either

it contains an element not in any representative produced
by CLIP, or it is a subset of any given representative’s
Estatic. If it is a subset, then P ′ is actually derived from
that representative. If it contains an element not in a
representative, then that element is not from the operative
action set, and P ′ is not truly in the solution set, as CLIP
does not remove any edges from Estatic. Therefore all
representatives generated by CLIP contain the entire set of
Estatic from the original plan P .

If P ′ differs inEloop, it can be in one of two ways: if it has
an extra edge, then it either contains an action not from the
operative action set or it still contains a cycle that causes its
language with the world to not to be finite. If it is smaller than
any representative, then it implies CLIP does not enumerate
all possible values of the cycle edges. As CLIP enumerates all
cycle edge possibilities (through generating the powerset), it
must enumerate all possible values of the cycle edges, so this
is a contradiction.

Therefore, P ′ must be derived from some representative
in order to be a valid plan; any derivation other than from
the representative set violates our requirements for plans to
solve.

The input plan therefore yields numerous representatives,
all of which have progress measures and which can be
used to generate the entire set of plans of interest. As
the executions of the representatives are derived from the
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original plan, they may contain executions that are not
included within the original language of the input, but are
a subset of its set of operative actions. Having resolved the
issue of plans without vertex progress measures, we next turn
to the question of how to use progress measures to obtain
sensors.

6 Translating Progress Measures into
Sensors

Now that we have obtained a plan with a progress measure,
we can use it to link actions with how to make progress.
This is achieved through the notion of a progress cone.
Every action u ∈ U has an associated progress cone, which
is a set of observations. At any vertex in the world labeled
with an observation in this set, the action u makes progress
toward the goal (transitioning from a higher-valued vertex to
a lower-valued vertex) according to the progress measure.

Definition 10. progress cone. For a planning problem W
and plan P with a progress measure φ, the progress cone
of an action u ∈ U(W ) is the largest subset of Y (W ),
{y1, y2, . . . , yk} where u makes progress under φ, from all
vertices with an outgoing edge labeled with some yi.

Two views of the cones are possible. The first, which is
natural from the preceding definition, maps from actions to
observations; the second asks which actions make progress
given a certain observation. Since both views are useful,
we consider the progress cone to be a relation between
observations and actions so that each observation has an
associated set of actions that make progress.

Definition 11. cone relation. For a planning problem W
and plan P with a progress measure φ, the cone relation C ⊆
Y (W )× U(W ) contains (y, u) if there exists a progress
cone for the action u containing y. We will also write y ∼

C
u,

when (y, u) ∈ C.

Given the set of observations Y (W ) for a planning
problem, any observation y that is used as an edge label of a
vertex in V (W ) must have at least one action uwhere y ∼

C
u.

This forms a covering over Y (W ).
For an observation, there are potentially many progress-

making actions. However, only one action is needed for any
given y to guarantee that the robot will eventually arrive
at the goal. We can define a class of functions that, for
each observation y, return a single action u, transforming
the covering into a collection of partitions. We call these
functions singleton action-based sensors.

Definition 12. singleton action-based sensor. A function
f : Y (W )→ U(W ) is a singleton action-based sensor if
y ∼

C
f(y) for every y.

The connection between singleton action-based sensors
and real sensors may not be immediately apparent. A
“traditional” sensor can be represented as a function
s : V (W )→ Y (W ), taking world vertices as inputs and
returning some observation.

To bridge the gap we define a new set of observations
Y ′ = {y′u | u ∈ U(W )} by making a correspondence of
each element to an action, as indicated by the subscript. For

Figure 7. A world in which conflation between vertices
precludes Erdmann’s sensors being functional. Vertices C and
D both are in mid-range lighting and can see the landmark L,
making them indistinguishable. For such a sensing setup, the
partition required by the backchained plan cannot be realized.

{SE}

{E}

{E}

{E}

{NE}

{}{E} G

(a) Partition consistent with the
backchained plan in Figure 4b,
and its resulting progress
measure.

{SE}

{SE}

{E}

{E}

{NE}

{}{SE}

{SW}

{SW}

{E}

{E}

{NE}

{}{NE} G

(b) Partition consistent with the
plan in Figure 4c and its
resulting progress measure.

Figure 8. Two partitions consistent with a progress measure,
implementing an action-based sensor. Figure 8a, derived from
the backchained plan in Figure 4b, cannot be used to solve the
planning problem in Figure 7, while 8b, derived from the plan in
Figure 4c, can.

an element y ∈ Y (W ), y 7→ y′u if f(y) = u according to a
singleton action-based sensor. Each element in Y maps to
a set of vertices in the world, and so we can think of the
elements of Y as a stand-in for the identifiable regions ofW .
W → Y → Y ′ is therefore equivalent toW → Y ′, and takes
in vertices in the world and maps them to this new set.

The process above transforms a covering into a partition
through use of a function. However, perhaps we would like
multiple (or even all) possible progress-making actions for
a single observation. To achieve this, we define permissive
action-based sensors.

Definition 13. permissive action-based sensor. A function
f : Y (W )→ 2U(W ) \ {∅} is a permissive action-based
sensor if, for every u ∈ f(y), y ∼

C
u.

The relationship of this object to more traditional sensors
is less clear than for a singleton action-based sensor. We
can construct a Y ′ as before, where now each element
y′ corresponds to some subset of U , but the semantics of
actions within multiple different sets becomes a matter of
interpretation. Some recent work has examined covers as
models of sensors that have imperfections, such as noise or
cross-talk (Zhang and Shell 2020, 2021). It is curious that
permissive action-based sensors appear to be more powerful
owing to the choices inherent in the cover, not less powerful.
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6.1 A Concrete Example
We illustrate some of preceding definitions by adding

to the example of Figure 4a. Figure 7 shows our example
environment in a bit more detail. Windows (in aquamarine
blue) allow light to enter and result in varying light levels
throughout the space (in shades of gray). A landmark (L) can
be seen from vertices C, D, and G, but not elsewhere.

Figure 8 shows two singleton action-based sensors, each
of which maps the observable regions of the world to single
actions. Each of the two partitions is consistent with the
progress measure of the plan from which they were derived.
The action-based sensor given in Figure 8a is derived from
backchaining, and is an action-based sensor that would be
found with Erdmann’s existing methods of obtaining them.
The second action-based sensor given in Figure 8b is derived
from the plan in Figure 4c. This plan is only considered when
we open up the concept of progress measures and action-
based sensors to a wider set, as done in this work.

Now, return to the detail in Figure 7 where, due to
constraints on what sensors are available, a robot can only
recognize brightness levels and the presence of a nearby
landmark. Such a robot cannot distinguish vertices C and D.
This presents a problem for the action-based sensor obtained
from a backchained plan, which requires these vertices be
distinguished. The action-based sensor realized in Figure 8b,
however, takes the same actions in vertices C and D, and
therefore describes a partition of the world that can be
realized with this setup. The action-based sensors defined by
the extended family of plans we consider allow one to better
respect the constraints that designers may actually face.

7 The Sensor Lattice
A single plan may result in multiple action-based sensors,

each of which may have multiple partitions that are
consistent with it. These partitions draw parallels to the
virtual sensors discussed in LaValle (2019). In his model,
sensors are defined as a function from the world to sensor
readings; for a given sensor value, its preimage is a set of
locations in the world that map to that sensor reading. Each
sensor then yields a partition over the entire world, based on
which locations give which sensor readings.

The sensors-as-partitions are then arranged in a lattice
structure based on the fineness of their partitions, with
coarser partitions towards the bottom and the partition
that can uniquely identify every location in the world
as the supremum. The previous example, in Section 6.1,
showed two partitions (Figs. 8a, 8b) from two plans.
The partitions obtained from their action-based sensors are
naturally included within the full possible sensor lattice,
which contains all such possible partitions of the state space.

LaValle (2019) addresses the question of state require-
ments indirectly. Environments that change over time are
modeled through adding time as an additional component
in their state space. The sensor readings are then functions
of both space and time. In the case of trajectory tracking,
the history of states and times in which they were visited
becomes the state space upon which the sensor acts.

His treatment of time as a separate variable is a substantial
difference from any of the ideas we have considered
here. Still, the concept of modifying the state space to

accommodate how different observations are received over
the course of the execution is reminiscent of I-Graphs
with execution progress measures, where action depends
on the current execution. However, implementing execution
progress measures requires more information than just the
history of states in the world that the robot has visited.
Rather than the state space reflecting only external changes
to the world, the sensor must also change based on what
actions have been taken by the robot. The requirement of task
achievement means that the sensor must be a function both
of the world and of the robot’s internal state. Additionally,
unlike trajectory tracking, the robot does not require its full
history to provide the required information, but a particular
subset of it.

To convert these execution progress measures into sensors,
Definition 12 is insufficient. We must include the history of
relevant actions as a sort of context that informs what actions
are given by the action-based sensor.

Definition 14. contextual sensor. A function g : (Y (W )×
F )→ (U(W )× F ) is a contextual sensor if, for all y ∈ Y :

1. for a given context f , g(y × f) ∼
C
u, or

2. g(y × f) ∼
C
{∅},

and the resulting execution language is safe on the planning
problem W from which the relation C is derived.

(We use f for a certain context as opposed to c for two
reasons: first, C is already used to indicate the progress cone
relation; second, we will later see that each of these contexts
relates to a kind of graph we call a flower graph.)

As the context varies over time, it may be that the function
g is not defined for all possible pairs of (y, f), but only those
y which the robot may encounter under the given context f .
The result is multiple partially-defined action-based sensors.
The resulting sensor requirements for the group of sensors
are the intersection of each action-based sensor’s individual
requirements.

While the intersection of these partitions exists within
LaValle’s lattice, the lattice has no way to capture this
notion of state. The following sections discuss precisely how
execution progress measures lead to the need for context, as
well as a method with which to express these stateful sensors.

8 Execution Progress Measures, and What
They Mean for Sensors

A new example of a planning problem and plan can be
seen in Figure 9. Although a robot within this small world
is capable of reaching the goal, even from an unknown
initial state, it must first take actions that are safe in
multiple locations to disambiguate its position in the world.
Although we can create an execution progress measure on
the sets of world vertices (shown in red), no vertex progress
measure exists. Therefore, we cannot define an action-based
sensor for this plan either, as there is no mapping between
observations in the world and actions to take.

In this example there exists no one-to-one mapping
between the plan and world vertices. Such mappings are
useful conceptually.
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{oG}

{a2}{a1}{a4}

{o1} {a3} {o3}

{a2}

{o2}

{a4}

Vgoal Vgoal

{oG}

{a5} {o4}

{a1}

{o1}

B C

D

E F

A G

(a) An (approximately) hourglass-shaped world. If we can start at any
observation vertex, then a starting observation of o1 could indicate that
the robot is either in B or E.

1

4

12

03

{oG}

{a1}{o1}

{oG}

{a4}{a3}

Vterm

{oG}

{o4}

{o3}

{a4}

{o1}

{o4}

{a2}{o2}

{o2}

{o3}

(F)

(B,E)

(C) (B)

(A,G)

(D)

(b) A plan which solves the planning problem. In the case the o1 is the
first observation received, the robot must take actions to disambiguate
its state before it can reach a goal.

Figure 9. An example planning problem, and a plan which is
non-homomorphic.

Definition 15. homomorphic solution (Saberifar et al. 2019).
For a plan P that solves planning problem W , consider the
relation R ⊆ V (P )× V (W ), in which (v, w) ∈ R if and
only if there exists a joint-execution on P and W that can
end at v in P and in w in W . A plan for which this relation
is a function is called a homomorphic solution.

We consider all plans for which this relation is not a
function to be non-homomorphic. These plans present unique
challenges when designing action-based sensors, and we find
that for many of them no action-based sensor may exist at all.

We see in Figure 9 that though the robot may revisit
the same world state, it occurs under different contexts,
which specify different actions. Therefore, we can define a
contextual sensor, but not an action-based sensor.

Although the idea that some robots require some kind
of memory or internal state to function is not new, we
refer the reader once again to the plans in Figure 3. These
plans can be converted into action-based sensors, but in their
original form are homomorphic, taking after the world’s
structure. Therefore, while certain structure within plans
encodes information necessary to task completion, other
structure has no impact on the robot’s ability to complete
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Figure 10. A permissive action-based sensor which solves the
planning problem given in Figure 2, presented in flower graph
form.

the task. (We return to examine non-homomorphism in more
detail in Section 10.2.)

By changing our perspective on action-based sensors, we
can begin to bring these plans into our existing framework.
Rather than treating action-based sensors purely as a method
with which to define sensors, we focus on their ability to
act as reactive plans. An example of an action-based sensor
presented as a reactive plan can be seen in Figure 10. This
representation is the aforementioned flower graph, so called
due to its appearance.

While the contextual sensors are not quite action-
based sensors, but have reactive components that must
be connected through transitions. These transitions permit
switching between virtual sensors, creating a kind of
“stateful sensor”. We call these structured plans vine graphs,
as they consist of small flower graphs connected to each other
by chains of observations and actions.

Before exploring vines in more detail, we must first make
a detour to explore how the diversity of plans affects both
the diversity of sensors and the requirements of stored state.
This requires a systematic way to compare plans. With that
in place, we can then identify the structure within plans
that indicates when the robot switches from one flower to
another — the previously mentioned context — as well as
how we can use the concept of action-based sensors as a base
with which to construct these plans that incorporate state.

9 Expanding the Languages: The Plan
Lattice

Depending on the structure of the world, there may
potentially be an infinite number of plans. In order to talk
precisely about the role of structure and what is meant by
our use of the word ‘state’, we must first develop a way in
which we can talk about plans in a comparative sense. The
plan lattice is a structure that, for a given planning problem,
affords comparsion of plans to one another.

Though form influences function of plans, we discard
their graph structure and examine the language of each
plan’s joint-executions. If it is possible to generate the same
language of joint-executions with different plan structures
(for example, a plan and its action-based sensor), these plans
should be treated as equivalent.
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However, the list of joint-executions alone is insufficient
to compare plans with each other. Although they may have
the same language, a plan that reaches a world state and
terminates has different behavior from another that reaches
that world state and does not. We complement the language
with an additional symbol, a, to indicate that a given
execution ends with the plan terminating.

Definition 16. cessation language. The cessation language
of a plan P supplements L(P ) by duplicating executions
arriving at Vterm(P ), but marking those as such by
appending a ‘a’ symbol. Formally,

La(P ) = L(P ) ∪
{
sa | s ∈ L(P ),VP

s ⊆ Vterm

}
.

Recall that the symbol VP
s denotes the non-empty set of

vertices that one arrives at after tracing an execution s on
P . This allows for us to determine if a plan contains the full
language of another, including all of the executions for which
it terminates. We call this the plan subsumption relation.

Definition 17. plan subsumption relation. For two plans
P1 and P2 we say that P1 is subsumed by P2, denoted
P1 �a P2, if La(P1) ⊆ La(P2).

9.1 The Plan Lattice
A plan lattice will be constructed modulo a particular

planning problem, but since we generally keep a fixed
planning problem (W ) in mind, we won’t hesitate to call
it the plan lattice. The language of a plan considered as a
standalone graph may differ from the language that results
from interaction on W . Thus, we rationalize the set of all
possible plan languages with respect to a given planning
problem W , reducing each language to its joint-executions.

This resulting subset of languages should consist of those
which are safe on W . While they must be valid plans for
the planning problem they are not required to be solutions
as defined in Definition 4, and as a result the subset includes
languages with executions of infinite length and those that
terminate outside of Vgoal.

Given that the termination symbol a is not included
in W ’s language, we extend W ’s language for the sake
of definition, permitting any string in W to end with the
termination symbol a.

La(P ) ∩ ({xa|x ∈ L(W )} ∪ L(W )) .

The lattice is then constructed based on plan subsumption.
The ⊆ relation on languages implies reflexivity and

antisymmetry, as languages contain their full set as a
subset, and two languages cannot subsume each other
unless they have the same language. The join of any two
languages La(P ),La(P

′) is their union, La(P ) ∪ La(P
′).

The requirement of transitivity follows, as all P �a P
′ �a

P ′′ implies that La(P ) ⊆ La(P
′) ⊆ La(P

′′). The meet of
any two languages is their intersection, La(P ) ∩ La(P

′).
Figure 11 shows an example plan lattice.
At the bottom of the lattice is the plan that does nothing:

the ε-language plan. Above that is the family of plans
that all possess a vertex progress measure, as well as the
language of their action-based sensors. Eventually we reach
a boundary, beyond which action-based sensors cannot be
derived directly from a plan. Above this boundary lie plans

Plan Closure P*

Do-Nothing ( -Language) Plan

Non-Solutions
Solutions

Permissive Action-based Sensors

Singleton

Action-based

Sensors

(Have Vine Graphs)

Plans with Progress Measures

Have Permissive Action-based
Sensors that can be defined,
as well as flower graphs.

Figure 11. A sketch of a Plan Lattice.

with crossovers. All of these plans can be expressed as vine
graphs, however only some of them can be reduced by CLIP
into families of action-based sensors. At the top of the lattice
are non-solutions.

We call the maximal element of the plan lattice the plan
closure, borrowed from Zhang et al. (2018).

Definition 18. plan closure (Zhang et al. 2018). Given a
world (W,Vgoal) and a (potentially infinite) set of solutions
for W {P1, P2, , P3, . . . }, there exists a p-graph P ?, which
we term the plan closure, such that

L(P ?) = L(P1) ∪ L(P2) ∪ L(P3) . . . .

Using the plan lattice, we can bring action-based sensors,
as well as their upcoming stateful counterparts, into a single
construction. At the level of their languages, this allows for
us to examine how the combinations of certain executions
induce requirements of state, as well as in what instances
memorization is actually required. In terms of plans, the set
of action-based sensors that are subsumed by a plan are the
representatives that would be provided by CLIP; these are the
subsets of the original plan language for which no crossovers
occur. Through the structure of the lattice, we can see not
only that some plans require state while others do not, but
also how those requirements come about as well as what kind
of behaviors can be modified or discarded to cross between
that boundary of reactivity and statefulness.

10 What Lies Beyond Flower Graphs
Figure 10 presents a flower graph form of a plan that

solves the problem presented in Figure 1; the current location
of the robot in the world has no bearing on what action
should be taken next. If we consider a plan such as that in
as in Figure 5, the robot’s current observation is insufficient
for us to determine what actions will make progress. Only
though also knowing where the robot is within the plan,
which is specific to the route the robot previously committed
to (blue or red, in that example), can we determine the robot’s
future actions.

This observation is the basis for what we consider state.
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10.1 Defining State, Defining Vines
If state can arise implicitly from plan structure, then it

can also be expressly used to encode execution history for
our own needs. This raises the question of how to capture
only the information needed to execute the full language of
the plan. For example, a plan’s graph could branch off two
different ways depending on if a door is open or closed.
While some history is vital for the robot to keep to determine
what actions to take in the future, other information can be
discarded without impact.

Plans which can be transformed into a reactive plan
with an action-based sensor were keeping information about
their execution that was unnecessary, while plans with only
execution progress measures rely on their structure to encode
information such that they can achieve the goal.

10.2 The Impact of Non-homomorphism
Non-homomorphism generally arises from uncertainty

in the robot’s model of the world. This may be due to
uncertainty in the robot’s physical components, such as
sensors and actuators, but may also arise due to the structure
of the plan itself. Even if we can determine a robot’s precise
location within the world given its joint-execution history,
a single vertex within the plan may correspond to different
world vertices each time it is visited.

This changing relation between plan vertices and world
vertices is captured by the I-Graph. It is also possible
for the I-Graph itself to create a non-homomorphic plan,
even if the input was homomorphic to the world. By
definition, the initial vertex of the I-Graph corresponds
to all starting vertices in the world. The empty string ε
would then potentially end in any starting location in the
world, making the plan non-homomorphic. This trivial case
aside, this transformation can also occur when obtaining an
action-based sensor. After CLIP operates on the I-Graph, the
algorithm attempts to reduce the I-Graph down into a reactive
plan (as action-based sensor). As a result, the existence of the
vertex progress measure means that world vertices that have
the same incoming observations will be conflated within the
final graph, resulting in a non-homomorphic plan.

10.2.1 Ambiguity and Dynamism in Plans To discuss
the various ways in which plans can be non-homomorphic,
we extend the relation presented in Definition 15. This
extension includes not only the correspondence between how
a plan vertex and world vertex can be reached with a joint-
execution, but also which joint-executions reach those pairs
of vertices in P and W . If we disregard s in this definition,
we see that this relation again becomes the one defined in
Definition 15.

Definition 19. triple relation. For a plan P and planning
problem W , we can define a relation T ⊆ V (P )× V (W )×
(L(W ) ∩ L(P )), where a tuple (v, w, s) ∈ T if and only if
there exists a joint-execution s on P and W that can be
traced to a vertex v in P and a vertex w in W .

To explain how different types of non-homomorphism
arise and are handled, we present two new definitions. The
first captures that in nondeterministic plans, the same joint-
execution may result in the robot reaching different vertices

in the world. We say that plan vertices with this relation are
ambiguous.

Definition 20. ambiguity in plans. A vertex v in plan P
is ambiguous if there exists a joint-execution s and vertices
w,w′ in planning problem W , where w 6= w′, such that both
(v, w, s) and (v, w′, s) are in T .

Ambiguity is a statement about our ability to determine
the outcome of a single joint-execution, all else being equal.
Such nondeterminism may arise from sensor noise, or from
lack of precision in the robot’s actuation. Imprecision in
location can also lead to the possible world vertices of the
robot moving from set to set.

However, it’s also possible that the same vertex in the plan
will map to different vertices in the world depending on the
current joint-execution.

Definition 21. dynamism in plans. A vertex v in plan P
is dynamic if there exist joint-executions s, s′ and world
vertices w,w′ in planning problem W , where s 6= s′ and
w 6= w′, and both (v, w, s) ∈ T and (v, w′, s′) ∈ T .

Plan vertices with a changing relation to which vertices
in the world they correspond to are dynamic. The plan
in Figure 9b models a version of dynamism. If the robot
receives the observation oG at the start of execution and
immediately terminates, the vertex within Vterm could
correspond either to the goal A or the goal G. However, if
the robot receives any other observation at the start of its
execution, it will (eventually) localize to a single location
within the world. At that point, when it reaches the goal, the
execution could tell us for certain whether the goal reached
was A or G. (Although the definition of dynamism uses
single vertices such as w,w′, the principle also applies over
sets, as seen here.)

Although these definitions are properties of individual
vertices, we can broadly refer to plans as ambiguous or
dynamic. Additionally, plans can be both ambiguous and
dynamic, just ambiguous or just dynamic, or neither.

When creating an I-Graph, ambiguity results in some
vertices in the I-Graph mapping to sets of world vertices as
opposed to single vertices. This is the partially observable
case discussed throughout Section 5, which can easily lead
to requirements of state.

Dynamism, however, disappears during the I-Graph
creation. The I-Graph’s purpose is to remove the constraints
of the plan structure through relating plan vertices to world
vertices. As dynamism results purely from plan structure,
we see that while the same plan vertex may correspond to
multiple vertices in the I-Graph, this has no impact on the
final I-Graph itself.

Progress measures and action-based sensors can be
defined for some non-homomorphic plans, and Section 8
describes the requirements for action-based sensors to exist.
For those plans for which action-based sensors cannot be
defined, we now further extend CLIP to recognize what
information must be retained, and use this knowledge to
reconstruct those plans as vine graphs.
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10.3 From Execution Progress Measures into
Vines

The final part of our algorithm defines a new vine graph
based on an execution progress measure. For each instance
of a given observation, the algorithm obtains a list of actions
from the I-Graph. If the set of actions differs depending on
the instance, then the observation is one which the robot must
keep track of.

This graph is constructed similarly to the method used to
create the I-Graph. Starting with an initial vertex for the vine
and the initial vertex for the I-Graph, the algorithm will trace
the I-Graph’s possible executions in order to construct the
new vine graph.

Given a set of outgoing edges from an observation vertex
within the I-Graph, one of two cases may occur. Either the
set of outgoing observations includes one that the robot
must remember, or it does not. In cases such as the plan
in Figure 9b, the robot may receive the observation o1 at
the start of execution, which requires it to take a different
action than when o1 is encountered at any other point in
the plan. Considering the definition of a contextual sensor
in Definition 14, the plan starts in a context C1, where o1

corresponds to action a1. Upon receipt of o1, a new flower
graph is created, reached by the execution o1a1. This flower
has its own context, C2. However, if o1 is not encountered
as the first observation at the start of execution, then for
subsequent o1 encounters the robot should take the action
a4. Therefore, the other observations (collectively) transfer
to a new flower of their own, a context C3, representing that
the robot needs to remember that an observation was not
encountered.

In the case that none of the outgoing observations in a set
are ones that need to be memorized, they can be added to
the vine in the same way a normal action-based sensor is
constructed, with the observation going to an action vertex
that loops back to the observation.

In addition to this branching, it is also possible for the
robot to stop tracking information once it is no longer
valuable. For example, for both contexts C2 and C3, o1 will
always correspond to the same action throughout the rest of
execution. Therefore, the list of observations to be tracked is
updated after branching. If the action vertex reached by an
instance of the observation does not have conflicting actions
with any other instances that may follow it, that observation
is removed from the list.

Regardless of whether the path branches or not, or if a new
action vertex is created or not, the search continues on the
I-Graph vertices reached by these observations and actions
until all executions have finished. After this, the various
goal vertices are then merged into a single vertex. The end
result is a graph consisting of several individual flowers, each
connected to others by a transitional observation and action.
An example of the vine graph for the plan in Figure 9b can
be seen in Figure 12a.

Keen readers may notice that the p-graph in Figure 12a
is not the smallest possible representation of this plan. This
plan can be represented with only two observation vertices,
as show in Figure 12b. One of these flowers corresponds
to the start of execution, while the other represents that
after that initial observation, no additional information needs

Vterm

{oG}

{o1}

{oG}

{o3}

{o2}

{a2}

{oG}

{a3}

{a4}{o3}

{a3}

{o1, o4}{a4}

{o2}

{a2}

{a1}

{o3}

{o4}

{o1}{a4}

{a3}

{a4}
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(a) The resulting vine given by the CLIP algorithm.

{o1}{o2} {oG}

{oG}{a3} {a2} {a1} {a4}

{o2}
{a4} {o1}

{o4}{o3}

{a2}

(b) A small vine that makes use of only two observation vertices.

Figure 12. Two vine graphs for the plan in Figure 9b.

to be kept. After the initial o1, all other instances of o1

have an action in common, and therefore do not need to be
distinguished.

While in this instance the two-flower graph could be
obtained by checking that all further instances of the
observation agreed on actions before the branch, instead
of after, it should be noted that in general the question of
obtaining a concise plan for a general planning problem
W is NP-complete. O’Kane and Shell (2017) explain this
further in their discussion of how filter reduction differs from
minimization of a deterministic finite automaton4:

“. . . we do not require the reduced filter to
produce identical results for every observation
string in Y , but only on those observation strings
in L(F ). In practice, this means that the reduced
filter may generate colors for observations
strings [sic] that are not in the language induced
by the original graph, which allows I-states to
be “merged” even when their outgoing edges
differ.”

To translate that terminology: the filter is represented with
F , the set Y remains the set of all observations, and I-
states can be thought of as an individual observation vertex.
Although p-graphs and filters are slightly different structures,
they share the complexity that arises from the difference
between their structure and their interaction language. An
example of this concept applied to p-graphs is the action-
based sensors themselves, which have an infinite language
when considered alone, but which have a finite language
when reduced to their joint-executions with the world.
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(Though beyond the scope of this work, interested readers
are referred to O’Kane and Shell (2017) for further detail and
presentation of heuristic algorithms for concise planning.)

Despite not necessarily being the minimal graph, the
resulting vines yield useful information about the plan
execution. Each branch out from a flower into two more
indicates an additional bit of memory required by the robot
to track the decision. The resulting vine structure can be
examined for various features, such as if certain choices lead
to future requirements for memory when compared to other
executions, in which case elimination of certain actions can
reduce overall memory requirements. The changes in sensor
requirements that result from previous choices also become
more apparent within the vine’s structure, which may be used
to inform design choices.

10.3.1 Turning Flowers into Vines In addition to our
ability to create vines for objects that only possess execution
progress measures, we can also use vines to combine sets of
action-based sensors. In the case of a crossover, CLIP will
produce two (or more) action-based sensors, each of which
captures part of the original language of the plan from which
they were derived. In certain cases, this behavior may be
undesirable; as such, recovering the full set of executions
requires construction of a vine.

By definition, each action-based sensor disagrees with all
others children on at least one action. Separation is therefore
required if one does not want to re-introduce crossovers.

There are a variety of ways to implement this; an action-
based sensor could be selected non-deterministically from
the set at the start of execution, or a vine graph could
be constructed based on a concept of “least commitment”,
maintaining the largest possible set of action-based sensors
until the robot must eliminate ones inconsistent with its
current history of actions. The desired behavior and resulting
structure is up to the designer.

11 From Action-based Sensors to Vines:
Another Example

Throughout this paper, we have claimed that the structure
of the action-based sensor and vine graphs can be highly
valuable in answering questions of design. The example in
Subsection 6.1 shows an instance in which broadening the
family of action-based sensors allows for accommodation
of unusual constraints on the environment. As we will now
show, the fact that vines and action-based sensors can both
be found by CLIP means that designers can also model how
small changes to the world and available sensing information
impact the operability and requirements of a robot over time.

As a final example, imagine that the robot we have been
designing is a rover being launched to another planet. For
obvious reasons, once the robot is in service it will not be
able to be repaired or upgraded. In addition to ensuring that
our robot is capable of sensing all information needed to
remain operational and perform science, as designers we
would also like for it to have as long an operational life
as possible — for example, by retaining some functionality
even in the face of partial component failure.

As this system will naturally have a large number
of components, we will focus on a single (simplified)
subsystem: power management. Our hypothetical robot

has several sensors that monitor its power consumption
and current battery levels, and can temporarily shut down
systems that are drawing too much power. Additionally, our
robot has solar panels that it uses to charge these batteries. To
assist the positioning of these panels, the robot has several
other tools: sensors for light direction and current, which
detect the position of the sun and how quickly the batteries
are charging. It also has a set of motors, which it can use to
fine-tune the position of its solar panels, to maximize light
exposure.

As numerous other systems will be vying for power
and chip space, we would like the controller for managing
the robot’s charging to be as simple as possible. While
continually pointing the solar panels towards the sun may
gather the most possible current, it restricts the bearing of
our robot and requires constant adjustment of the panels.
Instead, the power system examines the energy demands and
the current battery level. If power demands are high, or if
the battery is low, the robot can prioritize adjusting the solar
panels to maximize the incoming current, and throttle other
systems to keep the battery from dying. If the battery is
at a high level, or power demands are low, the robot can
divert power from systems for adjusting the panels and their
charging circuitry to other systems for exploration of the
planet.

While this power management must be performed for as
long as the robot functions, we can still describe this problem
as a task with a goal. Each time our robot checks on the state
of its power systems, we can define its goal state based on the
power load. If the load is balanced with the incoming current,
or if the battery is high and the load is small, the system can
terminate. If the system is unbalanced, the robot should make
adjustments until the power consumption is stable.

Figure 13 shows an example action-based sensor for this
behavior. We consider that our observation set consists of
two readings; first, the current load of the system may be
high, low, or balanced when compared to the charge current,
designated lHIGH, lLOW, lBAL. We also know the general
level of the battery: high, low, or critically low, designated
bHIGH, bLOW, bCRIT. A single observation y ∈ Y is a pair from
these two sets, indicating the current state of the system.
(We also assume that the observation set includes the ability
to sense the input current, currentHIGH and currentLOW,
which are also included in any given observation, but for
clarity in the figures they are omitted until relevant.)

For actions, our robot may move the solar panels to face
the sun, lay the solar panels in a neutral (flat) position, or
turn non-vital systems off. (We assume that, if not being
held in an off state by the power system, the robot may turn
non-vital systems on as needed.) This set is designated U :
{umove_to_sun, ulay_flat, unonvital_OFF}. (As part of moving
the panels, we assume the robot can tilt its panels left and
right, and so these actions are also included in U . These
individual actions will become relevant later in the example.)

Our robot faces many potential failures in space. In
particular, the above example uses an action to move the
panels towards the sun — which presumes that our robot can
always identify that direction, and that this sensor is working.
Although not part of the explicitly defined observation set,
this observation is used to drive whatever routine moves the
panels towards light. If this ability fails, then the robot must
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{(lLOW, bLOW)}

{ulay_flat}

{unonvital_OFF}

{(lLOW, bCRIT),

(lHIGH, bCRIT),

(lBAL, bCRIT)}

Vterm

(lHIGH, bLOW)}
{(lHIGH, bHIGH),

(lLOW, bHIGH)}
(lBAL, bLOW),

{(lBAL, bHIGH),

{umove_to_sun}

Figure 13. An action-based sensor for a system with the goal
of balancing power consumption for a robot. This plan is finite
on the world; even if the load is not balanced, as systems are
turned on and off, eventually the battery level will be high and
the load will be low. If an I-Graph was created for this, our world
states would correspond to input currents, battery levels, and
loads. The progress measure would therefore be defined as the
choices in action that prioritizes either a balanced load, or a
high battery level with minimal load.

{(lLOW, bLOW)}

{ulay_flat}

{unonvital_OFF}

{(lLOW, bCRIT),

(lHIGH, bCRIT),

(lBAL, bCRIT)}

Vterm

(lLOW, bHIGH)}
(lBAL, bLOW),

{(lBAL, bHIGH),

{(lHIGH, bHIGH),

(lHIGH, bLOW)}

{utilt_panels_left}

{currentLOW}

{utilt_panels_right}

{currentHIGH}

Figure 14. A vine graph demonstrating behavior that adapts to
a broken light sensor. We exclude the panel current,
currentHIGH and currentLOW, from edges where they are not
relevant to the action taken, and the same is done with the load
and battery observations when they are not relevant to the
resulting choice in action.

develop new behaviors for when it has high loads on the
system. In such a case, although the sun cannot be directly
sensed, its direction can be generally inferred from what
angle yields the highest input current. Therefore, our robot
now must use a multi-step process to maximize this input.
Beginning with a maximum tilt in one direction, it can then
adjust the tilt of the panel in the other direction. The output
current should rise as it faces a light source, and decrease as
it moves away.

Figure 14 shows an example vine graph for this behavior.
Observations which would have triggered the robot to adjust
its panels towards the sun now transition to a new observation
vertex. Slightly abusing our observation labeling, we ignore
the current load and battery level and focus only on the
input current. Assuming the robot is not keeping past
information, the robot should return to normal behavior once
the current reaches a certain level. This behavior also makes
use of actions for adjusting the panels, utilt_panels_right and
utilt_panels_left.

Another way in which the system might fail is that the
motors for adjusting the angle of the solar panels may fail.
If they fail at an angle, the robot will have to physically turn
to face the sun. This will result in a similar vine as the one
before, although the robot will turn towards a light instead of
adjusting panels to hit a desired current, but will also impact
other systems on the robot. The requirement of facing in
a certain direction to charge the batteries means that other
actions, such as exploration and movement, are restricted by
the battery level and the direction in which it must face.

Although we cannot service our robot once it leaves
Earth, we can predict ahead of time what kind of problems
may occur, and how this changes the sensor readings and
desired responses of the robot. As a result, we can construct
vine graphs that suggest new behaviors to compensate, and
identify how those behavioral changes may result in impacts
on other parts of the system.

12 Conclusion
Having extended the work done by Erdmann we can

now obtain not only the sensors that correspond to the
backchained solution, but the complete set of all action-
based sensors. Given a library of components, this set
of sensors can guide practitioners in determining what
is simultaneously realizable, respectful of environmental
constraints, and sufficiently powerful to accomplish the task.
Design and selection of sensors then becomes just a question
of intersecting constraints.

However, we have seen that sensing alone may be
inadequate, leaving our robots to explore, to learn, and to
memorize the information they need. Through modeling
plans as directed graphs, the required internal state is
encoded directly into their structure. Identifying what
precisely this state is, how it manifests in stateful plans,
and what properties these stateful plans have, is valuable in
understanding how limitations in one aspect of the design
(sensing) can be compensated for by other components of
the system.

By identifying only the information that must be retained,
we gain additional insight into the plan’s requirements, and
can express these requirements through vine graphs, which
extend action-based sensors.

From the perspective of the theorist, vine graphs
and action-based sensors provide a useful tool for
analyzing information and state requirements of systems. By
comparing closely related plans within the plan lattice, the
effect of minor changes in behavior on the system can be
easily explored. Additionally, the structure of the plan lattice
allows for understanding of where requirements for internal
state begin, and where sensing alone becomes insufficient to
solve the task.

From a designer’s perspective, the action-based sensors
and vine graphs allow for direct comparison of designs.
Given a planning problem, the sensing limits imposed by
different sensors that are available to the designer can be
applied to the planning problem and its resulting solutions.
The resulting action-based sensors can be compared to see
if the different sensors require different behaviors, or if the
required change in behavior to implement them is suitable for
the desired task. If a vine graph is required, then the variation

Prepared using sagej.cls



20 Journal Title XX(X)

in sensors can be used to compare the resulting complexity
of the plans in terms of their state.

We have also seen that the ability to compare the
application of different sensors allows for exploration of
additional questions, such as if changes to the same sensor
over time result in a planning problem that can no longer be
solved, or if the changes can be planned around through the
use of more complicated behaviors from the robot.

It is our belief that the tools presented in this work provide
a new way for roboticists to explore the tricky connections
between desired behavior and required sensing, as well as
how choices in either of those areas can have significant
impact on the options for the other.
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Notes

1. For clarity when reading, we often refer to Erdmann by name
when making reference to his theory of action-based sensors.
Unless otherwise indicated, this is a reference to Erdmann
(1995).

2. More than any other robotics work of which we are aware,
Erdmann’s theory embodies the perspective of Pragmatism, in
the William James and John Dewey sense of the term.

3. The word ‘state’ has been used with extreme care thus far
and only in precisely one form, namely to mean something
memorized, tracked, or remembered; within the p-graph
we have called the elements vertices; other words like
‘some condition’ and ‘particular circumstances’ have been
deliberately used to avoid the conceit of declaring something
to be ‘state’ and taking its existence so seriously as to believe it
an objective concept.

4. A filter (O’Kane and Shell 2017) is a directed graph that is
somewhat similar to a p-graph, but which consists only of
observations on its edge transitions and yields an output “color”
dependent on the given state. The complexity of p-graph plan
reduction follows from similar structure.
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