
Assessing Optimal Assignment under

Uncertainty: An Interval-based Algorithm

Lantao Liu and Dylan A. Shell
Department of Computer Science & Engineering

Texas A&M University
College Station, Texas, USA

Email: {lantao,dshell}@cse.tamu.edu

Abstract

We consider the problem of multi-robot task-allocation when robots
have to deal with uncertain utility estimates. Typically an allocation is
performed to maximize expected utility; we consider a means for measur-
ing the robustness of a given optimal allocation when robots have some
measure of the uncertainty (e.g., a probability distribution, or moments
of such distributions). We introduce the Interval Hungarian algorithm,
a new algorithm that extends the classic Kuhn-Munkres Hungarian algo-
rithm to compute the maximum interval of deviation, for each entry in
the assignment matrix, which will retain the same optimal assignment.
The algorithm has a worst-case time complexity of O(n4); we also intro-
duce a parallel variant with O(n3) running time, which is able to exploit
the concurrent computing capabilities of distributed multi-robot systems.
This provides an efficient measurement of the tolerance of the allocation
to the uncertainties and dynamics, for both a specific interval and a set
of interrelated intervals. We conduct experiments both in simulation and
with physical robots to validate the approach and to gain insight into the
effect of location uncertainty on allocations for multi-robot multi-target
navigation tasks.

1 Introduction

Task-allocation mechanisms are among the most successful non-domain-
specific means for coordinating multiple robots. These involve treating the
work to be performed as a set of tasks and the robots themselves as workers to
be assigned to particular tasks. If each robot can estimate the efficacy of its
performance for each task, algorithms can optimize the allocation of robots to
tasks, or vice versa (which is equivalent), in order to maximize expected col-
lective performance. The complexity of the allocation problem depends on the
particular capabilities required to achieve the task, the capabilities of the robots,
and whether the allocation must consider temporal scheduling aspects [Gerkey

1

and Matarić, 2004]. Generally, the complexity of the particular allocation prob-
lem depends on the degree to which each of the robots and each of the tasks
can be considered as independent of one another. However, a certain degree
of independence is necessary for the task-allocation approach to be considered
appropriate at all.

This paper considers an archetype multi-robot task-allocation problem which
involves performing an instantaneous assignment of robots to tasks. Each robot
is capable of performing exactly one task at a given time and each task requires
only one robot. In the taxonomic characterization in Gerkey and Matarić [2004],
this is the single-task robots, single-robot tasks problem instance. This reduces
to the well-studied Optimal Assignment Problem (OAP) for which the Kuhn-
Munkres Hungarian algorithm, which was first proposed by H. W. Kuhn [Kuhn,
1955] and improved by J. Munkres [Munkres, 1957], is a solution.

However, outstanding issues remain for multi-robot task-allocation. The
Hungarian algorithm maximizes the utility for the team because it is provided
with an estimate of each robot’s expected utility. Calculating this estimate
is costly because every robot must provide estimates for each task and the
optimality of the resultant allocation is only meaningful when these estimates
are accurate. Dynamic environments, dynamic tasks, or changes in robot state
typically mean that utility estimates can become outdated. Furthermore, the
robots have to deal with uncertainty about the state of the world in constructing
these estimates. Even if the robots maintain a representation of this uncertainty
(e.g., a distribution over potential states) the expected utility is only the first
moment of the utility distribution given a particular robot-task assignment pair.
We identify the following important questions:

1. How much effort should the robots invest in constructing each utility es-
timate? For n robots and n tasks, n2 estimates are provided, but only
n elements make up the optimum assignment; not all utility estimates
need to be known with equal fidelity.

2. Once an allocation is computed, how stable is the allocation with respect
to changes in the matrix of utility estimates? Changes in the matrix can
arise either from improved estimates of task performance, or tasks with
some inherent dynamics.

3. If these utility estimates arise from an underlying probability distribution,
what is the likelihood that the assignment is sub-optimal?

This paper makes the following contributions toward addressing the problem of
multi-robot task allocation with uncertain utility values:

• This paper introduces the concept intervals of utility estimates, identifies
several properties of these intervals, and provides proofs of these proper-
ties.

• We present a new algorithm, the Interval Hungarian Algorithm, which is
ideally suited to multi-robot systems, although broadly applicable to any
OAP where the matrix of utility estimates is subject to uncertainty.

2

• This paper introduces an efficient method for quantifying the effects of
uncertainty on an allocation. This includes analysis for instances with a
single specific estimate as well as multiple interrelated estimates.

• We analyze the impact of uncertainty through concrete examples, using
standard localization methods to produce real utility distributions with
physical robots in addition to simulation.

2 Related Work

It is worthwhile to draw a distinction between multi-robot coordination
strategies that employ static notions of expected utility and those which model
the task performance itself in greater detail. The latter schemes use a rich
model of agents and tasks in order to construct a probabilistic model. For ex-
ample, stochastic games/decentralized-MDPs [Bernstein et al., 2000], factored-
MDPs,[Guestrin et al., 2002], POMDPs [Roth et al., 2006], permit one to ex-
plicitly address the question of when to perform particular actions (movement,
sensing, communication) in order to reduce uncertainty if doing so is bene-
ficial for the performance of tasks. However, these problems do not admit
polynomial-time solutions and often factorization or independence assumptions
are introduced in order to make the problem tractable. Further constraints may
arise from a distributed solution (e.g., game theoretic models which design in-
dividual pay-off matrices so that locally greedy agents maximize global pay-off)
and require approximation (e.g., potential games, or a similar treatment) or
task-structure assumptions.

Task assignment methods that employ static expected utilities instead ab-
stract away details of the task performance and structure. They require that
each robot assess their expected performance on each task under considera-
tion. These approaches depend on an independence assumption because a
linear function (like the sum) of the group’s utilities is optimized. Other ef-
fects, like interference or inter-robot synergy, can only be captured in the way
they effect particular utilities in the expectation. Centralized and distributed
algorithms for performing allocations have been developed, including greedy
allocations [Parker, 1998], optimization techniques [Gerkey and Matarić, 2004;
Atay and Bayazit, 2006], and auction [Bertsekas, 1990; Berhault et al., 2003]

and market-based approaches [Dias and Stentz, 2001; Dias et al., 2006]. It is
within this framework that the present study falls. It uses little information
about the domain-specific aspects that lead to the structure of the coordination
problem, or even the source of the uncertainty. Despite the large body of liter-
ature concerned with efficient solution of the distributed assignment problem,
comparatively little work considers the effect of uncertainty. Aspects like inter-
related utilities (or in the present study, more generally, interrelated uncertainty
in the utilities) are not explicitly captured. If the effect of these higher-order
interactions on utility values can be calculated, then the presented algorithm
can still be of use.

3

The Interval Hungarian algorithm introduced in this paper is similar to
the broader strategy of sensitivity analysis [Dinkelbach, 1969] used to assess
robustness to error of linear (or non-linear) programs. The appendix describes
the assignment problem from this perspective and outlines the aspects that are
unique due to our treatment of the sensitivity analysis within the bipartite graph
matching framework.

3 Background: The Hungarian Algorithm

The Hungarian algorithm treats the optimization OAP as a combinatorial
problem in order to efficiently solve an n×n task assignment problem in O(n3)
time. The utility estimates become edge weights in a complete bipartite graph
in which robots and tasks each are represented by the vertices. The Hungarian
algorithm (Algorithm 3.1) searches for a perfect matching in a sub-graph of the
complete bipartite graph, where the perfect matching is exactly the optimal
assignment solution. In step 4 the search process either increases the matching
size, or grows the so-called equality graph in which the matching must reside.‡

Algorithm 3.1 The Hungarian Algorithm

Input:
An n × n utility matrix represented as the equivalent complete weighted bi-
partite graph G = (X,Y,E), where |X| = |Y | = n.

Output:
A perfect matching, M .

1: Generate an initial labeling l and matching M in Ge.
2: If M is perfect, terminate. Otherwise, pick a random exposed vertex u ∈ X.

Set S = {u}, T = ∅.
3: If N(S) = T , update labels:
δ = minx∈S,y∈Y−T {l(x) + l(y)− w(x, y)}

l′(v) =

 l(v)− δ if v ∈ S
l(v) + δ if v ∈ T
l(v) otherwise

4: If N(S) 6= T , pick y ∈ N(S)− T .
(a) If y exposed, u→ y is augmenting path. Augment M and go to step 2.
(b) If y matched, say to z, extend Hungarian tree: S = S

⋃
{z}, T = T

⋃
{y},

and go to step 3.

∗ Definitions:

• Equality graph Ge = {e(x, y) : l(x) + l(y) = w(x, y);

• Neighbor N(u) of vertex u ∈ X: N(u) = {v : e(u, v) ∈ Ge}.

‡Graph and matching definitions and notation are adopted from Lovász and Plum-
mer [1986].

4

(a)

(b) (c)

Figure 1: The Hungarian algorithm solves the OAP using the input represented
as a complete bipartite graph. (a) An assignment matrix and solution; (b) A
complete bipartite graph; (c) The perfect matching for assignment solution. The
state of the graph after an assignment, we term the resultant bipartite graph.
(Viewed in gray scale the so called green edges are thiner, red edges are the
darker bold edges, gray edges are the lighter bold edges.),

Figure 1 shows an example assignment problem and the corresponding per-
fect matching in the form of the associated bipartite graph. In Figure 1(a), the
task assignment problem is described as an assignment matrix (which, in gen-
eral, need not be square). Element uij represents the utility that is estimated to
result from assigning robot ri to perform task tj . The algorithm generates the
maximal allocation, shown as shaded cells in the matrix. Figures 1(b) and 1(c)
show the same information in the equivalent bipartite graph form. We illustrate
the different way edges are used in the calculation of an allocation with color:
red edges comprise the matching, green edges are unmatched whilst also being
in the equality graph Ge, and gray edges are unmatched but do not appear in
the equality graph. Edges within Ge are termed admissible (both red and green
edges) and will have weights that satisfy wij = l(ri) + l(tj). Bracketed integers
above and below each vertex represent the labeling value l(·). Edge set M and
scalar m represent a specific perfect matching solution and the corresponding
optimum value, respectively.

Since the development of the Hungarian algorithm many variations have
been proposed; see Pentico [2007] for a recent survey. Two relate directly to this
paper: Toroslu and Üçoluk [2007] provide an incremental Hungarian Method,
which is an O(n2) technique for inserting a pair of new vertices in the bipar-
tite graph that has resulted from a previous assignment. An extension to this
(in Mills-Tettey et al. [2007]) also permits deletions, which enables one to solve

5

assignment problems with k utility changes in O(kn2) time. The current work
computes a description of an assignment problem (in worst case of O(n4) se-
quential computation) which permits subsequent O(1) queries of whether or
not the assignment has changed. When assignments are being recomputed fre-
quently with small absolute changes in value this can be a considerable saving.
This happens, for example, to estimated distances during replanning as a robot
moves.

4 Interval Hungarian Algorithm

The Interval Hungarian Algorithm is developed in this section. The primary
purpose of the algorithm is to efficiently compute both the optimal assignment
and additional information permitting one to assess the robustness of the as-
signment to perturbation of the input. For each utility value, we compute the
interval in which the utility may be (independently) altered before the opti-
mality of the computed assignment is violated. Thus, given an input matrix of
utilities, the algorithm characterizes a set of inputs which yield the same out-
put. The set of inputs is characterized by intervals which are computed on the
basis of the three different categories (or three colors) of edge described in the
previous section.

Before presenting the algorithm, we will describe the properties of matched
and unmatched edges respectively. Matched edges are the most straightforward
an permit the reader to get a feel for what is meant by the “interval analysis.”
The properties of the classes of edge lead to the main algorithm description, and
the final subsection presenting the computational complexity of the algorithm.

4.1 Interval Analysis for Matched Edges

Consider the interval of values that a matched edge may take if it is to
remain a matched edge. For any such edge em(rα, tβ), the interval can be
described as [wmαβ − εm,+∞), where wmαβ is the edge weight of em(rα, tβ)
and εm is the tolerance margin that the weight can decrease without violating
the optimality of the current matching solution. It is safe to increase the weight
as this is a maximization problem. We say a matched edge is hidden if its weight
has decreased so as to no longer form part of a matching solution.

Lemma 4.1. With the resultant matching solution M0 and the bipartite graph of
the Hungarian algorithm, if a matched edge em(rα, tβ) is hidden, the Hungarian
algorithm can be completed with one iteration rooted at exposed node rα. When
a new perfect matching solution M ′ exists, the labeling reduction of the root rα
satisfies l(rα)− l′(rα) = m0 −m′.

Proof. The proof is based on the Hungarian algorithm solution method. If
one matched edge em(rα, tβ) is hidden, the bipartite graph remains feasible,
but the equality graph Ge loses one matched edge. Hiding em(rα, tβ) exposes
rα and tβ , requiring an iteration to complete the Hungarian algorithm. All

6

(a) (b)

Figure 2: Interval analysis for a matched edge. (a) An objective matched edge
hidden and assigned weight wx; (b) New matching solution without the hidden
edge.

other unexposed vertices are on the corresponding matched edges and, thus,
are included in Ge, and moreover the sum of their labels is constant for all
subsequent iterations. To grow Ge in bridging a new augmenting path∗, l(rα)
may decrease, but l(tβ) remains constant because it is the end of the augmenting
path and will be reached last. Therefore, l(rα) is the only variable that can
reduce the optimum. This proves that the reduction of l(rα) is exactly the
reduction of optimum from M0 to M ′, namely, l(rα)− l′(rα) = m0 −m′.

Theorem 4.2 (Matched Edge Interval). Hiding a matched edge from the
Hungarian solution M0 leads to a new solution M

′
, and the labeling reduction

εm = m0 −m
′

at the root of the Hungarian tree is the tolerance margin for this
element, i.e., the safe interval for a matched edge em(rα, tβ) is [wmαβ − (m0 −
m

′
),+∞).

Proof. Assigning weight w = wmαβ − εm, where εm = m0 − m
′
, to edge

em(rα, tβ) results in optimum m0 − εm for the original matching M0. Any
new matching M ′ which does not contain em(rα, tβ) also has an optimum of
m′ = m0 − εm, and therefore both M0 and M ′ are optimal matching solu-
tions. Whenever the weight of edge em(rα, tβ) satisfies w ≥ wmαβ − εm, we
have m0 ≥ m′ implying that M0 is optimal, otherwise M0 would be substituted
by M ′. Thus, the maximum allowable interval for matched edge em(rα, tβ) is

[wmαβ − εm,+∞), i.e., [wmαβ − (m0 −m
′
),+∞).

Lemma 4.1 and Theorem 4.2 permit computation of the interval of a matched
edge em(rα, tβ) in the following way: First, hide em(rα, tβ) from the bipar-
tite graph and assign it an undecided weight wx satisfying the constraint:
wx < l(rα) + l(tβ). Next, let exposed vertex rα be the root of a Hungarian
tree and construct an augmenting path excluding em(rα, tβ). The algorithm

∗Although the definition of augmenting path is not necessary to understand Algorithm 3.1,
we note that here we deviate from Lovász and Plummer [1986], pg. xxxii, where they use the
term M-augmenting path.

7

Algorithm 4.1 Intervals of Matched Edges

Input:
A matched edge em(rα, tβ) and the corresponding resultant bipartite graph.

Output:
Interval (lower bound ξm) for em(rα, tβ).

1: Hide em(rα, tβ) by assigning it an unknown weight wx.
Set S = {rα}, T = ∅.

2: If N(S) = T , update labels:
δ = minx∈S,y∈Y−T,e(x,y)6=em(rα,tβ){l(x) + l(y)− w(x, y)}

l′(v) =

 l(v)− δ if v ∈ S
l(v) + δ if v ∈ T
l(v) otherwise

l′(rα) + l′(tβ)− wx > δ ⇒ wx < l′(rα) + l′(tβ)− δ.
Update ξm = l′(rα) + l′(tβ)− δ.

3: If N(S) 6= T , pick y ∈ N(S)− T .
(a) If y = tβ , there must be an augmenting path rα → tβ . Augment
matching and terminate.
(b) If y matched, say to z, extend Hungarian tree: S = S

⋃
{z}, T = T

⋃
{y}.

Go to step 2.

terminates when such a path is found that also generates a perfect matching.
Because l(tβ) stays unchanged but l(rα) is decreased, wx will decrease per it-

eration; the lower bound wmαβ − (m0 −m
′
) occurs the moment a new perfect

matching exists.
Figure 2 provides an illustratory example. Hiding matched edge e(r3, t1) re-

quires construction of a Hungarian tree rooted at newly exposed vertex r3. Here
l(r3) decreases while searching for an augmenting path, and a new matching so-
lution 〈e(r1, t1), e(r2, t2), e(r3, t3)〉 replaces the original one in the augmenting
path r3 → t3 → r1 → t1. The reduction of labeling for r3 is 5 − 4 = 1 = εm,
and the interval for e(r3, t1) is [8,+∞).

4.2 Interval Analysis for Unmatched Edges

A similar analysis can be carried out for unmatched edges. An unmatched
edge eu(rα, tβ) has an interval (−∞, ξu], where the upper bound ξu reflects the
maximum utility value it may take while remaining an unmatched robot and
task pair.

Lemma 4.3. In the resultant bipartite graph of the Hungarian algorithm, the
weight of any unmatched edge eu(rx, ty) can be increased to the sum of two
associated labeling values l(rx)+l(ty) without affecting the optimum assignment.

Proof. An increment of this form does not violate the feasibility of the bipar-
tite graph, nor does the modification remove any admissible edges from Ge.
Therefore, the original matching in Ge remains perfect.

8

(a) (b)

Figure 3: Interval Analysis for an unmatched edge. (a) Hide all associated
edges of objective unmatched edge; (b) New matching solution formed with the
objective edge and matching solution in auxiliary bipartite graph.

However, the upper bound in Lemma 4.3 is not tight. For example, in
edge e(r2, t1) of the graph in Figure 1(c), the weight can safely increase to 12
rather than 4 + 7 = 11 (12 is the upper bound because greater weights result
in optimal matching 〈e(r1, t2), e(r2, t1), e(r3, t3)〉), and there is a unit tolerance
margin. Next, we show how to find the tolerance margin εu and further improve
the upper bound. We redefine the interval as (−∞, l(rα) + l(tβ) + εu]. It is
important to note, this also shows that all unmatched edges, whether in Ge or
not, can be treated uniformly once they become admissible.

To obtain εu for unmatched edge eu(rα, tβ), hide eu(rα, tβ) and all other
edges incident to vertices rα and tβ from the resultant bipartite graph. This
yields a bipartite graph with n − 1 vertices in each partition. We term this
new bipartite graph the auxiliary bipartite graph Ga. Notice that this auxiliary
bipartite graph is associated with a particular edge, and that the auxiliary
bipartite graph has only n−2 matched edges. It therefore requires the addition
of one edge for a matching solution.

Theorem 4.4 (Unmatched Edge Interval). Any unmatched edge eu(rα, tβ)
in the Hungarian resultant bipartite graph, has interval tolerance margin εu =
m0−(ma + l(rα) + l(tβ)), where m0 is the optimum of the original solution, and
ma is the optimum of the auxiliary bipartite graph associated with eu(rα, tβ).
The allowable interval for edge eu(rα, tβ) is (−∞,m0 −ma].

Proof. For an arbitrary unmatched edge eu(rα, tβ) and its associated auxiliary
bipartite graph Ga of size n− 1, we add eu(rα, tβ) to the matching solution Ma

of Ga. This forms a new matching M ′ of size n. If the weight of edge eu(rα, tβ)
satisfies wuαβ > m0 − ma, then the matching M ′ containing eu(rα, tβ) must
satisfy m′ = wuαβ +ma > m0. But this contradicts the fact that the original
matching M0 was perfect. This proves that the upper bound for unmatched edge
eu(rα, tβ) is m0 −ma, and that the allowable interval is (−∞,m0 −ma].

Consider Figure 3 as an example. Hiding e(r2, t1) and all edges incident
to r2 and t1 leaves auxiliary bipartite graph Ga containing vertices r1, r3, t2,

9

Algorithm 4.2 Intervals of Unmatched Edges

Input:
An unmatched edge eu(rα, tβ) and the corresponding resultant bipartite
graph.

Output:
Interval (upper bound ξu) for eu(rα, tβ).

1: Assume e(rα,mate(rα)), e(mate(tβ), tβ) are matched edges, then set S =
{mate(tβ)}, T = ∅.

2: Hide eu(rα, tβ) and all other edges incident to vertices rα and tβ , and obtain
the auxiliary bipartite graph Ga.

3: In Ga, if N(S) = T , update labels:
δ = minx∈S,y∈Y−T {l(x) + l(y)− w(x, y)}

l′(v) =

 l(v)− δ if v ∈ S
l(v) + δ if v ∈ T
l(v) otherwise

4: In Ga, if N(S) 6= T , pick y ∈ N(S)− T .
(a) If y = mate(rα), there must be an augmenting path mate(tβ) →
mate(rα). Augment matching and go to step 5.
(b) If y matched, say to z, extend Hungarian tree: S = S

⋃
{z}, T = T

⋃
{y}.

Go to step 3.
5: ξu = m0 −ma.

∗ Definitions:

• mate(v) is the other ending vertex with respect to vertex v;

• m0 is optimum of the original solution, ma is optimum of Ga.

10

Figure 4: An example of an interval matrix

t3 and associated edges (see Figure 3(a)). The Hungarian tree is created with
root at newly exposed vertex r3, and finally the matching solution Ma of Ga is
〈e(r1, t2), e(r3, t3)〉, as shown in Figure 3(b). The tolerance margin and allow-
able interval for e(r2, t1) are εu = m0 − (ma + l(r2) + l(t1)) = 1 and (−∞, 12],
respectively.

4.3 Interval Hungarian Algorithm

Combining the interval analysis of matched and unmatched edges, we have
the Interval Hungarian algorithm described in Algorithm 4.3. Figure 4 shows
the corresponding intervals for the assignment matrix in Figure 1(a).

Algorithm 4.3 Interval Hungarian Algorithm

Input:
A resultant bipartite graph from running Algorithm 3.1.

Output:
A matrix mxitv(n, n) of upper and lower bounds on each interval.

1: mxitv(n, n) = NULL.
2: foreach edge e(i, j) in bipartite graph do

if e(i, j) is matched then
compute interval I(i, j) with Algorithm 4.1;
mxitv(i, j) = I(i, j);

else
compute interval I(i, j) with Algorithm 4.2;
mxitv(i, j) = I(i, j);

end if
end foreach

3: return mxitv.

4.4 Complexity Analysis

Since the Hungarian algorithm has a computational complexity of O(n3),
our Interval Hungarian algorithm has a worst-case time complexity of O(n4).
Obtaining the intervals for n matched edges, needs an extra O(n×n2) = O(n3)

11

operations since for each edge requires the construction and search of a Hun-
garian tree, which costs O(n2). The computation of all the unmatched edges
has a worst case cost of O(n4) since, for each unmatched edge, we do the same
searching iteration in Ga (it has a size of n− 1 and thus needs a computational
complexity of O((n− 1)2)). There are n2 − n unmatched edges, producing the
resultant O((n2 − n)× (n− 1)2) = O(n4).

The time complexity can be further reduced if a parallel mechanism is
available, as is the case when the multiple robots form a distributed computing
system. This is because the computation of each interval does not depend on
the computation of any others, i.e., each interval only depends on the resultant
bipartite graph output from the Hungarian algorithm. If k processors are pro-
vided, each processor should be assigned with n2/k intervals given the complete
task involves n2 intervals. Because each interval is independent from all others
and requires O(n2) time, the total running time is O(n4/k). When k ≥ n, the
overall time complexity is still at most O(n3). This is very useful in the multi-
robot task assignment problem since the multi-robot system provides exactly n
processors.

5 Quantifying the Effect of Uncertainty

When the Hungarian algorithm is applied to a matrix of expected utilities
calculated from uncertain data (e.g., using the mean of a utility distribution)
one has little idea of the impact this uncertainty has on the resultant assign-
ment. The output from the Interval Hungarian algorithm can be used to analyze
the changes in the optimal allocation as changes are made to particular utility
values. Next, we demonstrate that the algorithm can be used to estimate the
likelihood that the calculated assignment will be sub-optimal.

5.1 Uncertainty Measurement for a Single Utility

Theorem 5.1 (Uncertainty of a Single Interval). With regard to any spe-
cific single utility value, assuming other utilities are certain, the perfect matching
solutions are identical if and only if any specific utility is within its allowable
interval.

Proof. Assuming other utilities in the assignment matrix are certain, taken to-
gether Theorems 4.2 and 4.4 prove that if the matching solution remains the
same, then any specific utility must be within its allowable interval. To prove
the converse: suppose the matching solutions are not identical, then there must
be a new perfect matching M ′ that replaces the original one M0 i.e., m′ > m0.
However, this cannot happen since any value within the interval must produce
a matching solution with sum of weights which is less than or equal to m0.

To analyze the effect of uncertainty on a specific utility in the assignment
matrix, we assume the other values are certain. Given a probability density
function f(x) for this specific expected utility and an associated interval I as

12

output from the algorithm, a reliability score that reflects the probability of
yielding the current optimal solution is:

PI =

∫ +∞
ξm

f(x), when I = [ξm,+∞)∫ ξu
−∞ f(x), when I = (−∞, ξu].

(1)

For applications in which robots are actively estimating quantities involved
in producing f(x), one may set some threshold T ∈ [0, 1], so the robots only
commit to an assignment if PI ≥ T , and instead opt to invest resources in
reducing the uncertainty in the estimate when it is likely to have a major bearing
on the particular assignment. High values of T will ensure the robots only
commit to allocations that are robust to errors in estimates of the expected
utility.

5.2 Uncertainty Measurement for Interrelated Utilities

The previous subsection gives an approach for quantifying the effect of un-
certainty on the robot-to-task assignment when only one utility was uncertain.
Most often, however, multiple utilities are uncertain and they may all be inter-
related if they involve inference over the same underlying state variables. For
example, a row in the assignment matrix represents all relevant expected utili-
ties for a specific robot. A change that effects the performance of the robot (e.g.,
low battery) effects all the entries in the row. Here we use the term interrelated
edges to represent all directly related utilities in a single row or column. For
the same assignment to be preserved, in spite of the n interrelated edges, there
must be one and only one edge that remains matched and all the others should
be unmatched.

Theorem 5.2 (Uncertainty of Interrelated Intervals). Given a set of n
interrelated edges, assume em is the matched edge with interval [wm−εm,+∞),
and eui are unmatched edges with intervals (−∞, wui + εui], i = 1, 2, · · · , n− 1,
then for any ε′ ≤ εm, the weight of em can be safely substituted with wm − ε′,
and the interval for eui becomes (−∞, wui + εui − ε′], i = 1, 2, · · · , n− 1.

Proof. ε′ ≤ εm indicates that new weight w′m = wm − ε′ is within the interval
associated with edge em, thus a substitution of w′m will not violate the matching
solution. To prove the interval form for eui, i = 1, 2, · · · , n−1: suppose that m′0
is the optimum with substituted weight w′m, then we have m′0 = m0 − ε′. From
Theorem 4.4, the interval for eui is (−∞,m′0 −ma], which can be substituted
with (−∞,m0 − ε′ −ma]. Because m0 −ma = wui + εui, the interval for eui
becomes (−∞, wui + εui − ε′].

Notice, Theorem 5.2 exploits the mutual exclusion property of interrelated
unmatched edges: at any time one and only one interrelated unmatched edge
can possibly become matched. This means that as the matched edge’s weight
is decreased, one unmatched edge moves closer to its interval’s upper-bound.
However, as the matched edge’s value decreases, the bounds of all the other

13

Figure 5: Reliability scores are determined for interrelated edges by integrating
the shaded areas. This example show three edges, each with utility uncertainty
represented by a Gaussian distribution. The leftmost edge is matched while the
other two are unmatched.

unmatched edges decrease too. To allow the simultaneous occurrence of in-
terrelated matched edge and unmatched edges, we compromise between them:
intervals of interrelated unmatched edges shrink by ε′, while the interval for
the interrelated matched edge shrinks by εm − ε′. The following 4 step method
determines the uncertainties of interrelated edges:

1. Determine εmin from all interrelated edges:
εmin = min(εm, εui), i = 1, 2, · · · , n− 1.

2. Determine each interrelated interval Ii:

Ii =

 [wm − k · εmin,+∞), i = 0;

(−∞, wui + εui − k · εmin], i = 1, 2, · · · , n− 1.

Note: I0 represents the interval for the matched edge. k ∈ [0, 1]
is a coefficient which affects a degree of scaling between matched and
unmatched intervals.

3. Determine reliability scores:

PIi =

∫ +∞
ξ′m

f(x), (ξ′m = wm − k · εmin), i = 0;

∫ ξ′ui
−∞ f(x), (ξ′ui = wui + εui − k · εmin), otherwise.

(2)

4. Determine reliability level:
The assignment is reliable when PIi ≥ T , and unreliable otherwise.

Thus, the margin of tolerance shrinks for all interrelated edges. This
approach uses a parameter k to balance this shrinkage between interrelated
matched and unmatched edges. Equation 2 implies that when k 6= 0, both
matched and unmatched edges shrink by values associated with k: every un-
matched edge shrinks by ε′ = k · εmin, and the unique matched edge shrinks by
a complementary value of εm−ε

′
. In Step 4, the uniform reliability threshold T

requires that every edge be sufficiently reliable (PIi ≥ T , ∀i). This means that a

14

whole set of interrelated edges can be judged reliable enough by examining the
lowest score, i.e., min{PIi}. Therefore, we want to maximize the lowest score,
and k may be obtained by:

k = arg max
k′

(
min{k

′
εmin, εu1 − k

′
εmin, εu2 − k

′
εmin, · · · }

)
, (3)

where kεmin is the new tolerance margin for the interrelated matched edge, and
the others are for the set of interrelated unmatched edges. Obviously, when
k → 0, the new tolerance margin of the interrelated matched edge approaches
zero—so that the uncertainty of the matched edge is deemed unimportant—
while the interrelated unmatched edges have almost no reduction from their
original margins. In this case it is very likely that the lowest score will be
from the matched edge (determined via the integral of only the right half of the
probablity density function). Thus, in such cases, the unmatched edges will play
little role in determining whether the assignment is robust. The other extreme
forms a contrast: as k → 1, there must be an interrelated unmatched edge that
has new tolerance margin of zero, which likely results in the lowest score with
similar drawback.†

The use of a single parameter is expected to be most effective for Gaussian-
like distributions where the mean and medians of the distributions are close.
Figure 5 illustrates the reliability scores (shaded area) under a Gaussian distri-
bution density for the matched and unmatched edges, respectively. This method
can measure the uncertainties for a horizontal row or a vertical column in the
assignment matrix, assuming other non-directly interrelated rows or columns
are known with certainty. The uncertainty involving multiple rows or columns
is complex and beyond the scope of this paper. Although the approach does
not address the full problem in which the sensitivity an arbitrary sub-matrix
depends on the knowledge of all the other intervals, by permitting variation
interrelated values moves beyond a mere “perturbation” like analysis. Perhaps
most important, experiments in Sections 6 and 7 illustrate that the Interval
Hungarian algorithm is effective for realistic tasks.

5.3 Measuring the Uncertainty in Multi-robot Systems

In this subsection, we design an approach using Interval Hungarian algo-
rithm to measure the uncertainty problem in multi-robot systems. As discussed
in Subsection 4.4, the computation of intervals may be separated and distributed
due to their independence property. It is natural that a multi-robot system
should take advantage of this feature to parallelize computation of the intervals.
Moreover, the robots can actually delay this computation so that it is executed

†This conclusion has been verified in our experiments involving 3 uncertainty-robots, by
testing k ∈ {0, 0.1, · · · , 1}. The results show that the max-min optimum typically results when
0.4 ≤ k ≤ 0.6. Obtaining an analytical solution is unlikely, we therefore adopt the empirical
value of k = 0.5 in our experiments. This is reasonable because a margin of at least 1

2
εmin

for each edge is guaranteed. The imperfection of k can also be compensated for by a slightly
higher value of T in practice.

15

only when there are relevant queries for assessment of the effect of uncertainty
on the optimal allocation.

Algorithm 5.1 describes the implementation of the uncertainty measure-
ment using Interval Hungarian algorithm for task allocation in multi-robot sys-
tems. In Step 3 of Algorithm 5.1, the decision-making robot distributes the
Hungarian optimal solution and corresponding resultant bipartite graph to all
peer robots, and then each robot is responsible for computing its interrelated
intervals when it encounters uncertainty (we denote such a robot an uncertainty-
robot). The algorithm permits multiple uncertainty-robots and need not assume
that all participating robots are uncertain. The preceding derivation of a method
for computing interrelated intervals on one robot is based on the assumption
that all other utilities are certain (or remain fixed); the existence of multiple
simultaneous uncertainty-robots introduces inaccuracy in measuring the effect
of uncertainty with regard to some utilities. To handle this, a conservative
approach is adopted: we raise the reliability threshold T when more than one
concurrent uncertainty query occurs, e.g.,

T = T0 + exp[−(n− nx)] · (1− T0), (1 < nx ≤ n) (4)

where n, nx and T0 are the total number robots, the number of uncertainty-
robots, and the initial threshold for a single uncertainty-robot, respectively. The
overall uncertainty increases super-linearly with increasing nx. Although many
other similar forms are also possible, the exponential function was chosen based
on the following intuition: since the uncertainty for each individual robot is
approximately independent, one wishes to “multiply” these uncertainties.

As before, we require the reliability scores of all interrelated intervals of
every concurrent uncertainty-robot to be greater than the threshold T , as de-
scribed in Step 5 of Algorithm 5.1.

6 A Demonstration in Simulation

This section introduces a simple multi-robot task allocation problem which
illustrates that the Interval Hungarian algorithm allows the effect of uncertainty
on the optimal allocation to be quantified. We consider the problem of dispatch-
ing a group of homogeneous robots to a set of destination locations. We select
this task because it and its variations have been used in the literature for the
purpose of evaluating task assignment methods (e.g., Berhault et al. [2003] and
subsequent papers by Koenig’s group). Additionally, the source of uncertainty
and the means for actively estimating this uncertainty has been well-studied.

Other tasks (e.g., cooperative box pushing experiments [Gerkey and Matarić,
2002], Parker’s Cooperative Multi-robot Observation of Multiple Moving Tar-
gets (CMOMMT) task) [Parker, 1998] have different forms of uncertainty, but
once a utility matrix is constructed for purposes of robot task-allocation, the
method applies directly. The source of the uncertainty will depend on the partic-
ular problem domain. For example, if the robots are observing moving targets,
two primary aspects contribute to the utility calculation: a quality measure and

16

Algorithm 5.1 Optimal assignment and uncertainty measurement in multi-
robot systems

Data:
An n× n utility matrix.

Result:
Assignment decision for the multi-robot system, as well as assignment reli-
ability levels for the uncertainty-robots.

{/*do following procedure at every time period t*/}

1: Decision-making robot rd runs Hungarian algorithm, gets solution M0 and
resultant bipartite graph;

2: rd broadcasts M0 and resultant bipartite graph to all other robots;

{/*do “foreach” below in distributed fashion, i, j ∈ [1, n]*/}
3: foreach robot ri do

if uncertainty query then
compute the interval Iij for each interrelated utility;
notify rd to count total number of uncertainty-robots;

end if
end foreach

4: rd decides reliability threshold T based on the number of uncertainty-robots,
and broadcasts T ;

5: foreach uncertainty robot r
′

i do
compute reliability PIij for each interrelated utility;
if any PIij < T then

improve the certainty before committing assignment;
end if

end foreach

17

(a) (b)

Figure 6: Multi-robot task assignment problem in which location uncertainty
results in a distribution of utility estimates. (a) Planned paths to each task
from the central pose estimate of Robot #3 are shown in blue; (b) Robot #3
is uncertain of its location within the environment. In this instance, the robot
has six pose estimates including the correct central one.

a cost metric. Generally both will involve a degree of uncertainty, but this is
especially true when no model is provided for future movement of the targets.
Quality itself would need to be calculated as an expectation over potential target
movements, whereas costs depend on sensor particularities, navigational ability,
etc.

In the multi-robot dispatching problem we use further in this paper, the
utility matrix is a negative estimation of the distance from current location
to goal location, and the uncertainty in the assignment problem results from
localization error. Each robot attempts to localize itself in the environment
by employing an particle filter-based approach and a given map [Fox, 2001].
Particles are clustered and the weighted means of these clusters taken as pose
hypotheses. A planner is used to estimate the cost from estimated location to a
given goal location. Figure 6 shows three robots being dispatched to three task
locations in a maze-like room. The robot labeled #3 is located in the center of
the maze; from that location it employs a wavefront planner (i.e., a breadth-
first search over a discretization of the environment) to estimate costs to the
three tasks. The line segments in Figure 6(a) are the planned paths from the
(true) central location and the path cost is the total length of each path. When
the robot is uncertain about its location (e.g., as shown in Figure 6(b), where
robot #3 has a set of possible poses) then the result is a distribution of possible
utility values.

The simulation environment is illustrated in Figure 7(a) within the Stage
simulator [Gerkey et al., 2003]. The maze was designed to involve some sym-
metry so as to provide multiple uncertain poses during localization. Robots
were initialized at random positions within the maze and dispatched to the
task locations shown as blue dots in Figure 7(a). A subset of the robots, called
localized-robots, obtain ground-truth poses from the simulator, while the remain-
der are uncertainty-robots which use a simulated scanning laser ranging sensor
and a map (identical to the simulation environment) along with the localization

18

(a) (b)

Figure 7: (a) Multi-robot task assignment and commitment in a maze; (b)
Uncertain hypothesis for uncertainty-robot (robot R1 in red).

algorithm and thus have uncertain poses. Figure 7(b) shows the particles for an
uncertainty-robot. A path cost distribution shows the effect of the uncertainty
on a robot’s utility estimates; it is obtained by computing path lengths from all
available hypothesis of uncertainty-robot to a specific task location.

For the purposes of demonstration, we consider a scenario using 3 robots
as shown in Figure 7. Of the 3 robots, only one (Robot R1, red color) is an
uncertainty-robot and the others are localized-robots. Figure 8 is the corre-
sponding captured localization uncertainties at time t = 105s. Figure 8(a) is
the assignment matrix with the optimal solution (shaded cells) and safe intervals
for all the utilities. Figures 8(b) — 8(d) are the path cost distributions associ-
ated with corresponding hypotheses. In each sub-figure, the bar with highest
probability (highlighted with stripes) is the path cost for the current most-likely
localization result; therefore it is used in the assignment matrix. Other bars are
the path costs for all other uncertain hypothesis. Remember, only Robot R1 has
imperfect localization and the intervals for the interrelated utilities, the first row
Figure 8(a), are 〈(−∞,−2.2], [−12.5,+∞), (−∞,−1.2]〉; thus we can compute
its tolerance margin εm = −9.7− (−12.5) = 2.8. Following Algorithm 5.1, we
get the allowable interrelated intervals 〈(−∞,−3.6], [−11.1,+∞), (−∞,−2.6]〉
for Robot R1. The intervals are flipped from negative to positive to fit the real
path cost distributions: 〈[3.6,+∞), (−∞, 11.1], [2.6,+∞)〉.

In Figures 8(b) — 8(d), the bars within interrelated intervals are solid red
(darker) and the others are in pink (lighter). The calculated results of PI
are 〈94%, 83%, 89%〉 and we use a reliability threshold T = 80%, therefore all
utilities are considered reliable and we can trust the assignment solution.

Figure 9 is another scenario which illustrates an “unreliable assignment
solution”. The reliability levels of interrelated utilities are 〈82%, 39%, 55%〉 as
shown in Figure 9(c). There are two utilities below the threshold, thus, we
consider the assignment solution unreliable. In fact, from Figure 9(a) and 9(b)
we see that if the localization of Robot R1 is at its true location then the
assignment solution should be r1 → t3 (Robot R1 is assigned to the task lo-
cation #3), r2 → t1 and r3 → t2. This case illustrates the sensitivity of the

19

(a) (b)

(c) (d)

Figure 8: (a) Uncertainty analysis of interrelated intervals for robot R1;
(b) — (d) Hypothesis distributions of interrelated utilities captured at the 105th

second.

20

(a) (b) (c)

(d) (e) (f)

Figure 9: (a) — (b) Multi-robot assignment simulation captured at 76th second;
(c) — (f) Uncertainty analysis of interrelated utilities.

assignment solution to uncertainty and the algorithm’s output suggests refining
of the localization before committing to an unreliable assignment.

7 Experiments

By measuring and triggering reduction of the uncertainty only when it is
applicable to the task-allocation instance at hand, the Interval Hungarian algo-
rithm has an important advantage over the standard approaches. In this section
we describe experiments we conducted using the Interval Hungarian algorithm
to quantify the uncertainty which results from localization error. The exper-
iments show that the risks of mis-allocation can be reduced. Results both in
simulation and with physical robots are presented and we include a comparative
analysis.

7.1 Simulation Setup

Simulation experiments were conducted in the Stage simulator [Gerkey et
al., 2003]. Different from the simple demonstration described in Section 6,
the simulation here is also carried out in a distributed fashion: each simulated
robot localizes with an identical map on a local machine, and performs the steps
described in Algorithm 5.1. Figure 10(a) shows the simulated robot localizing

21

(a) (b)

Figure 10: Experiments in Stage simulator. (a) Simulation of an uncertainty-
robot localizing in our research building; (b) Localization particles generated
from simulation.

in a floor legend of our research building. The corresponding localization results
and particles are shown in Figure 10(b).

The communications among task committing robots are implemented via
UDP. Each robot runs a UDP server and listens to the messages sent by team-
mates. A single robot was arbitrarily selected to be the decision-making robot
and thus perform the global assignment. The decision-making robot employs
two types of messages: (1) command messages, (2) query messages. The com-
mand messages are used to communicate actions to individual robots (actions
include stop, go, or hover around the current location for better localization).
The query message is for obtaining a result, such as the reliability scores or
accumulated running time, etc., which are computed locally by the member
robots distributed across the machines.

We obtain localization hypothesis information, as well as the planned paths,
by extracting data directly from a widely used particle filter localization method
(see Fox [2001]). The data are stored locally and are processed on arrival of a
UDP query message. The localization system plans global paths using a wave-
front planner and plans the local paths via the VFH+ (Vector Field Histogram)
planner [Ulrich and Borenstein, 1998]; implementations of both were obtained
via player [Vaughan and Gerkey, 2006]. The planners return a series of way-
points which connect the current pose to the goal pose and a robot follows
these way points to reach the assigned task location. The path cost from a
pose hypothesis is computed by summing up all the path-segments among its
corresponding way-points.

The uncertainty level of a robot reflected its localization speed (i.e., the
quantity and convergence of particles), which we can manipulate for experimen-
tal purposes mainly by tuning the variance of returned laser range data in the
simulator. The greater variances represent greater uncertainty of sensed ranges,
inducing additional uncertainty in the localization. Thus, a delayed localization
process with slow particle convergence can be achieved by using a large laser

22

range variance, whereas a fast localization with quick particle convergence can
be achieved by using a small variance. In addition, the initial pose estimate and
variance of initial pose estimate for the robot may also be used to control the
localization accuracy and speed. By adjusting these parameters, we can easily
obtain mixtures of uncertainty-robots and localized-robots.

7.2 Physical Robot Experiment Setup

Since the simulation operated in distributed manner, the drivers produced
were equally applicable to physical robots, making it easy to transfer from sim-
ulation to physical robot experiments.

The robots we used are the create type made by iRobot, as shown in
Figure 11(a). A Hokuyo URG-04LX-UG01 laser range sensor is mounted on
each robot which records range data up to ∼5m and an ASUS EEE netbook is
carried by each robot to compute all data including the communication, utility
estimation, interval analysis, logging, etc.

The map used in the physical robot experiments was drawn to scale with the
dimensions of our building. The robots started with extreme initial uncertainty.
Since the highly symmetric environment resulted in considerable time being
spent to localize, we added distinguishing features along some corridor walls.
With a few obstacles and with enough travel time, our robots finally localize
themselves regardless of the level of initial uncertainty. This addition to the
environment facilitates fair analysis of the allocation results: a complete failure
of task commitments due localization failure would artificially inflate the benefit
of the proposed algorithm.

One difference between simulation and physical experiments is that, the lo-
calization technique cannot obtain the ground-truth positions of physical robots
as in simulation. We addressed this issue by putting milestone-marks along the
corridors and estimating the poses according to the scale between the map and
real environment.

The results from the physical robot experiments are close to those reported
from our simulation trials. This similarity in observed performance is due, at
least in part, to the extensive work we did in tuning and testing the localization
parameters as well as improvements in the laser drivers and client programs.

Localization results, particle convergence, planned paths, as well as the
assignment consequences, are observed through the playernav utility tool, which
is also available as part of the player/stage suite. Figures 11(c)—11(e) show the
observed localization information and task allocations using playernav.

7.3 Experimental Procedure

Both simulation and physical robot experiments focused on measuring and
comparing the results for the 3-robot way-point task assignment problem under
location uncertainty. We conducted repeated experiments by placing all task
committing robots in random places within the corridors, dispatching them

23

(a) (b)

(c) (d) (e)

Figure 11: The setup for our physical robot experiments. (a) An iRobot create
robot with Hokuyo laser and EEE netbook; (b) An uncertainty-robot localiz-
ing in our research building; (c)–(e) playernav showing particles with 1, 2, 3
uncertainty robot(s), respectively ((c) shows planned paths to allocated tasks).

24

to the nearest target locations, and following Algorithm 5.1 for uncertainty
measurement and task allocation.

We have tested the assignment performance using Interval Hungarian al-
gorithm with 1, 2 and 3 uncertainty-robot(s), respectively, and compared the
results with the control experiments employing the standard Hungarian algo-
rithm instead. More specifically, for each round of experiment (either simulation
or physical robot experiment), the following procedure was carried out.

First, for each localized-robot (if any), we provide the correct initial pose,
small initial pose variance and small laser range variance. Moreover, we start
it a few seconds early permitting it to completely localize itself. This is further
verified by a human operator.

If the Interval Hungarian algorithm is being used, for every 5 seconds each
uncertainty-robot computes the current utility (negative path cost of current
localization) and checks the reliability scores PIis and compares them with the
given threshold T . If any score is below the threshold, the uncertainty-robot
refuses the assignment and broadcasts this refusal to the whole team so as to
ensure all other (reliably) localized robots wait until all scores are satisfactory.
The robot then performs a short-distanced (randomly directed) movement back
and forth to better localize itself until all PIis overcome the given threshold.
The robot then resumes the task allocation commitment. Otherwise, if the
Hungarian algorithm is being used instead, every 5 seconds the robots simply
compute the immediate utilities and make an optimal assignment. The times
of task assignment flips due to changing localization poses and the time for
completion of the task allocations are recorded.

Finally, when the assigned tasks are performed, they are evaluated by com-
parison to a robot with the original ground-truth assignment result, and we re-
gard this a success if they are identical. Otherwise, it is regarded a failure either
due to mis-allocation from unreliable estimates, or task non-accomplishment due
to incorrect final localizations.

7.4 Results and Analysis

The task accomplishment qualities of experiments described above are shown
in Table 1. We count the success and failure times and present the data as per-
centages.

Note that there are two categories of failures: one is the discrepancy of fi-
nal allocations (mis-allocations) comparing with the initial ground-truth assign-
ment, and the other is failure due to the eventual wrong localization of robots,
which usually results in incomplete arrival of the robot at the destination.

These results show that the Interval Hungarian algorithm (in both simula-
tion and physical experiments) can greatly reduce the risk of task mis-allocations
when utility estimations are unreliable. This is particularly true with increas-
ing numbers of uncertainty-robots. The algorithm even performs better than
immediate allocation directly using the Hungarian algorithm, although the to-
tal percentage of successes is reduced when compared to experiments involving
fewer uncertainty-robots. This can be observed from the column of “Successes”

25

Table 1: Task Accomplishment Quality Comparison

Uncertainty# Type Method Successes
Failures

(Mis-allocation)

Failures
(Localization)

One

Simulation
HA 55% 40% 5%

IHA 85% 5% 10%

Physical
HA 50% 35% 15%

IHA 70% 10% 20%

Two

Simulation
HA 30% 55% 15%

IHA 75% 15% 10%

Physical
HA 35% 45% 20%

IHA 75% 10% 15%

Three

Simulation
HA 15% 70% 15%

IHA 65% 15% 20%

Physical
HA 20% 60% 20%

IHA 60 % 20% 20%

Each row of data is generated from 20 sets of experiments. T = 70%,
number of particles is 104, laser range variance is 2m for uncertainty-robots,
and 0.2m for localized-robots.

and the percentages of IHA are always higher than those of HA including data
for both simulation and physical experiments. To consider relative performance,
one may take the ratio of percentages of successes IHA:HA. Both methods are
less successful when greater numbers of uncertainty-robots are involved, but the
ratio generally increases. Note that the exception is for IHA in physical experi-
ments, where the percentage of sucesses first goes up and then comes down. We
believe this is due to both system errors and localization failures; the failures
due to localization occur more-or-less randomly, but with higher frequency in
physical experiments than in simulation.

We also recorded the times of task allocation flips and the total time to
finish all assigned tasks in each experiment. These data are illustrated in Fig-
ure 12. Figure 12(a) shows that Interval Hungarian algorithm greatly reduces
the oscillatory allocation flips. This is because Interval Hungarian algorithm
always evaluates each uncertain utility and refuses the unreliable assignments.
The Hungarian algorithm simply assigns tasks based on the instantaneous lo-
calization results, and flips frequently as the localization estimates of individual
uncertainty-robots change. Figure 12(b) shows the finishing time to accomplish
all the tasks. Generally, the time costs of experiments using Interval Hungarian
algorithm is slightly less than those of using Hungarian algorithm. The reason is
that the immediate task allocation from Hungarian algorithm usually flips many
times and drives every robot to move back and forth. Moreover, the variance of

26

finishing time using Hungarian algorithm is larger, meaning that the finishing
time is, to some extent, based on luck, i.e., the “random” allocation flips some-
times drive the robots to quickly approach a closer unassigned task locations,
which can fortuitously reduce the time once the localization has converged; nat-
urally the random flips also contribute to increase time. Besides, Table 1 shows
that assignments using Interval Hungarian algorithm are more likely to assign
the tasks that are consistent to the true scenarios, while only needing to reduce
the uncertainty by improving the localization of the uncertainty-robots (other
localized-robots simply wait). In this way, much overall system energy can be
saved.

(a)

(b)

Figure 12: Assignment flips and finishing time during task executions

27

Figure 13: Success ratios with different reliability threshold T .

We also tested the impact of reliability threshold T on the task accomplish-
ment quality. Since we have shown that the difference between simulation and
physical experiments is nugatory, we carried out the evaluation of T in simula-
tion. The three curves in Figure 13 show the results with 1, 2 and 3 uncertainty
robots, respectively. The horizontal axis denotes the reliability threshold, and
the vertical axis represents the success ratio IHA:HA, as defined before. From
Figure 13 we can conclude: (1) the larger the threshold T , the greater the chance
of success, and (2) more uncertainty-robots imply a larger success ratio for a
given reliability threshold. The reason for (1) is that a larger T means a higher
reliability level will eventually yield an assignment result consistent with current
optimal solution. The reason for (2) is that more uncertainty-robots result in
greater uncertainty, and less chance of success, while our algorithm’s pessimism
improves the successful chance by requiring each uncertainty-robot to meet a
certain reliability threshold. However, larger T naturally entails more work be-
ing performed in obtaining fine utility estimations, and should be restricted by
practical considerations for the application at hand. (Actually, in our case when
T ≥ 90%, each robot is almost required to be completely localized).

Figure 14 shows the running time of Hungarian algorithm and Interval Hun-
garian algorithm across different assignment sizes. Both algorithms were imple-
mented using C++ with the Standard Template Library for the data structures.
The running times are for a desktop class machine (4GB memory and 2.8GHZ
dual-core CPU). The matrices we used are square matrices, and the time of
Interval Hungarian algorithm is only for one interval, since interval computa-
tions are independent and distributed across the robots. The results shows that
for assignments with size fewer than 200, the uncertainty measurements cost
only three seconds. We also believe that the practical running time could be
greatly improved given more efficient data structures and better programming
techniques.

28

Figure 14: Running time for Hungarian algorithm and Interval Hungarian al-
gorithm.

8 Conclusion

This paper presents the Interval Hungarian algorithm and an approach
for measuring the effect of uncertainty on the optimality and stability of the
output from the optimal assignment problems with direct applicability to task-
allocation in multi-robot systems for a range of multi-robot applications. The
Interval Hungarian algorithm is based on the bipartite matching variant of the
Hungarian algorithm. Given an input utility matrix it outputs an assignment
matrix along with intervals which are associated with each utility in the input.
Each interval conveys a tolerance of the optimal assignment to perturbations
in the associated utility value. We illustrated how uncertainties in multi-robot
assignment problems can be quantified when probability distributions describe
the utility estimates. Data from simulated and physical robot experiments were
presented and compared and the results illustrate the advantages of our algo-
rithm.

In broader applications, we believe the Interval Hungarian algorithm can
be applied to any assignment problem that possesses uncertainties. The thresh-
olding technique we describe is merely one example method for assessing the
effect of uncertainty, although it appears to work well for Gaussian-distributed
utilities. However, the process of designing other measurement methods (in-
cluding for less common utility distributions) remains heuristic. Future work
should consider principled approaches for this aspect of the problem.

References

[Atay and Bayazit, 2006] Nuzhet Atay and Burchan Bayazit. Mixed-Integer
Linear Programming Solution to Multi-Robot Task Allocation Problem.

29

Technical Report WUCSE-2006-54, Department of Computer Science & En-
gineering, Washington University, 2006.

[Berhault et al., 2003] Marc Berhault, He Huang, Pinar Keskinocak, Sven
Koenig, Wedad Elmaghraby, Paul Griffin, and Anton J. Kleywegt. Robot
Exploration with Combinatorial Auctions. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS’03), pages
1957–1962, Las Vegas, NV, U.S.A., October 2003.

[Bernstein et al., 2000] D. S. Bernstein, S. Zilberstein, and N. Immerman. The
complexity of decentralized control of Markov Decision Processes. In Confer-
ence on Uncertainty in Artificial Intelligence, June 2000.

[Bertsekas, 1990] D. P. Bertsekas. The auction algorithm for assignment and
other network flow problems: A tutorial. Interfaces, 1990.

[Dias and Stentz, 2001] M Bernardine Dias and Anthony (Tony) Stentz. A mar-
ket approach to multirobot coordination. Technical Report CMU-RI -TR-01-
26, Robotics Institute, Pittsburgh, PA, August 2001.

[Dias et al., 2006] M. Bernardine Dias, Robert Zlot, Nidhi Kalra, and Anthony
Stentz. Market-based multirobot coordination: a survey and analysis. Pro-
ceedings of the IEEE — Special Issue on Multi-robot Systems, 94(7):1257–
1270, July 2006.

[Dinkelbach, 1969] W. Dinkelbach. Sensitivitatsanalysen und Parametrische
Programmierung. Springer, Berlin, Heidelberg, New York, 1969.

[Fox, 2001] Dieter Fox. KLD-sampling: Adaptive particle filters. In T. G.
Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural In-
formation Processing Systems (NIPS-14), pages 713–720, Cambridge, MA,
U.S.A., 2001. MIT Press.

[Gerkey and Matarić, 2002] Brian P. Gerkey and Maja J. Matarić. Sold!: Auc-
tion methods for multi-robot coordination. IEEE Transactions on Robotics
and Automation — Special Issue on Multi-robot Systems, 18(5):758–768, Oc-
tober 2002.

[Gerkey and Matarić, 2004] Brian P. Gerkey and Maja J. Matarić. A formal
analysis and taxonomy of task allocation in multi-robot systems. Interna-
tional Journal of Robotics Research, 23(9):939–954, September 2004.

[Gerkey et al., 2003] Brian Gerkey, Richard T. Vaughan, and Andrew Howard.
The player/stage project: Tools for multi-robot and distributed sensor sys-
tems. Proceedings of the 11th International Conference on Advanced Robotics,
June 2003.

[Guestrin et al., 2002] C. Guestrin, S. Venkataraman, and D. Koller. Context-
Specific Multiagent Coordination and Planning with Factored MDPs. In
Proceedings of the eighteenth AAAI National Conference on Artificial Intel-
ligence (AAAI’02), pages 253–259, Edmonton, Alberta, Canada, July 2002.

30

[Kuhn, 1955] H. W. Kuhn. The hungarian method for the assignment problem.
Naval Research Logistic Quarterly, 1955.

[Lovász and Plummer, 1986] László Lovász and Michael D. Plummer. Matching
Theory. North-Holland, 1986.

[Mills-Tettey et al., 2007] G. Ayorkor Mills-Tettey, Anthony (Tony) Stentz, and
M Bernardine Dias. The dynamic hungarian algorithm for the assignment
problem with changing costs. Technical Report CMU-RI-TR-07-27, Robotics
Institute, Pittsburgh, PA, July 2007.

[Munkres, 1957] J. Munkres. Algorithms for the assignment and transportation
problems. Journal of the Soc. for Industrial and Applied Math., March 1957.

[Parker, 1998] Lynne E. Parker. Alliance: An architecture for fault-tolerant
multi-robot cooperation. IEEE Transactions on Robotics and Automation,
14(2):220–240, 1998.

[Pentico, 2007] David W. Pentico. Assignment problems: A golden anniversary
survey. European J. of Op. Research, 176(2):774–793, 2007.

[Roth et al., 2006] M. Roth, R. Simmons, and M. Veloso. What to Commu-
nicate? Execution-Time Decision in Multi-agent POMDPs. In Proceedings
of the eighth International Conference on Distributed Autonomous Robotic
Systems (DARS’06), pages 177–186, Minneapolis, MN, U.S.A., July 2006.

[Toroslu and Üçoluk, 2007] Ismail H. Toroslu and Göktürk Üçoluk. Incremental
assignment problem. Information Sciences, March 2007.

[Ulrich and Borenstein, 1998] Iwan Ulrich and Johann Borenstein. VFH+: reli-
able obstacle avoidance for fast mobile robots. In Proceedings of the IEEE In-
ternational Conference on Robotics and Automation (ICRA’98), pages 1572–
1577, Leuven, Belgium, May 1998.

[Vaughan and Gerkey, 2006] Richard T. Vaughan and Brian Gerkey. Really
Reused Robot Code from the Player/Stage Project. In Davide Brugali, edi-
tor, Software Engineering for Experimental Robotics, Springer Tracts on Ad-
vanced Robotics. Springer, Berlin, Germany, 2006.

Linear Programming-based Sensitivity Analysis

The Linear Optimal Assignment Problem can be expressed as the following
Integer Linear Program in n2 variables:

Maximize

n∑
i=1

n∑
j=1

uijxij

31

Subject to xij ∈ {0, 1},
n∑
i=1

xik ≤ 1, k ∈ {1 · · · , n},

n∑
j=1

xlj ≤ 1, l ∈ {1 · · · , n}.

It is well known that first (integral values) constraint can be dropped [Pen-
tico, 2007]: the problem is equivalent to the relaxed linear program because the
constraint matrix is totally unimodular.

An intuitive instance of sensitivity analysis for a linear program can be
understood by manipulating the right-hand sides of constraints. Adding (or
subtracting) a small ε to the constant on the right-hand side shifts the polytope
which defines the feasible region. Duality allows one to consider the linear
program transformed so that the uij values of the input utility matrix now form
exactly these right-hand side coefficients. The interpretation becomes clearer
if one expresses this dual program in augmented form, involving only equality
constraints and non-negative slack variables. Once the program is solved, the
values of these slack variables denote the maximum deviation one of the right-
hand side coefficients (i.e., values of uij) may take before the solution involved
a different basis — that is, results in a different assignment.

One key advantage of the introduced Interval Hungarian Algorithm over
this indirect slack variable analysis is its efficiency. Although linear program-
ming has a polynomial run-time, the ∼ O

(
(n2)3

)
is significantly worse than the

O(n4) (or O(n3) parallelized variety) presented herein.

32

