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Abstract— This paper contemplates the possibility of asking
robots questions and having them use their ability to go out into
the environment and probe it, in combination with what they
already know of the world, to provide answers. We describe
a method whereby a robot system efficiently answers such
questions on the basis of reasoning about observations as
they are made, interrelationships between multiple pieces of
evidence, and what they imply.

A central idea in the approach is to maintain a separation
of concerns so that managing ‘what is known’ is decoupled
from ‘how it is learned’. This idea is realized in a graph-based
representation well-suited to algorithmic manipulation and
composition, exposing synergies rife for optimization. We show
how to use this representation to leverage both informational
overlap between multiple simultaneous queries and availability
of multiple robots working in concert to answer those queries.
We demonstrate these ideas in a simple case study and present
data illustrating how plan quality (in terms of cost to execute)
can be improved through an optimization operation that is
robot agnostic.

I. INTRODUCTION

Some of the earliest formulations for robot planning were
based on theorem proving approaches. One extremely well-
known example is the STRIPS system, which ‘employs a
resolution theorem prover to answer questions of particular
models’ [5]. The present paper explores the implications of
a perhaps innocent-looking change in this formulation: What
if, rather than answering questions about models of the world,
we form plans whose purpose is to answer questions about
the world itself ?

Example 1 (Minding the reef): Consider a setting in
which an autonomous underwater robot is deployed near a
vulnerable coral reef. Development of such robots has been a
subject of active research for some time [10], [13], [14], be-
cause of the possibility of capturing valuable environmental
data rapidly and nondestructively.

Marine scientists may be interested in a variety of queries
about the overall health of the corals within the reef, such
as the presence of various types of corals at various sites,
or the existence and patterns of various maladies including
bleaching or physical breakage. They may wonder, for ex-
ample, whether certain types or coral are more susceptible
to bleaching than others in current conditions, or whether
physical breakage is correlated with bleaching among cer-
tain types of coral. They may also have various types and
number of robots or static sensors at their disposal to resolve
such queries. These possibilities are illustrated in Figure 1.

The technical content of this paper centers on a plan
representation called a decision graph suitable for these
kinds of knowledge acquisition tasks. Focusing on plans
that answer queries about a structured world, we adopt a
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Fig. 1. An underwater Aqua robot travels over the reefs in Holetown
Lagoon off the central west coast of Barbados. The autonomous robot aims
to resolve questions about the corals present thereupon. Several different
locations may be surveyed, each of which may contain some combination
fire coral and brain coral. The status of coral at each site may be classified as
healthy or unhealthy—if bleached or broken. The sites are the Northernmost
sample locations in the study [27], and robots are deployed from the
spot at the right (labelled ‘0’). Among the questions we examine is how
performance can be improved through the use of a second robot.

perspective that treats many of the usual aspects of planning
(for instance, effects and costs) at a high level of abstraction.
The resulting algorithms exploit the fact that the dynamics
of what is known (i.e., the evolution of beliefs) differ from
the mechanics of robot motions—a fact that should impact
how we tackle planning for information-oriented tasks. This
distinction manifests itself as a separation between a plan,
which is concerned with knowledge to acquire from the
world and its implications for the queries of interest, from the
plan’s executor, which holds the responsibility for selecting
appropriate actions to acquire the knowledge called for by the
plan. The interface between these two layers takes the form
of a cost model, which models the execution costs incurred
by the executor in carrying out a given plan.

Within that structure, we describe how collections of tasks,
in the form of multiple queries, can be synthesized into a
single composite task (i.e, a many-to-one multiplexer), where
overlapping information yields savings in work. In addition,
when multiple robots are available to perform work, tasks
can be shared (i.e., a one-to-many demultiplexer), obtaining
efficiencies via parallelism. Composing these pieces yields a
many-to-many form where both benefits can accrue.

In exploring this family of questions, this paper builds
upon the authors’ prior work [25], which introduced a query
language for observation-grounded queries and a family of
planning algorithms that produce plans that resolve single
instances of such queries with a single robot. We now push
beyond the limitations of that prior work, significantly gen-
eralizing the structure of these knowledge-gathering plans.



After a concise review of related work (Section II) and a
precise formulation the problem of planning for knowledge
acquisition (Section III), we introduce executors and cost
models (Section IV) and discuss several ways that knowledge
acquisition plans can be created and composed with one
another (Section V). These concepts are exercised in a
detailed case study (Section VI). Discussion and concluding
marks (Section VII) appear in the usual place.

II. RELATED WORK

In the broadest sense, planning problems featuring un-
certainty about important aspects of the world have posed
a major long-term challenge to the field [8], [12], [16].
Closely related concepts appear in the contexts of active
sensing [17], [19], [21] and sensor selection [7], [18], [22],
[24], [26], [30]. More narrowly, there exists a rich and
growing literature on informative path planning [2], [23],
[32], in which actions are selected based on their potential
to enable the robot to gather information, often expressed via
entropy reduction or information gain [6]. The present work
differs in that, in planning robots’ actions, we lay stress on
knowledge—as distinguished from data per se. That is, our
algorithms direct the robot toward collection of data that has
value for resolving the queries in light of both the previous
observations and the known structure of the world.

We represent the world through possible world semantics,
so answering a query involves determining whether all
models have identical query values. Hence, the work has
a close relation to the literature on model checking [1].

Our work also dovetails with other approaches that use
graph-based representations of robots’ plans, including be-
havior trees [15] and procrustean graphs [11], [20]. Along
that axis, the distinctive feature of our work is its laser focus
on observation, to the extent the details about actions are
fully abstracted out of the plans to the level of executors.

A final closely-related line of work addresses embodied
question answering [3], [4], [9], [28], [31]. That work,
which tends to focus on overcoming the difficulties of robot
perception, is complementary to our own, which emphasizes
the value that can be extracted from prior work knowledge.

III. FORMULATION

This section formalizes the knowledge acquisition plan-
ning problem addressed in later sections. It expands and gen-
eralizes the original formulation for observation-grounded
queries in the authors’ prior work [25].

A. Properties, situations, and the world model

A robot system —which may be comprised of a sin-
gle robot, a cooperating team, a collection of motionless
sensors, or some other sort of sensorimotor assemblage—
operates in some environment. Important facts about that
environment are expressed as a set P of boolean properties
P = {p1, . . . , p|P |}. In any particular execution, some subset
of the properties in P will hold. A situation s : P →
{YES, NO} indicates precisely which properties hold. The

situation space, which contains all possible situations, is
denoted S. We assume that s is static and initially unknown.

Example 2 (properties): Recall the setting of Example 1.
Let Lbarb denote the set of 8 sites in this scenario. We might
model this scenario with distinct properties at each of the
sites of interest indicating, for example, whether fire coral
is present at that site at all, whether bleached fire coral is
present at that site, and whether broken fire coral is present
at that site, along with three parallel properties for brain
coral. All told, such a model would have 80 properties spread
across the 8 sites in Lbarb.

Though the situation is unknown, the system will generally
have access to a general world model W ⊆ S indicating
classes of situations that can actually occur.

Example 3 (world model): Continuing the example, we
might know that certain types of coral cannot be present in
certain locations owing to persistent temperature or salinity
differences. Moreover, the properties referring to bleached
or broken corals can hold only when either fire coral or
brain coral are present. The world model W should contain
precisely the situations that obey these kinds of constraints.

B. Query sets
The system’s objective is to resolve each of a collection of

questions posed in a finite, non-empty query set Q, which is
given as input. Each query Q ∈ Q is a boolean interrogative
about the prevailing situation, expressed as a subset of the
situation space, Q ⊂ S.

Example 4 (queries): A variety of queries might be
of interest on our reef. For example, we might have a
hypothesis regarding species specific bleaching in the reef,
and ask if there are any places with fire coral that is
bleached while other coral is not:

QA :=

{
∃l s(pl,fire bleached) = YES

s ∈ S ∧s(pl,has brain coral) = YES
∧s(pl,brain bleached) = NO

}
. (A)

Or, whether all the bleached coral is broken:

QB :=


∀l

(
s(pl,fire bleached) = YES =⇒

s(pl,fire broken) = YES
)
∧

s ∈ S (
s(pl,brain bleached) = YES =⇒

s(pl,brain broken) = YES
)
 . (B)

Queries (A) & (B) will reappear in subsequent discussion.
Of course, other more complex queries may be posed too.

C. Plans as decision graphs
To resolve a query set, our system must take action to

collect information about the prevailing situation. We express
plans to accomplish this goal in a branching graph form.

Definition 1: A decision graph plan is a directed acyclic
graph (V,E) and an associated positive integer m, in which:

1) The vertex set is comprised of decision vertices Vd and
leaf vertices Vℓ, with V = Vd ⊔ Vℓ.

2) Each decision vertex v ∈ Vd is labeled with a set
Pv ⊆ P of properties. Moreover, E contains 2|Pv| out-
edges from v, each labeled with one of the 2|Pv| distinct
subsets of Pv .



3) Each leaf vertex v ∈ Vℓ is labeled with an outcome
o(v) ∈ {YES, NO}m.

4) A single vertex vI ∈ V is designated as the initial
vertex, which may be either a decision vertex or a leaf
vertex.

The integer m is called the degree of the plan. The width
of the plan is the maximum number of properties associated
with any decision vertex, maxv∈V |Pv|. We write P for the
space of all decision graph plans.

The intuition is that the system can address a set of m
queries by executing a degree m decision graph plan thusly,
tracking a current vertex through the execution:

1) Start at the initial vertex.
2) Upon reaching a decision vertex, act in the world to

determine the values of the associated properties. (We
defer discussion about which actions to execute to
Section IV.) Select the appropriate out-edge to follow
according to the observed properties of the prevailing
situation.

3) Upon reaching a leaf edge, terminate the execution.
Return the m YES/NO values labeling this vertex.

For a given query set Q, a plan π of degree |Q|, and a
situation s, we say that the outcome of π in s for each Q ∈ Q
is either YES or NO according to the corresponding label
of the leaf vertex reached by this tracing process. A basic
example of a plan appears in Figure 2.
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Fig. 2. An example of a very small
plan that resolves whether there is
healthy fire coral at location 7. Reach-
ing the leaf vertex ‘T’ means the
answer is YES, while leaf ‘F’ means
NO.

The key question is whether the outcomes for a particular
plan accurately reflect the reality of the world. That is, does
the plan answer the question correctly? The next definition
formalizes that idea.

Definition 2: A decision graph plan π correctly resolves
a query set Q in a world W if, for each query Q ∈ Q, for
every situation s ∈ W ∩ Q, the outcome of π for Q in s is
YES, and for every situation s ∈ W ∩ (S \ Q), the outcome
of π for Q in s is NO.

The intuition is that a plan correctly resolves a query set
if it accurately and definitely determines, for each query Q ∈
Q, whether the prevailing situation s matches the conditions
expressed in Q, that is, whether or not s ∈ Q.

IV. EXECUTORS AND COST MODELS

The formulation in Section III represents, in a certain
sense, a fully-formed planning problem: A planning algo-
rithm would need to select decision nodes and their asso-
ciated branching structure ensuring that appropriate leaves
are reached in each situation. On the other hand, the cu-
rious reader may have observed that many of the most

important elements of traditional robot planning problems —
movements, locations, distances, sensors, optimality criteria
and so on— are (so far) absent from this formulation.

This abstraction is intentional, because it forms the basis
for a decoupling of decisions about what information about
the world is useful to produce correct responses to the
queries from decisions about how that information should
be acquired.

Interface between these two separated concerns occurs via
cost models and executors.

Definition 3: A cost model is a function c : P → R≥0 that
maps decision graph plans to nonnegative real numbers.

A cost model expresses, at the time a plan is being con-
structed, how efficiently that plan can be executed.

The appropriate cost model in a given scenario depends
on the robot hardware on which the plan will be executed.
For full generality, we refrain from imposing any specific
structure on the cost model, though there are certainly
settings where one might split the cost into contributions
from separate terms (e.g., for the robot platform, for the
environment, etc.) Given a plan, the executor is the entity
responsible for orchestrating the collection of evidence. It
begins at a plan’s initial vertex and, while the vertex is not
yet a leaf, the executor marshals the robot system hardware
to collect the evidence needed (in terms of properties) to
select an appropriate out-edge. Tracing forward this way, it
eventually reaches an outcome.

Example 5 (single Aqua executor): For the coral reef
scenario, an executor for a single Aqua robot would deter-
mine whether properties hold by navigating the robot to the
appropriate site, having it make measurements of specific
signals and then employ machine perception techniques
(e.g., a sensor plus a machine-learning-based classifier). The
executor cares about physical locations for the specific sites
in Barbados mentioned in the world in Figure 1 because (and
only because) they underpin the mode by which properties
are accessed.

The executor encapsulates hardware-specific aspects, but
does so to a far greater degree than is usually understood:
many of the details of how the system and physical world
impinge upon one another are never exposed to the planner.
The cost model itself is the sole connection.

Example 6 (single Aqua cost model): To associate a cost
model with the executor of 5, note that the example’s reef
can be modeled as a fully-connected collection of spatially
diverse sites (locations), with the travel time between each
estimated based on the distance and prevailing currents.

Notice that if the decision vertex has properties at different
sites, then this executor must choose a sequence in which
to visit those sites. In handling coral reef properties, plans
with unit degree never raise such challenges for this executor
in handling. But the relationship between properties and
locations is not part of the general formulation,1 so even

1This is departs from [25], in which the formulation insisted upon directly
association between properties and locations.



a plan with unit degree could have left open the question of
where to sense provided a property can be ascertained from
multiple locations. Contrariwise, plans comprising vertices
with high out-degree, but where all the properties can be de-
termined from a single place, are handled straightforwardly
by the executor in Example 5. Assuming the executor is only
provided plans of this sort, we can give a simple cost model.

Thus, one reasonable cost model associates a cost to plan
π by keeping track of the pose of the Aqua. Any specific
sequence of properties translates into a sequence of sites in
Lbarb to visit; their cumulative cost of navigation is obtained
by summing a number proportional to the time to travel from
site to site along the sequence. Additionally, each property
has a nonnegative site-dependent scalar associated with
observing it (for the time to determine its presence/absence).
We compute a worst-case cost for π, taking the maximum
across all tracings that reach leaves. (In the implementation,
dynamic programming ensures that the value is obtained in
time linear in the number of edges in π.)

An important aspect of this formulation is that the plan
and the executor are independent objects; a given plan π
may be executed with a variety of executors, each with its
own cost model. (Note, however, that each plan is likely to
be better-suited to low-cost execution with certain executors
than with others.)

Example 7 (executor for two Aquas): Suppose the execu-
tor now has access to an additional, similarly capable
Aqua robot. In this case, by thinking of an executor that
pools information from both devices, we can consider both
robots operating in concert. Then the executor must resolve
how their coordination occurs. Each robot possesses the
navigational and perceptual capabilities of Example 5 indi-
vidually. The executor, being run perhaps on a base station
on the shore, employs communication to form the union of
properties sensed and determine where each of the robots
should be dispatched to.

Analogously with before, we assume that while each plan
vertex may have edges with any number of properties, these
can be determined from at most two locations. For such
cases, an executor might assign each Aqua to the nearer
of two locations; if a single location is sufficient, then only
the nearest one would move.

Example 8 (two Aqua cost model): This cost model gen-
eralizes Example 6 by computing a value, but now with an
appropriate simulation of the assignment process employed
by the executor.

Both previous executors pursue the problem of knowledge
acquisition through the dispatching of mobile sensors. As a
third and contrasting example, we consider an alternative,
namely, to increase pervasiveness.

Example 9 (executor for a sensor network): Consider a
system that consists of seven buoys with suspended sensing
packages [29] deployed at locations 1–7 on the reef in
Figure 1. Each is solar powered and includes a radio link for
communication. In order to ascertain the presence/absence
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Fig. 3. Plans to acquire knowledge to answer query QA or QB of the
coral reef scenario, respectively. At left, the two plans have branches which
depend on binary determinations, i.e., they have width one. This can be seen
directly in the details included within the inset. By “rolling” those plans so
that decisions at each coral site appear together, we obtain the two plans
on the right. Though they appear visually similar, the QA plan has width
2, on the QB plan has width 3—the former requires fewer properties to be
sensed per location than the latter.

of a property, the buoy at that location wakes, senses its
environment and makes a determination, then broadcasts the
data over the network.

Example 10 (sensor network cost model): A straightfor-
ward yet appropriate indicator of cost in this setting may
be the number of nodes that wake from their low-power
hibernation mode, sense the reef with their sensor package,
and communicate the result. The worst-case cost can be
computed by identifying the longest chain from initial vertex
to a leaf in the given policy π. (To ease interpretation in
examples below, we report costs for the sensor network
simply as integer values, rather than converting them into
conventional units of energy.)

The case study in Section VI explores the impact of these
variations in the executor and cost model.

V. CREATION, COMPOSITION AND OPERATIONS ON
GENERAL DGS

With the previous examples in mind, we turn to how one
initially obtains and then manipulates decision graph plans.
First, it is possible that the query Q that has been posed has
either Q ⊂ W or Q ⊂ S \ W; these are straightforward,
from the perspective information gathering, as the world
model itself yields the result. More generally, when logical
implication won’t suffice, whether the query can be answered
or not is dependent upon the executor’s power to muster
actions that will examine the needed properties. Unlike most
planning problems—finding some plan is easy: one simply
scrutinizes every accessible property.

Our earlier paper [25] employed a specific data structure
(the reduced ordered binary decision diagram) in order to
represent W and Q. That work showed how to perform
a conditioning operation within that representation to ob-
tain plans which sequence observations in order to answer



queries. The leftmost graph in Figure 3 is an example
of a plan produced using those methods (along with the
inset specifically showing labels consistent with that prior
treatment). Those plans apply to a narrower context than
has been formulated here and they are a strict subset of
those within Definition 1.2 But this inclusion means they
are examples of decision graph plans, and we may use them
as a sort of generative starting point.

a) Widening by rolling: Since plans are acyclic graphs,
they can be thought of as being layered. If π is a width w
plan, we can widen to produce a plan π′ with width w′ ≥ w
by collapsing two adjacent layers in a single layer labelled
with the union of their properties. Focusing on a layer ℓ in π,
the decision vertices therein have at most 2w departing edges.
If vertex v has children v1, v2, . . . , vk on layer ℓ + 1, then
we can rewire edges from v to its grandchildren by forming
a Cartesian product of labels. Should any edges departing v
skip more than a single layer, one can treat these as though
‘virtual’ vertices have been introduced along the edge.

Figure 3 shows a pair of unit width plans in the coral reef
example. The leftmost one resolves query QA and its im-
mediately adjacent one resolves QB . These each correspond
to a plan on the right-hand side obtained by widening. In
this case, adjacent layers involving properties which can be
determined at the same site were rolled together.

b) Pair composition: With a plan π1 of degree m to
answer queries Q1,Q2, . . . ,Qm and another, π2 with degree
n, to answer Q′

1,Q
′
2, . . . ,Q

′
n there are two ways one might

compose them:
– Firstly, through linear sequencing. Imagine an executor

that, after reaching a leaf in π1, notes the outcome, and
then proceeds to execute from the root of π2. Upon
reaching a leaf, the m earlier values are joined to the
n outcomes. This serial progression can, obviously, be
represented by a direct operation on the decision graph
itself. One simply adjoins suitable copies of π2 below
the leaves of π1. We denote the result of this operation,
an n+m degree plan, by π1 → π2.

A clear interpretation for π1 → π2 is that of amnesia: π2

essentially proceeds to behave as if none of the knowledge
obtained for the prior queries has any bearing on it, and
memory of the outcome returns at the end.

– Second, we might consider a form of parallel compo-
sition. At any point during an execution, the values of
some properties will have been determined—either di-
rectly through measurement, or indirectly via the subset
of W which is consistent with the measurements. The
composition π1|π2 is a single graph of degree m + n,
which is built by avoiding superfluous edges that would
depend upon known properties. To reduce the complexi-
ties in performing this operation, our implementation of
π1|π2 only applies to two plans with identical orderings

2Specifically: they are acyclic graphs that have a strict, non-repetitious
global ordering on properties and always collapse subgraphs that are
isomorphic to one another. Also, within the terminology of Section III-C,
they can only have unit width and unit degree.
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Fig. 4. The degree 2 plan on the left answers both QA and QB together.
It is produced via parallel composition of the pair of unit width plans in
Figure 3. For the single Aqua cost model this plan has cost 869.24. The
plan on the right is the result of optimization under that cost model; it has
a cost 816.63.

on all the properties; it produces a result which still
preserves this same ordering. Representation of directly
known information is encoded in the path from the
root, ignoring W. The indirect knowledge (from W)
is obtained thereafter by conditioning on W (via the
operation introduced in [25]).

The graph on the left of Figure 4 illustrates a plan of
degree 2 obtained via parallel composition of the plans in
Figure 3.

c) Cost optimization: Even if it is easy to obtain some
plan, one usually desires a plan that is efficient. Manipula-
tions of the orders in which properties appear can directly
affect the cost of execution. For a given cost model, one
can apply local modifications (like swapping) to alter the
order in which decision vertices appear, and then evaluate
whether this has improved the plan’s efficiency. There are
two distinct ways efficiency can increase: either at the
knowledge acquisition level, where determining the value of
some property obviates the need to obtain the value of some
other one; or at the execution level, where some sequence is
cheaper to execute than another. For instance, the large body
of literature dealing with finding efficient tours seeks these
sorts of improvements.

By way of example, Figure 4 gives an instance of effective
cost optimization. It considers the cost model with one Aqua
and shows how the cost of the plan on the left has been
reduced. The initial plan has cost 869.24, while the optimized
one on the right saves 52 units of cost.

The preceding operations can be understood as providing
a toolbox of basic manipulations which can be made to
decision graph plans. Most interesting is that these can
be combined in various ways. Figure 5 illustrates multiple
pieces at play. It is a plan of degree 2, formed through
parallel composition of the plans in Figure 3 in order to
answer both QA and QB . The plan has width 12, being
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Fig. 5. A degree 2 plan optimized for a pair of Aquas. Using that cost
model, it has cost 491.84. The plan has width 12, which generates clutter
so that it was necessary to omit the edge labels.

rolled so that each decision vertex contains properties from
at most two locations. Finally, optimization has been applied
under the cost model for a pair of Aquas. The version before
optimization (not shown) had cost 645.15, while the graph
appearing in the figure has cost 491.84.

VI. DEMONSTRATIONS AND EVALUATIONS

This section reports on our experience using our imple-
mentation of the aforementioned ideas. The insights obtained
should add some extra detail because the discussion dealing
with actual plans has, so far, mainly been piecemeal with
brief pointers to figures illustrating a concept. We first
provide a narrative discussion, to better connect the pieces
(in figures) already seen; we then quantify differences.

We have expressed the coral reef domain within our
Python implementation for manipulation of decision graph
plans. The three cost models for the Aqua (Example 6,
the pair of Aquas (Example 8), and the sensor network
(Example 10) were implemented and queries QA and QB

were used as the basis for the evaluation.
a) Single query (degree 1) evaluations: For QA and QB

separately, forming a plan an evaluating it on each of the cost
models. The particular plans are shown in Figure 3: for the
sensor network cost model, both QA and QB plans have cost
7; for the single Aqua, they have costs 864.24 and 865.24,
respectively; for the pair, the costs are 639.15 and 645.15.
These are sensible findings: the more complex plan is slightly
more expensive. Also, switching from a single robot to a pair
results in a considerable saving. Finally, given the queries,
the sensor network must, in the worst case, have the node at
each of the 7 sites to sense the local properties.

Given the plans for QA and QB , we used a block swapping
method to optimize each plan. The sensor network model is
already at the minimum for both and it remained so. Under
the single Aqua cost model the plan costs reduced to 844.75
and 812.63; for pairs, they become 532.61 and 443.11. All
represent reductions in cost achieved via effective reordering.

b) Multi-query (degree 2) evaluations: Next, we com-
bined QA and QB into a degree 2 plan. The value of task
overlap can be seen by comparing the costs for the combined
query with the sum of the previous two. The sensor network
has each node awake from hibernation once, so the cost to
answer both queries is the same, i.e., 7. The single Aqua
takes cost 869.24 (compared to 864.24 + 865.24). (The
particular plan with cost 869.24 is the one appearing on the
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Fig. 6. (a) Plan quality, measured by the cost models, using sequential and
parallel composition, optimization, as well as multi-robot costs. Points are
from 250 repetitions, means and standard deviations are show. (The value of
the sensor network remained a constant 7 for all, so has been omitted from
the plot.) (b) Data on timing of operations across cost models. (This reports
the commutate time for the same 250 repetitions appearing in Figure 6.)
For both, we have written ⟨ · ⟩ to denote an optimization operation.

left in Figure 4.) The pair of robots takes 645.15 compared
with 639.15 + 645.15.

The previous savings are obtained simply via parallel com-
position, the next obvious step is to optimize the resulting
degree 2 plan. As before, the sensor network still uses 7
units. After optimization, the single robot has a cost of
816.63 (right side of Figure 4). Under the pair costing, after
compression, 491.84 units are needed—the plan of Figure 5.

Beyond the examination of particular instances of specific
decision graph plans, we also collected statistics across
repeated optimization steps. Figure 6 gives a summary of
these. The data show that: firstly, in comparing sequential
and parallel composition, there is evidence that the latter
successfully exploits task overlap; secondly, optimization is
consistent in improving performance (except for the sensor
network, which is already at a minimum); thirdly, by making
a red vs blue comparison, the additional capabilities of a
second robot can be utilized.

The final plot, Figure 6, shows that optimization is a much
more expensive operation than either sequential or parallel
composition. It appears to be independent of cost model.

VII. CONCLUSION & FUTURE WORK

The paper has presented an approach to the gathering of
information by robots and allied systems. It has treated a
problem similar to, but also subtly different from, a vast
body of work. Rather than the emphasis being on a particular
system, or a specific algorithm, instead it adopts a description
centered on a practical representation of how knowledge
evolves. The paper identifies operations that can be applied
to such objects and shows how the result of doing so can
be useful. For instance, it demonstrates how multiple robots
might answer multiple queries in concert, using task overlap
and their parallelism to obtain efficiencies.

There are many directions for future improvement: a
specific one (suggested by a reviewer) is to consider how,
in contrast to prior work optimizing individual plans, instead
one might optimize plans so that they combine well together.
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