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Abstract— Future conceptions of agile, just-in-time fabrica-
tion, lean and “smart” manufacturing, and a host of allied
processes that exploit advanced automation, depend in part
on realizing improvements in logistics planning. The present
paper hypothesizes that the key to improving flexibility will be
the inclusion of sophisticated, time-correlated stochastic models
of demand—whether that be demand by end-user consumers
directly, or by other down-stream processes. Such dynamic
models of demand, unfortunately, can greatly increase the space
in which planning occurs when treated, as is common for
planning under uncertainty, via the Markov Decision Processes
formulation. To tackle this challenge, we identify three aspects
that we postulate appear as commonalities in many logistics
settings. They lead to an approach for approximate reduction
of the planning problem via causal decoupling, which gives
a spectrum of solutions where weakening time correlations
affords faster optimization. Empirical results on small case
studies —in lean manufacturing and commodity routing— show
that retaining some limited (but non-zero) amount of temporal
structure can provide a useful compromise between quality of
the solution obtained and computation required.

I. INTRODUCTION

Events of the past few years —the global pandemic, the
2021 Suez Canal obstruction— have disclosed the inter-
reliance of many elements within large-scale networks that
compose modern society. Indeed, supply-chain difficulties,
problems with commodity fulfillment, and inventory back-
logs are all concrete instances of the brittleness of these
systems in the face of the unexpected. To improve future
robustness, lean and “smart” manufacturing techniques are
being studied to improve process flexibility, smoothen con-
tingency handling, and make logistics more agile. Part of
the work also includes designing logistic systems that better
meet dynamic demand, when who (i.e., how many and where)
wish to consume what changes over time.

Aspects such as dynamic-but-unknown future demand
require models with some degree of sophistication. Basic
models of stochastic demand fall short, being too sim-
plistic: for instance, the addition of i.i.d. noise fails to
capture correlations across time, so cannot model seasonal
events, nor purchasing fads and fashions. This paper explores
dynamic demands via stateful models, as these can help
express some valuable time-extended and structural aspects
of the process involved. However, the fundamental issue with
stateful models is that they increase the size of the planning
problem multiplicatively, increasing the computational com-
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plexity quickly. Furthermore, logistic problems get still more
involved when there are multiple goods.

In this paper, we exploit three postulates to subdue the
growth in complexity via what we call ‘decoupling.’ The
first involves causality: state transitions within the demand
model reflect aspects of the stochastic process which describe
uncertainty. Oftentimes, these are driven entirely by external
factors with dynamics being uninfluenced or only weakly
affected by happenings within the network. Secondly, when
there are multiple sites and different influences on demand at
these sites, they can be factored by splitting into separate site-
specific models. Thirdly, though one may not know future
demand, one can usually determine current demand through
suitable instrumentation (say, via market analysis). That is,
we assume the current state(s) of the demand model(s) can
be ascertained. The observation process is, thus, decoupled
and distinct from the other aspects involved.

In many systems, one acts now to meet demand in the
future (e.g., producing and transporting items to fill caches
and inventories). This involves planning. The preceding
postulates imply that the observable state of the system and
the state of the demand models may be factored. This allows
separate analysis and compression of the demand models,
giving a reduced planning problem that is easier to solve.
The compression is ‘lossy’, so the modification is only an
approximation of the original instance, but can produce high
quality plans in far less time than the full solution. Moreover,
in this paper, the degree of compression is adjustable, so
one can trade-off greater fidelity in expression of temporal
correlations versus time to plan. The empirical results we
report show that elimination of time-extended structure gives
poor performance, but preserving even a little temporal
information improves quality greatly.

The problem of meeting some stochastic demand fits with
logistic, transport, and manufacturing problems at different
scales, ranging from sparse but geographically extended
markets, to internal activities within a single manufacturing
facility. Because this paper’s contribution and focus is on
the underlying problem of planning, and the postulates we
have identified accommodate many settings, the gains in
performance have potential to apply broadly.

II. RELATED WORKS

At recent ICRAs, rapid developments with automated
vehicles have spurred work on the routing of such vehicles
in transportation networks [1], [2], [3]. When one thinks of
these vehicles as enablers, they then form part of logistic
networks within which the automated routing of goods and



commodities becomes feasible. Taking inspiration from our
prior work on planning under stocasticity [4], [5], this paper
studies the planning problem for an autonomous operations
agent capable of routing multiple commodities within a
network under stateful stochastic demand.

The literature involving the flow of multiple commodities
within a logistic network is vast and has been an important
area of study since the first works of Ford and Fulkerson [6],
and Hu [7] in the beginning of the 1960s, with a current
review appear in [8]. Lately, work has sought to under-
stand the multi-commodity flow problem in the presence of
stochasticities. Given a variety of uncertainties present with
the supply, demand, and transportation network, the problem
of designing a multi-commodity distribution network has
been tackled in the recent work including [9], [10], [11], [12].
Other work, like [13], considers a multi-commodity logistics
problem with stochastic flow, taking into consideration the
effects of transportation time, distance, and the steps involved
in the transportation process along with stochastic supply
and demand. Ding [14] investigates the multi-commodity
flow problem in the presence of uncertain edge cost and
edge capacity. Both the above studies pose the problem as a
linear programming problem, with [13] employing a multi-
objective genetic algorithm and [14] using the Dantzig–
Wolfe decomposition method to solve it; the approach we
propose here is a dynamic programming–based approach,
providing a solution that can adapt/respond to the changes
in the demand over time.

The work that most closely resembles the proposed prob-
lem is studied in [15], which utilizes a dynamic programming
approach to solve the multi-commodity flow problem in
the presence of stochastic demand. That study assumes
the commodities as reusable and represents the stochastic
demand via a random variable at each vertex, as opposed
to the proposed work where the demands (for non-reusable
commodities) at each vertex are assumed to be generated by
a stateful stochastic process.

Finally, research has sought to understand the reliability
of networks in the presence of stochastic damage and dis-
ruption [16], [17]. Those authors have studied the design
of the network model and its reliability, while the work
here considers a given network—those studies, thus, can
complement our work, providing a way to select a robust
network before computing plans which manage its operation.

III. DEFINITIONS AND PROBLEM STATEMENT

Consider the scenario where an autonomous operations
agent oversees the supply chain logistics of a wholesale
company. The paper formulates the planning problem for
the operations agent responsible for routing multiple com-
modities within a logistic network. We use the generic term
‘commodity’ to refer to any item, where multiple such items
are seen as equivalent to one another in the sense of being
exchangeable (e.g., wholesale company selling rice). We
study the problem of routing m ∈ N+ commodities within
a logistic network, with one unit of any commodity being
the smallest atomic quantity being considered for storage,
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Fig. 1: (a) Logistic network example consisting of 2 storehouse and
2 retail units. The numbers in black represent the edge bandwidth
function, while the ones in red represent the storage capacity.
(b) The demand models M1 and M2. The storage vertices are
associated with the trivial demand model M0.

transportation, or use within the network. Each of the m
commodities be indexed by C = {1, 2, . . . ,m}, called the
commodity set. The problem assumes an initial quantity
of each commodity within the network as given, and the
objective of the problem is to devise a plan for the operations
agent to consume the commodities, i.e., driving the quantity
of each remaining commodity to zero, in the shortest time.

The planning problem presented here is composed of
modular components. The logistic network, being influenced
by the agent’s decisions, is the causal part; the demand, being
unaffected, is the non-causal part. We build up to the precise
problem formalization, first identifying and defining the basic
objects involved.

A. Logistic Network

The logistic network is modeled as a graph where the
vertices of the graph either represent a storage vertex or
utilization vertex (viz., locations where the commodities
can be sold/consumed); edges of the network represent
transportation routes along with their bandwidth. Each vertex
of the graph is associated with a utilization model (see
Section. III-B), that defines the dynamics of the utilization
of commodities within that vertex. Storage vertices are
associated with trivial zero utilization model. Hence:

Definition 1 (Logistic Network): A logistic network is
a 4-tuple, L = (V,E, S, U), where: (1) V = {1, 2, . . . , n}
is the non-empty set of vertices; (2) E ⊆ V × V be the
undirected edges of the network; (3) S : V → N+ is the
vertex storage capacity function, where S(v) is the maximal
quantity of all commodities that can be stored at the vertex v
at any time; (4) U : E → N+ is the edge bandwidth function,
where U(e) is the maximum quantity of commodities that
can be transported via the edge at any time.

As an example, consider the network for the wholesale
example be given by Figure 1a. The execution of the problem



begins with a quantity of each commodity within each vertex,
and the objective is to route the commodities until all the
commodities are consumed. Therefore, an important variable
that provides a snapshot of the network is the quantity
of each commodity available in each vertex at any given
time, we define S to be a n × m storage matrix, where
sij is the quantity of commodity j at the i th vertex. Let
the set of possible storage matrices be SL = {S|sij ≥
0 and

∑
j∈C sij ≤ S(i)}, for the logistic network L. By

θ ∈ SL denote the zero storage matrix.

B. The Consumer: Demand Model

The dynamics of the consumption/utilization of commodi-
ties within each vertex of the logistic network is modeled in
this paper via a stateful, discrete-time stochastic process we
call the demand model. Formally, the demand model is:

Definition 2 (Demand Model): A demand model is a 5-
tuple M = (W,C,w0, τ, δ), where: (1) W is the non-empty
finite state space; (2) C is the set of commodities; (3) w0 ∈
W , the initial state; (4) τ : W ×W → [0, 1], the transition
probability function, such that

∑
w′∈W τ(w,w′) = 1, for

any w; (5) δ : W × C → [0, 1] is a demand function where
δ(w, c) is the probability of demand for 1 unit of c in w.

The demand model starts from the state w0 and progresses
from one state to the other according to the probability
τ(wt, wt+1). When the system enters state wt, demand for
a unit of commodity c ∈ C occurs with probability δ(wt, c).
Note that at any time step, it is possible that there might
be a demand for more than a single type of commodity;
however, each commodity will have demand for 1 unit only.
When demand for a unit of some commodity arises within
a vertex, if one or more units of commodity are present at
that vertex, 1 unit is consumed; otherwise, the opportunity
is lost and commodity is not consumed. For the wholesale
company logistics example, the associated demand models
are shown in Figure 1b.

Let the set of all demand models be denoted by M. Define
the special, trivial demand model where there are never
demands for any commodity to be M0 = (W 0, C, w0

0,
τ0, δ0) ∈ M, with (a) W 0 = {w0

0}; (b) τ0(w0
0, w

0
0) = 1;

and (c) δ0(w0
0, c) = 0. The association between the logistic

network’s vertices and demand models is via a vertex-
demand mapping function F : V → M. The consumer model
for storage vertices can be represented by M0.

C. Routing Policies and Problem Statement

To define the problem, we first need to understand what
problem parameters are observable to the operational agent.
The quantity of each commodity in each vertex in the logistic
network is observable to the agent. For the demand model,
the exact demand (realization of the δ function) cannot be
observed by the agent; however, the demand model states
are observable. This is reasonable when suitable instrumen-
tation (e.g., marketplace analytics, consumer surveys, etc.) is
employed. Based on the current observable demand model
states, the agent needs to anticipate where commodities
might be utilized next and has to take preemptive routing

actions for the commodities. Therefore, for a given vertex-
demand mapping function F , the states of each demand
model corresponding to each vertex of the logistic network
is a variable that the agent must keep track of. Let WF =
{w|w ∈ W 1 × · · · ×W n,W i = F(i)(1)} be the set of all
possible demand state configurations for the function F .

At any time t, the agent’s choice is governed by a policy
π(·, ·) based on the states of the demand models correspond-
ing to each vertex of the logistic network (wt ∈ WF ) and
the quantity of each commodity available for each vertex
(St ∈ SL). The agent’s policy governs the quantity of each
commodity that is routed through each edge of the network.
The action space for the agent is denoted in this paper as A,
where each action, a ∈ A, is a function, a : E × C → Z,
such that for ⟨vs, vd⟩ ∈ E and c ∈ C, a(⟨vs, vd⟩, c) = q
moves quantity q of commodity c from vs to vd if q ≥ 0;
otherwise, if q < 0 quantity q of commodity c is moved
from vd to vs. An action, a, is said to satisfy the edge
bandwidth if for all ⟨vs, vd⟩ ∈ E, the quantity of all the
commodities being routed through this edge is less than or
equal to the edge bandwidth function value of that edge, that
is,

∑
c∈C |a(⟨vs, vd⟩, c)| ≤ U(⟨vs, vd⟩).

Let the storage matrix at time t be denoted as St. At
time t, action a ∈ A is said to be valid for S if, for
all ⟨u, v⟩ ∈ E and c ∈ C, we have: (a) the action
satisfies the edge bandwidth; (b) the action does not move
quantities of commodities more than available from vertex
u, that is, ∀c ∈ C, stu,c − a(⟨u, v⟩, c) ≥ 0 (c) the action
satisfies the vertex storage capacity of the vertex u, that is,∑

c∈C s
t
u,c − a(⟨u, v⟩, c) ≤ S(u) (d) the action does not

move quantities of commodities more than available from
vertex v, that is, ∀c ∈ C, stv,c + a(⟨u, v⟩, c) ≥ 0 (e) the
action satisfies the vertex storage capacity of the vertex v,∑

c∈C s
t
v,c + a(⟨u, v⟩, c) ≤ S(v).

Let 1a(·) be an indicator function, such that, for a ∈ A
and S ∈ S, 1a(S) = 1 if action a is valid for S; otherwise, 0.

The goal is to have all the commodities consumed as
quickly as possible. We state the problem formally:

Optimization Problem: Logistics with Demand (LWD)
Given: Commodity set C, a logistic network L =

(V,E, S, U), set of demand models M, a vertex-
demand mapping function F , and an initial
storage matrix S0 ∈ SL.

Output: A policy π∗ : WF × SL → A of valid
actions that minimizes the expected time for all
commodities to be consumed.

IV. FORMULATION OF LWD AS AN MDP

To solve the optimization problem, we construct a specific
Markov Decision Problem, called the LWD MDP.

However, before we formally define the LWD MDP, we
need to define some preliminary functions. We start by define
the vertex-demand transition function, TF : WF × WF →
[0, 1], such that, for w = (w1, . . . , wn), y = (y1, . . . , yn) ∈
WF , we have TF (w,y) =

∏
v∈V τ

v(wv, yv), where τv =



F(v)(4), specifying the transition probability from one se-
quence of demand states in the logistic network to another
sequence. Next we define the transport partial function
ξ : SL × A ↪→ SL, such that, for S,S− ∈ SL and
a ∈ A, if a is valid: ξ(S,a) = S− if ∀sv,c ∈ S and
∀s′v,c ∈ S−, we have s′v,c = sv,c −

∑
v′∈V a(⟨v, v′⟩, c).

That is, this function returns the storage matrix that results
from the routing actions. Lastly, we define the consumption
function, ∆F : SL × WF × SL → [0, 1], to be a function
of S−,S+ ∈ SL and w = (w1, . . . , wn) ∈ WF , such
that ∆F (S−,w,S+) =

∏
(v,c)∈V×C φ(s

−
v,c, w

v, s+v,c) where
φ(s−v,c, w

v, s+v,c) = δ(wv, c) if s+v,c−s−v,c = 1; 1−δ(wv, c), if
s+v,c−s−v,c = 0; and 0 otherwise. That is, this function deter-
mines the probability that some commodities are consumed
from one storage matrix and result in the other.

With the requisite functions given, we are now ready:
Definition 3 (LWD MDP): Given an initial storage S0 ∈

SL, the logistic network L = (V,E, S, U), a vertex-demand
mapping function FD, the set of demand models M =
{M |M ∈ M and ∃v ∈ V,FD(v) = M}, the LWD MDP
is constructed as XS0,FD,L = (X,x0,A, P,XG, J), where
(1) X ⊆ WFD × SL, the set of states; (2) x0 = (w0,S0),
such that w0 = (w1

0, w
2
0, . . . , w

n
0), where wi

0 ∈ FD(i), the
initial state; (3) A, the action space; (4) P : X × A ×
X → [0, 1], the transition probability function, such that, for
(w,S), (w′,S ′) ∈ X and a ∈ A, P ((w,S),a, (w′,S ′)) =
1a(S)TFD (w,w′)∆FD (ξ(S,a),w′,S ′); (5) XG = WF ×
{θ} ⊆ X is the set of goal states; (6) J : X ×A → R≥0 is
the cost function, so, for x ∈ X and a ∈ A, J(x,a) = 1 if
x ̸∈ XG; otherwise 0.

An optimal policy for product MDP, π∗ : X → A provides
the routing policy. The full product would directly construct
LWD MDP XS0,FD,L. Then, the policy can be obtained by
using standard solution techniques (e.g. value iteration [18]).

V. SOLUTIONS VIA APPROXIMATION

As just formulated, the planning problem comprises of
individual modular components, consisting of demand mod-
els (non-causal) and a logistic network (causal). The number
of states in each demand model increases the size of the
planning problem multiplicatively via the product in Defini-
tion 3. Rather than use the vertex-demand mapping function
FD directly, as the full solution does, the non-causality
provides an opportunity to analyze and simplify the demand
models independently. As the demand is not contingent on
the actions, the dynamics of the demand do not influence the
iterative policy update and thus can be analyzed beforehand.
Two such approaches follow next.

A. Fundamental Matrix Analysis

Our second approach to the problem, which we call the
FMA approach, takes inspiration from [15], and uses matrix
analysis on each demand model to collapse all the states into
a single state. This collapse of states destroys the temporal
structure of the original demand models and reduces the
dynamics of the consumer demand for every commodity into
a Bernoulli random variable.

To solve the problem using this approach we need to
first define two matrices. First, for demand model M =
(W,C,w0, τ, δ) ∈ M, and commodity c ∈ C, we solve for
the |W |×1 matrix, ψ(M,c), where ψ(M,c)

i , the i th element, is
the expected number of steps before demand for commodity
c will occur in the demand model if starting at the i th state
of the demand model. We can calculate the matrix ψ(M,c),
by following the procedure described next.

Given a commodity c ∈ C and a demand model M =
(W,C,w0, τ, δ), we construct a new absorbing Markov chain
(W ′, τ ′, w0). To form this, first, we define a new set of
states W ′ = W ∪ {wc

ABS}. For all w,w′ ∈ W , such that,
τ(w,w′) > 0 if δ(w′, c) > 0, we add the transitions
τ ′(w,w′) = τ(w,w′)(1 − δ(w′, c)) and τ ′(w,wc

ABS) =
τ(w,w′)δ(w′, c) to the new absorbing Markov chain and if
δ(w′, c) = 0, we add the transition τ ′(w,w′) = τ(w,w′).
Performing fundamental matrix analysis [19] on the newly
generated absorbing Markov chain yields matrix ψ(M,c).

The second matrix needed for this approach, ϕM , a |W |×1
matrix, is the stationary distribution. For a demand model
M = (W,C,w0, τ, δ), if the Markov chain (W,w0, τ)
is non-absorbing the stationary distribution matrix can be
calculated by solving the equation ϕM = ϕMτ . Otherwise,
if (W,w0, τ) is absorbing the stationary distribution matrix
ϕM = [q, q, . . . , q]T , where q = (|W |)−1.

The FMA approach replaces the original demand model
with one having only a single state. Thus, define new set
M1 =

{
M1 = (W 1, C, w1

0, τ
1, δ1) ∈ M |W 1 = {w1

0} and
τ0(w1

0, w
1
0) = 1

}
. Notice, M0 ∈ M1.

By FM : M → M1 denote the fundamental matrix
reduction function, where, for M = (W,C,w0, τ, δ) ∈
M, F1(M) = (W 1, C, w1

0, τ
1, δ1), and for all c ∈ C,

δ1(w1
0, c) =

(∑
w∈W ϕMw ψ

M,c
w

)−1
Note, F1(M

0) =M0.
The solution to LWD using this approach can be generated

by constructing the LWD MDP XS0,FM◦D,L, where for v ∈
V , FM◦D = FM (FD(v)). And then solving that reduced
MDP using some standard technique.

B. Model Reduction by Collapsing State Pairs

The two approaches just seen can be considered as two
extremes: the first without any reductions, while the second
reducing the whole demand model to a single state. In this
section, we will devise a reduction function that gives a
spectrum of approximations in-between, as it can be applied
to the original demand functions iteratively to reduce the
number of states one at a time.

For a given demand model M = (W,C,w0, τ, δ) ∈ M,
an intuitive approach to reduce the number of states is to
merge the two states within W that are most similar to
each other. Each state w of the demand model is associated
with two distributions: (a) distribution over the states of
the demand model, given by the transition function τ(w, ·),
and (b) joint probability distribution over every commodity
derived from the demand function δ(w, ·). Therefore to
quantify the similarity between two states, we would need
to quantify the similarity between their distributions for
both (a) and (b). We introduce a modified formulation of



the Hellinger distance, with a parameter α, to quantify the
similarity between two states of the same demand model.
The parameter α acts as weights for the Hellinger distance
of the two distributions, assigning preference of one over the
other. For any two states w,w′ ∈W , the modified Hellinger
distance, Hα(w,w

′) = αHτ (w,w
′) + (1 − α)Hδ(w,w

′),
where Hτ (w,w

′) is the Hellinger distance [20] between the
two distributions τ(w, ·) and τ(w′, ·), and Hδ(w,w

′) is the
Hellinger distance between the two joint distribution derived
from δ(w, ·) and δ(w′, ·). Since the Hellinger distance is
symmetric, we have, Hα(w,w

′) = Hα(w
′, w). The two

most similar states in terms of Hellinger distance are given
as WM

α = argminw,w′∈W Hα(w,w
′).

Using this, we can give the Hellinger reduction function
FH : M×[0, 1] → M, so that, for M = (W,C,w0, τ, δ) ∈ M
and α ∈ [0, 1], FH(M,α) = M , if M ∈ M1, other-
wise, FH(M,α) = M ′ = (W ′, C, w′

0, τ
′, δ′), where: (1)

W ′ = {wnew} ∪ W \ WM
α is the non-empty state space;

(2) C is the set of all commodities; (3) w′
0 ∈ W ′ is

the initial state, such that, if w0 ∈ WM
α , w′

0 = wnew ,
otherwise take w′

0 = w0; (4) τ ′ : W ′ ×W ′ → [0, 1] is the
transition probability function, such that for w,w′, wnew ∈
W ′, and {wa, wb} ∈ WM

α , (a) if w′ ̸= w ̸= wnew ,
τ ′(w,w′) = ηwτ(w,w

′), (b) if w = wnew and w′ ̸= wnew ,
τ ′(w,w′) = ηw (τ(wa, w

′) + τ(wb, w
′)), (c) if w ̸= wnew

and w′ = wnew , τ ′(w,w′) = ηw (τ(w,wa) + τ(w,wb)), (d)
if w = w′ = wnew , τ ′(w,w′) = ηw(τ(wa, wa) + τ(wa, wb)
+τ(wb, wa) + τ(wb, wb)), where ηw is a normalizing fac-
tor such that

∑
w′∈W ′ τ ′(w,w′) = 1; (5) δ′ : W ′ ×

C → [0, 1] is a demand function, such that, for w ∈ W ′

δ′(w, c) = δ(w, c) if w ̸= wnew ; otherwise δ′(w, c) =
1

ϕM
wa

+ϕM
wb

(
ϕMwa

δ(wa, c) + ϕMwb
δ(wb, c)

)
, where {wa, wb} ∈

WM
α and ϕM is the |W | × 1 stationary distribution matrix.
For ρ = (ρ1, . . . , ρn) ∈ Nn

+, and v ∈ V , let us write
Fρ◦D = Fρv

H (FD(v)), where Fρv

H (·) signifies application of
the Hellinger distance function ρv times iteratively.

Then solution to LWD, via this approach, is obtained by
reducing the original demand model by ρ, and constructing
the LWD MDP XS0,Fρ◦D,L. This MDP is then solved.

One thing to note here is that these are a few of the many
approaches that can be used to pre-analyze the demand model
in order to generate efficient approximate solutions.

VI. CASE STUDIES

We turn now to examine two example scenarios and
present simulation results using a Python implementation of
the algorithms, executed on a Windows 11 computer with a
2.90GHz CPU.

A. Routing grain: rice and wheat

For the first scenario, we revisit the wholesale company
example with two commodities: rice, and wheat. The logistic
network for this problem and their associated demand models
are shown in Figure 1.

We solve the problem using approaches presented, each
generating its own policy. First, we generate the policy by
solving for the MDP considering the full demand models
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Fig. 2: A bar plot showing the solution time (red) on the left axis
(logarithmic scale in seconds) and quality (blue) on the right axis
for the different solution approaches.

without any reduction. The second, third, and fourth solu-
tions generate the MDP by first using the Hellinger distance
reduction technique to collapse the number of states in the
given demand models with ρ = (0, 2, 1), (0, 3, 2), (0, 4, 3).
Notice ρ = (0, 4, 3) converts the demand model into a
demand model with only a single state. Last, we use FMA
to reduce the given demand models into a single state
approximation, then used to generate the approximate policy.
To keep the problem small enough for the full solution we
study the problem with initial storage of 2 units of each
commodity in the storage vertex s1.

To verify the correctness of the different solution ap-
proaches, we simulated the execution of the policies 1000
times. The results are shown in Figure 2. The graph presents
the data in a way that allows comparison of performance
of the solution method on two axes. The first is the time
that it takes to generate a policy (including the time taken
for reduction and constructing the LWD MDP), shown with
respect to the left-hand (log-scale) axis. The second is the
quality of the resulting policy, which is measured as the
average time taken by a policy to go from initial storage to
θ in the 1000 simulations, shown with respect to the right-
hand axis. The full solution (without any reduction applied
to the demand models) provides the best policy selling all
the commodities in less time, on average, than the others.
However, it takes the longest to provide this solution. As
is evident from Figure 2, as more reductions are applied,
the time to generate the solutions decreases, while time to
sell increases. These approach the demand model of a single
state with both FMA and recursive Hellinger distance finally
collapsing. Both 1-state models take significantly less time
to generate the solution compared to the other solutions.

B. Lean manufacturing

Next, we consider a scenario where an agent in a lean
manufacturing factory floor producing nails and screws must
transport the raw materials (iron bars) to the different ma-
chines on the floor (Figure 3 (Top)). Assume that the demand
for nails and screws is directly reflected in demand for iron
bars for each machine. Thus, when there arises a demand
for nails, one of the nail manufacturing machines produces
a demand for iron bars, which are used to manufacture the
nails. The agent’s objective is to route the iron bars among
the storage areas and the machines effectively, so as to reduce
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Fig. 3: (Top) Logistic network within a factory floor consisting of
3 storage vertices and 2 nail manufacturing machines and 1 screw
manufacturing machine along with their associated demand models
(M1 and M2). (Bottom) Bar plot showing the solution time (red)
on the left axis (logarithmic scale in seconds) and quality (blue) on
the right axis for the different solution approaches.
the overall time needed for some initial quantity of iron bars
to be used completely. For this example, assume that the
demand for iron bars arising from a machine lasts for one
time step, i.e., if there are no available iron bars at that point
of time, the machine stops (does not consume the iron bars).

To verify the correctness of the solutions, we take an
approach similar to the other example by executing the
policies a 1000 times. The results are shown in Figure 3
(Bottom). Similar to the other case study, the full solution
provides the best solution but takes the longest time to
generate the solution, while the fully collapsed (single state)
demand models provide significantly faster solutions with
slight decreases in quality. All the other reduction solutions
lie between the full and 1-state solutions, with the solution
quality and time decreasing as more reductions are applied.

VII. LIMITATIONS

Previous sections formulated the problem, gave methods
for compression of demand models, and examined simula-
tions showing how such compression improves solution time
significantly, with minor decreases in solution quality. Now,
we give a constructed example where the reduction based on
Hellinger distance is detrimental: giving a poor policy and
requiring a longer time to solve.

Consider Figure 4 (Top). The problem consists of two
demand models that are deterministic regarding their state
transitions. The problem is solved considering six different
approximations, which are (1) the full product MDP; (2) a
reduced MDP solution by reducing both the demand models
into 7 states each via Hellinger distance approach (ρ =
(0, 2, 2)); (3) a reduced MDP solution with ρ = (0, 7, 7)
(reduced to 2 states); (4) a reduced MDP solution with
ρ = (0, 8, 8) (reduced to 1 state); (5) the FMA approach;
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Fig. 4: (Top) Logistic network consisting of 2 storage vertices
and consumer vertices with their associated demand models (M1

and M2). The demand models M1
M and M2

M corresponds to the
manually reduced versions of M1 and M2. (Bottom) Bar plot
showing the solution time (red) on the left axis (logarithmic scale
in seconds) and quality (blue) on the right axis for the different
solution approaches.
and (6) a reduced solution MDP produced by reducing the
demand models into 2 states each manually. Quantitative
results appear in the plot in Figure 4 (Bottom).

We can see from the results that even though the quality
of the solution is similar for both approaches (1) and (2), the
reduction solution here takes longer to generate the solution
than the full-product MDP solution approach. The solution
quality for the manually reduced solution approach (6) is
better than the 2-state reduction via Hellinger distance (3).
Not only that, the solution’s quality is better compared to (4)
or (5). The demand model here, being totally deterministic,
was contrived to show that compression which operates by
merging pairs of states incrementally can be too myopic.
The variation in solution times arise from the fact that by
reducing the deterministic demand model from 9-states, we
make it stochastic, leading to an increase in the MDP’s size.

The purpose of (6) is was to show that idiosyncratic
models of demand may require techniques other than the
Hellinger reduction one we propose, but that the casual de-
coupling ideas which underly the planning approach remain
effective, no matter the source of the reduced demand model.
The ideas we have explored are, thus, modular.

VIII. CONCLUSIONS

In conclusion, we have considered the problem of rout-
ing of multiple commodities within a logistic network in
the presence of stateful stochastic demand. We present the
problem in a modular form consisting of demand models
and a logistic network, show three approaches to treat the
problem, and present case studies to understand the effect of
the approaches on the solution time and quality. Future work
might consider other approaches to treating the individual
components of the problem for efficient approximations.
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