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Abstract— We consider the problem of multiple robots that
must cooperate within a shared environment, but which wish
to limit the information they disclose during their coordination
efforts. Specifically, we examine the problems of privacy-
preserving rendezvous and persistent monitoring. In the former,
the robots construct a joint plan to have them meet, without
either knowing beforehand where or when the meeting will
occur. In the latter, multiple robots dynamically cover a region
of space—they plan collective motions which are collision-free
but with the assurance that agents remain ignorant of the paths
of others. Accordingly, the tasks are sort of inverses in that the
robots must collectively determine whether their joint paths
collide or not, then, using this, achieve their collective task.
Other than what is learned by the outcome of the joint-collision
determination, the robots possess no details of the other paths.
Our approach builds on garbled circuits and homomorphic
encryption to realize basic secure path intersection primitives.
We present algorithms, a software implementation, and a
physical experiment on mobile robots to test the practical
feasibility of our approach. We believe that these ideas provide
a valuable direction for adoption in small Unmanned Systems
belonging to different stakeholders.

I. INTRODUCTION

If many current predictions are to be believed, autonomous
robots will be increasingly used in shared, contested, re-
source constrained, and adversarial scenarios. Certainly these
traits underscore tasks such as automated delivery, battlefield
awareness, and surveillance. In each of these cases, multiple
robots operating concurrently often can achieve their ends
more efficiently by cooperating to mediate their use of shared
resources. But, as the information that the robots possess
is sensitive or restricted, this poses the question of how
to preserve individual privacy whilst coordinating. More
broadly, privacy preservation is becoming a growing con-
cern in robotics, and this paper examines several particular
scenarios where we envision it being relevant to the context
of coordination among robots.

The following two examples, one within the commer-
cial/civilian context and another with a military setting,
provide motivating scenarios:
− An obstacle to the widespread commercial use of small

Unmanned Aerial Vehicles (UAVs) is the potential for
collisions, not only against each other but also against
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Fig. 1. An experimental evaluation of the privacy-preserving monitoring
task for two parties Alice and Bob using two iRobot Create 2.0 platforms:
(a) At time = 0 second, Alice and Bob start executing their paths; (b) Since
an intersection is found (without sharing information), Alice moves and Bob
stays still; (c) At time = 20 seconds, Alice finishes her path; (d) At time
= 40 seconds, both robots have reached their goals with no collisions and
without either revealing the path details to the other party.

larger manned aircraft [1]. As various airborne vehicles
are owned and operated by different companies and stake-
holders, it would be ideal if one could provide assurances
of collision-free paths without mandating the disclosure of
information that some parties would be uneasy revealing.
− Consider a covert mission against some adversary where

multiple robots must coordinate, for example, to ren-
dezvous behind enemy lines. In the event of one of the
robots being abducted or compromised, we would like
guarantees that any information that might be extracted
from the captured agent will not make the other robots
vulnerable.

The above mobile robotics applications can be modeled
in a Secure Multi-Party Computation (SMC) [2], [3], [4]
Framework. We think that SMC can model an important class
of problems in mobile robotics for what we call mutually
distrusting cooperation; in this type of problem one has
multiple interacting robots that need to achieve tasks jointly
within a shared environment but wish to limit the disclosure
of their information.

The contribution of our paper is showing the practical
feasibility of Secure Multi-Party Computation in Robotics
and Autonomous Systems. We hope to attract the attention of
other researchers to this area. There have been few practical
implementations of SMC, and to the best of our knowledge,
this is one of the first implementations of SMC in Robotics.
More concretely, the contributions of our paper are:

1) A secure path intersection protocol based on the poly-
gon intersection ideas presented in [5] and simplified



to make its implementation feasible using open source
software packages.

2) A protocol that ensures that two robots will not collide
while executing their task, its software implementation,
and hardware proof of concept experiments.

3) A new, secure 3D path collision protocol that can be
used in plans involving time or 3D workspaces.

The rest of the paper is organized as follows. Section II
describes related efforts in the literature. Section III intro-
duces our model, the environment, and robot capabilities;
and formulates the problem of interest. Section IV presents
the proposed methods developed to address the problems
of interest. Section V presents simulation and software
development and physical deployment to show the feasibility
of our approach. Finally, we show preliminary conclusions
and directions for future work in Section VI.

II. RELATED WORK

The motivation of our work comes from the area of Secure
Multi-Party Computations [2], [3] where a group of players
needs to compute a joint function without disclosing their
inputs. A well known particular case of this formulation is
Yao’s Millionaire Problem where two millionaires Alice and
Bob want to know who has the most money without revealing
their wealth to each other. The approach is general and can
solve any function that can be encoded as a circuit. However,
if the function is complicated, the use of garbled circuits
will not be practical. This limitation has led to the develop-
ment of specific protocols for SMC problems in particular
domains [6] such as Linear Algebra, Statistics, Machine
Learning, Networking, and Computational Geometry.

In particular, due to the close connection of planning algo-
rithms to Computational Geometry, our ideas take inspiration
from Secure Computational Geometry [7], [5], [8], [9], [10]
that proposes geometric constructions to computational prob-
lems involving intersections [5] (point in polygon, polygon-
polygon intersection) or based on distance [7] (distance be-
tween parametric equations and line segments). These secure
geometric constructions use the primitives such as Yao’s
millionaires, Garbled Circuits, 1-out-N oblivious transfer,
and Homomorphic Encryption. In our work, we build our
protocols on top of some of these primitives, specifically
from [5] and simplify them to implement using open source
software and inexpensive robot platforms. We also create
new secure primitives to compare paths in 3D as required
by our applications. Our effort is also connected to practical
system implementations of SMC [11].

Security issues in multi-robot networks have been the
focus of recent research [12], [13]. In [13], defense mech-
anisms for Sybil attacks have been proposed and imple-
mented in commodity Wi-Fi radios. Their approach has
also been tested in mobile robotic platforms. Privacy issues
related to robots have also been investigated in several
recent works [14], [15], [16]. Among the investigated robotic
privacy techniques, a differential privacy model is proposed
in [16] for swarms of heterogeneous robots, also, combi-
natorial filters are designed in [14] satisfying privacy and

utility constraints which have been explored for the privacy-
preserving target tracking [15].

III. PRELIMINARIES

In this section, we briefly present the model definition.
Then, we formally state the problems that are addressed.

A. Model Definition

The robots move in a 2-D workspace W = R2. The
free space of the environment is defined as E = W \ O,
where O ⊂ R2. We initially have two robots Alice and Bob
that operate in a shared environment. Both robots have a
representation of the environment E, can plan obstacle-free
paths in the environment, and can communicate with each
other. Let PA be the path of Alice and PB be the path of
Bob.

B. Problem Formulation

In our first primitive, we require a privacy-preserving
mechanism to allow for Alice and Bob to determine whether
their paths (PA and PB) collide without revealing the path
information to the other party. We propose to do this in a
decentralized fashion and without relying on the existence of
any trusted third-party. These constraints motivate our first
problem of interest.

Problem 0. Privacy-Preserving Path Intersection:
Given two robots, Alice and Bob with paths PA and PB ,
inform the robots whether the paths have at least one point
of intersection without sharing the path information.

We will use the above problem as a building block for
solving more pragmatic tasks in a privacy-preserving fashion.
We are interested in a continuous monitoring task where both
robots are executing the task but need to guarantee collision
avoidance. This motivates the following problem of interest.

Problem 1. Privacy-Preserving Persistent Monitoring:
Given two robots Alice and Bob that are executing a mission
in E, ensure, without sharing any information about their
paths or position, that they will not collide.

We are also interested in problems involving time-
parametrized trajectories. For this purpose, we need to con-
struct secure primitives to calculate if two 3D line segments
intersect. This primitive will allow us to solve the following
problem.

Problem 2. Ascertaining Rendezvous Securely:
There are two robots, Alice and Bob, and each of them has
a time-parametrized trajectory. They want to know if their
paths intersect without sharing either respective paths or
the intersection point and time.

IV. METHODS

In this section, we detail our method for solving the
problems formulated in Section III.

Initially, we need to implement a primitive that can test if
two paths intersect. To create a practical implementation, we
build our protocol based on the polygon intersection protocol
presented in [5]. This protocol uses a secure dot prod-
uct implementation along with Yao’s Millionaires, Garbled



circuits, 1-out-of-N oblivious transfer, and homomorphic
encryption. We simplify this protocol, adapt it for the 2-D
path intersection, and make it suitable for implementation on
mobile robots.

A. Privacy-Preserving Path Intersection

A path P of a robot is represented by a sequence of
contiguous segments P = (S1, S2, . . . , Sn). Each segment
Si is composed by its two points ui = (xi, yi) and vi =
(x′

i, y
′
i). Meanwhile, we use a line equation f(x, y) = 0 to

represent the line that contains the segment, where f(u) =
f(x, y) = ax + by + c . We can easily calculate a, b, and c
by providing ui and vi.

Suppose Alice has a segment SA = (uA,vA) and the line
equation fA(x, y) = 0 that contains the vertices uA,vA, and
Bob has a segment SB = (uB,vB) and the line equation
fB(x, y) = 0 that contains the vertices uB,vB. Then, SA

intersects with SB if and only if one of the following
expression is true:
fA(uB) ≤ 0 ∧ fA(vB) ≥ 0 ∧ fB(uA) ≤ 0 ∧ fB(vA) ≥ 0,
fA(uB) ≤ 0 ∧ fA(vB) ≥ 0 ∧ fB(uA) ≥ 0 ∧ fB(vA) ≤ 0,
fA(uB) ≥ 0 ∧ fA(vB) ≤ 0 ∧ fB(uA) ≤ 0 ∧ fB(vA) ≥ 0,
fA(uB) ≥ 0 ∧ fA(vB) ≤ 0 ∧ fB(uA) ≥ 0 ∧ fB(vA) ≤ 0.
To make the computation of the substitution easier, we define
an operator t such that u t 1 = (x, y, 1), where u = (x, y)
is a vector.

Protocol 1 Secure Path Intersection Protocol
Input: Given Alice’s path PA = (SA1

, SA2
, . . . , SAn

) and Bob’s
path PB = (SB1

, SB2
, . . . , SBn

).
Output: Whether there is a collision between PA and PB .

1) Alice generates a public/private key pair (kpubA , kpriA ) using
the Paillier homomorphic encryption system.

2) For each pair of segments (SA, SB) where SA = (uA,vA)
and SB = (uB,vB):
a) Alice calculates (a1, b1, c1). Bob calculates (a2, b2, c2).
b) Alice generates a vector m =

(E
kpub
A

(a1), Ekpub
A

(b1), Ekpub
A

(c1)).
Bob assigns a vector n = (a2, b2, c2).

c) Alice generates two vectors pA =
(E

kpub
A

(uA.x), E
kpub
A

(uA.y), E
kpub
A

(1)) and
qA = (E

kpub
A

(vA.x), E
kpub
A

(vA.y), E
kpub
A

(1)). Bob
generates two vectors pB = uB t 1 and qB = vB t 1.

d) Alice sends m,pA and qA to Bob.
e) Bob calculates w1, w2, w3, w4, where w1 = m·pB, w2 =

m · qB, w3 = n · pA, w4 = n · qA.
f) Bob generates 4 random numbers r1, r2, r3, r4 and calcu-

lates h1, h2, h3, h4, where hi = wi + ri, i = 1, 2, 3, 4.
g) Bob sends h1, h2, h3, h4 back to Alice.
h) Alice computes ti = D

kpri
A

(hi) where i = 1, 2, 3, 4.
i) Alice and Bob use a garbled circuit to check if the

following expression is true: (t1 ≤ r1 ∧ t2 ≥ r2 ∧ t3 ≤
r3 ∧ t4 ≥ r4) ∨ (t1 ≤ r1 ∧ t2 ≥ r2 ∧ t3 ≥ r3 ∧ t4 ≤
r4) ∨ (t1 ≥ r1 ∧ t2 ≤ r2 ∧ t3 ≤ r3 ∧ t4 ≥ r4) ∨ (t1 ≥
r1 ∧ t2 ≤ r2 ∧ t3 ≥ r3 ∧ t4 ≤ r4).

j) Return True if the garbled circuit returns true.
3) Return False.

Let Alice compose three vectors m = (a1, b1, c1),pA =
uA t 1,qA = vA t 1, and let Bob compose three vectors
n = (a2, b2, c2),pB = uB t 1,qB = vB t 1, then
i = m · pB, i

′ = m · qB, j = n · pA, j′ = n · qA.

So far, if Alice sends m,pA,qA to Bob, Bob can easily
compute i, i′, j, j′ and do the intersection determination logic
and finally send the result back to Alice, then each of them
would know if there is a collision, but this reveals detailed
information of Alice’s path, and Bob may send a spurious
result to Alice. However, this problem can be addressed
by taking advantage of the Paillier homomorphic encryption
system (PES). PES is an additive homomorphic encryption
system [17], meaning that the sum of two encrypted numbers
is the encrypted sum of the plain numbers. Paillier also
supports scalar multiplication, which means that a scalar
multiplied by an encrypted number yields the encryption of
the scalar multiplied by the plain number. We emphasize
that, though not a fully homomorphic encryption system,
it suffices for the protocol we outline. To prevent the path
information from being revealed, Alice can send encrypted
information using PES, and Bob may perform the com-
putation using these encrypted numbers only. However, in
doing so, Bob might expose his information as stated in [5].
To prevent this, Bob adds some random numbers to the
intermediate results (h1 to h4), then sends the outcomes to
Alice. Then, Alice decrypts them and uses them as the inputs
to the garbled circuit. Thus, Protocol 1 securely decides if
two paths collide, avoiding leaking any path information.

Algorithm 1: ALICETRAJECTORY(P , k, IP addrB)
Input: P = (S1, S2, . . . , Sn); k < n the number of segments

per round; IP addrB Bob’s IP address
Output: C = (c1, c2, . . . , cm), m = dn/ke,

cj ∈ {False, True} for j = 1, 2, . . . ,m, and
c0 = True if both move for the first round.

1 CONNECT(IP addrB)
2 round← 0 low ← 0 high← low + k

3 kpubA , kprivA ← paillier()
4 while high ≤ n do
5 R← P [low : high]
6 for i← low to high− 1 do
7 m← E(kpubA , Equation(Ru, Rv))
8 SEND(m) // encoded parameters
9 RECEIVE(ACK) // ACK awaiting

10 pA ← E(kpubA , Ri,u t 1)

11 qA ← E(kpubA , Ri,v t 1)
12 SEND(pA; qA)
13 RECEIVE(ACK)
14 dr ← RECEIVE()
15 SEND(ACK)

16 u← D(kpriA , dr)
17 resultround ← ALICECIRCUIT(u)
18 round← round+ 1
19 low, high← high, high+ k
20 if low <n and high >n then
21 high, low ← n, n− k

22 return result

B. Privacy-Preserving Persistent Monitoring
Algorithms 1 and 2 show the implementation of the

privacy-preserving persistent monitoring task for two parties
Alice and Bob. A circuit that permits comparison of k seg-
ments at the time is used to compute whether a collision



among any combination of the k × k segments collides or
not; for larger paths, k-length subsets are compared at a time,
each referred to as a round. In this scheme, one robot moves
k segments at each round. Both algorithms receive as input
the list of segments, the number of segments per round, and
the IP address to communicate with each other via network
sockets. The algorithms can be run to plot the resulting
behavior or to send commands to the robot platform.

Algorithm 2: BOBTRAJECTORY(P , k, IP addrA)
Input: P = (S1, S2, ..., Sn); k < n the number of segments

per round; IP addrA Alice’s IP address
Output: C = (c1, c2, ..., cm), m = dn/ke,

cj ∈ {False, True} for j = 1, 2, . . . ,m, and
c0 = True if both move for the first round

1 CONNECT(IP addrA)
2 round← 0 low ← 0 high← low + k
3 while high ≤ n do
4 R← P [low : high]
5 for i← low to high− 1 do
6 m← RECEIVE() // encoded
7 SEND(ACK) // ACK receipt
8 pA; qA ← receive()
9 SEND(ACK)

10 r = (rand(),rand(),rand(),rand())*(k*k)
11 n← Equation(Ru, Rv)
12 pB ← Ru t 1 qB ← Rj t 1

/* dr = h, hi = wi + ri, w1 = (m · pB) */
13 dr ← [(m · pB), (m · qB), (n · pA), (n · qA)]
14 dr ← dr + r
15 SEND(dr)
16 RECEIVE(ACK)
17 resultround ← BOBCIRCUIT(r)
18 round← round+ 1
19 low, high← high, high+ k
20 if low <n and high >n then
21 high, low ← n, n− k

22 return result

Algorithms 1 and 2 detail how the agents share the data
they need. Algorithm 1 sends a variable to Bob (line 8). Bob
receives this variable in Algorithm 2 (line 6). An “ACK”
command is used to coordinate this data exchange since
the function RECEIVE(ACK) will block the execution until
“ACK” arrives. Once both algorithms have calculated and
received their data, an instance of the circuit is launched.
This circuit instance receives both Alice and Bob’s input and
sends the response to both of them. The circuit is launched
via a system call, and the communication is achieved via
sockets. If no collision is detected, Alice and Bob may safely
move simultaneously. Otherwise, they will have to take turns.

C. Rendezvous Using Secure 3D Intersection

For the parties to find each other in the rendezvous
problem, it is not enough to detect the intersection of
the paths, but the meeting must occur at the same time.
This is why the problem of secure rendezvous reduces to
the calculation of the intersection of two time-parametrized
paths with coordinates (x, y, t). In the 3D case, we need
to use a fully homomorphic encryption system [18] since
the homomorphic multiplication property is required between

two encrypted numbers. The intersection of segments in the
3D case can be resolved using the following steps:

1) Determine whether two segments are coplanar.
2) If they are coplanar, solve the problem in a subspace.

Protocol 2 Secure Coplanar Protocol
Input: Given Alice’s segment SA and Bob’s segment SB .
Output: Whether SA and SB are coplanar.

1) Alice generates key pair (kpubA , kpriA ) using fully homomor-
phic encryption system.

2) Alice computes CuA and CvA , i.e., SA encrypted compo-
nents using kpubA .

3) Alice sends CuA and CvA to Bob.
4) Bob p = CvA − CuA ,m = uB − CuA ,n = vB − CuA .
5) Bob computes w = p · (m× n).
6) Bob computes h = w + rB , rB is a random number.
7) Bob sends h to Alice.
8) Alice computes t, decryption of h using kpriA .
9) Alice and Bob use a garbled circuit to check whether t is

equal to rB .
10) Return True if the circuit returns true, otherwise, return

False.

Protocol 3 Secure 3D-Intersection Protocol
Input: Given Alice’s path PA = (SA1

, SA2
, . . . , SAn

), and
Bob’s path PB = (SB1

, SB2
, . . . , SBn

).
Output: Whether PA and PB intersects.

1) Alice and Bob generates public / private key pairs
(kpubA , kpriA ) and (kpubB , kpriB ) respectively using fully homo-
morphic encryption system.

2) For each pair of segments (SA, SB) where SA = (uA,vA)
from Alice and SB = (uB,vB) from Bob.
a) Both Alice and Bob execute Protocol 2 steps 2 to 7, Bob

gets rB and h.
b) Bob computes CuB =

(E(kpubB ,uB.x), E(kpubB ,uB.y), E(kpubB ,uB.z)), CvB

= (E(kpubB ,vB.x), E(kpubB ,vB.y), E(kpubB ,vB.z)).
c) Bob sends CuB , CvB to Alice.
d) Alice computes: d1 = DIR(CuB , CvB ,uA),

d2 = DIR(CuB , CvB ,vA),
d3 = DIR(uA,vA, CuB),
d4 = DIR(uA,vA, CvB).

e) Alice generates 2 random numbers rA1
, rA2

and com-
putes l1 = (d1 · d2) + rA1

, l2 = (d3 · d4) + rA2
.

f) Alice sends l1, l2 to Bob; Bob sends the output h from
Protocol 2 to Alice.

g) Alice computes t = D(kpriA , h) and Bob computes t1 =

D(kpriB , l1), t2 = D(kpriB , l2)
h) Alice and Bob use a garbled circuit to check if the

following expression is true: ((t == rB) ∧ (rA1
>

l1)∧(rA2
> l2)) where t, rA1

, rA2
are inputs fed by Alice

and rB , l1, l2 are inputs fed by Bob.
i) Return True if the garbled circuit returns true.

3) Return False.

Suppose we have four points P1, P2, P3, P4 in a 3D
Cartesian space, then segment P1P2 and P3P4 are coplanar
if and only if

−−−→
P1P2 is perpendicular to

−−−→
P1P3 ×

−−−→
P1P4, that

is,
−−−→
P1P2·(

−−−→
P1P3 ×

−−−→
P1P4) = 0.

Accordingly, we introduce a secure coplanar protocol in
Protocol 2. A robust algorithm to determine whether two 2D
segments intersect or not was given by [19]. The procedure
works with 2D vectors. Since the plane (or a line if two seg-
ments are co-linear) spanned by two co-planar line segments



is a subspace of the 3D Cartesian space, the algorithm also
works in this subspace. Along these lines, we extended the
algorithm (in Protocol 3) to address secure computation in
3D. This protocol can be used to determine whether there is
a collision between two 3D paths. Concretely, we have used
it to detect rendezvous securely in two time-parameterized
2D trajectories.

The function DIR(u1,u2,u3, ) used in Protocol 3 com-
putes the normal vector to the plane formed by −−→u3u1 and
−−→u2u1. It also must be pointed out that Protocol 3 does not
consider the case when one vertex from a segment lies
directly on the other segment. Additional comparisons are
involved in order to handle this particular case.

V. EXPERIMENTAL RESULTS

A. Software Implementation of Persistent Monitoring

The online version described in the problem formulation
section was implemented in Python 3. The Fairplay soft-
ware [20], [21] for Secure Multi-party Computation using
garbled circuits was integrated into our implementation.
Communication between the parties was achieved via sock-
ets. We also used the Python library python-paillier [22]
as it implements the scalar multiplicative and additive ho-
momorphic cryptosystem Paillier [17]. Protocol 1 was
implemented in a multi-round fashion, each round consisting
of two k-length paths PA and PB . After each round, the
robots decide whether to move simultaneously, if no collision
is detected, or to determine who moves first otherwise. In
the latter scenario, a collision was detected and the robots
must move sequentially. A prior random agreement is used to
settle which party has right of way. Fig. 2 shows two desired
paths, the protocol rounds are highlighted accordingly for
each party. It shows when a collision would only occur
(though only if the paths collide in the same round). The
green circles representing potential collisions never happen
owing to the use of our strategy. The results are plotted in a
simulation using Python.

Fig. 3 shows the execution of the paths shown in Fig. 2;
the paths consist of 12 segments each. The implementation
uses a subpath of length 4, i.e., k = 4, implying that 3
rounds must occur. In the first round, see Fig. 3(a), the paths
in the round are collision-free and both robots can safely
move simultaneously. Fig. 3(b) and Fig. 3(c) show round
2, wherein a collision is detected, and the robots decide
to move one after the other. (In this simulation, Alice was
randomly selected to go first.) Fig. 3(d) shows the last round.
No collision is detected within this round so both Alice and
Bob head to their destinations simultaneously.

B. Implementation of 3D Intersection

Since the secure intersection decision in 3D environments
involves multiplication between encrypted numbers, a partial
homomorphic cryptosystem like Paillier cannot implement
Protocol 3. Hence, a fully homomorphic cryptosystem is
needed instead. The Simple Encrypted Arithmetic Library
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Fig. 2. Two desired paths of Alice and Bob in a multi-round simulation run.
Three collisions (red and green circles) are found if two paths are compared
as a whole. Only one collision (red circle) is found in our strategy as we
divide the paths into different segments and compare these segments in
several rounds.
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Fig. 3. Snapshots of the execution of paths shown in Fig. 2: (a) Alice and
Bob move together since no collision exists in the first four segments; (b)
A collision is detected in the next four segments, thus, Alice moves first;
(c) Bob moves next; (d) Both Alice and Bob move simultaneously as no
collision exists in the final four segments.

(SEAL) [23], [24] meets the necessary requirements. This li-
brary was developed by the Cryptography Research Group at
Microsoft Research and has a Python wrapper PySEAL [25],
[26] making it possible to use within Python.

Unlike the 2D case, where only Alice generates a pub-
lic/private key pair, in the 3D case, both Alice and Bob
generate key pairs. Thereafter, they exchange their encrypted
points. We let Bob handle the vector computations related to
the co-planar determination and have Alice handle the vector
computations related to intersection calculation. This split is
not essential for solving the problem: either Alice or Bob
could perform all the calculations but doing so allows us to
distribute the computational load.
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Fig. 4. Collision detection (red circle) in three segments of Alice’s time-
parameterized path (red) and Bob’s time-parameterized path (blue).

Fig. 4 presents the simulation results for the algorithm
that computes time-parameterized path collisions for objects
moving in 3D space. This exemplifies our motivating exam-
ple of shared areas where manned aircraft and small UAVs
need to navigate without revealing their path information.
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Fig. 5. Rendezvous determination using secure 3D intersection: (left)
Only one point of intersection is found when the time is included as an
extra dimension; (right) An additional false point of intersection is found
in 2D that is resolved in time.

Fig. 5 shows a secure rendezvous experiment for Alice and
Bob using 3D intersection. If only two dimensions (Fig. 5
right) are considered, then two rendezvous points might be
found. However, when the time is considered, by the moment
Bob arrives at the meeting point, Alice may have been there
in the past, or she may only arrive in the future and so no
real rendezvous will occur. A rendezvous (Fig. 5 left) only
occurs when there is an intersection in R2 × T.

C. Hardware Experiment

A physical implementation was also conducted to test
the persistent monitoring algorithms with two iRobot Create
2 platforms (see Fig. 1). The mobile robot platforms are
connected to laptops running Ubuntu 12.0 SO, Intel Atom
at 2.0 GHz, and 2 GB RAM. Two robots communicate
with each other using the pycreate2 Python library [27].

Fig. 1(a) shows the initial configurations and the intended
path. In this experiment, all the segments are compared
to each other. Since one collision is detected, Alice (blue
line) moves first (Fig. 1(b) and 1(c)). Fig. 1(d) shows
their final position. The interface to send commands to the
robots takes care of the orientation of the robot, and the
distance traveled at each segment. Finally, the robots face
“EAST”. More experiments and simulation videos ca ben-
found at: http://users.cis.fiu.edu/%7Ejabobadi/securemp/.

VI. CONCLUSION AND FUTURE WORK

This paper demonstrated the feasibility of privacy-
preserving multi-robot coordination. We believe that we have
just scratched the surface and there are several practical
avenues for future research.

In this work, privacy-preserving computational geometry
primitives are used which verify properties such as the
distance between points, line intersections [7], and point
in polygons [5]. There also exists prior work in privacy
computational geometry that constructs geometric objects.
One such example is the privacy-preserving calculation of
convex hulls [9], [28] which has an initial phase based on
a data oblivious transfer algorithm that is then followed by
secure protocols. We will explore this route in the future to
extend the range of privacy-preserving robotic tasks that we
can solve.

Hereby, a model where both agents need to cooperate in
a shared environment but need to limit the disclosure of
information in their coordination is considered. Fully adver-
sarial motion planning where both Bob and Alice actively
try to learn each other’s information would be a further
improvement of this work. We are currently exploring semi-
honest models [29] where robots will follow the protocol but
one robot is curious to learn the other robot’s information.

A scheme to allow more than two parties is also a worthy
aim, enabling multiple robots to decide how to move to
prevent any collision. It presents several system challenges as
to how many active connections they would manage and how
to dynamically handle robots entering and leaving groups of
interacting robots.

Finally, other mobile platforms, such as micro aerial vehi-
cles, could be used for validation in future implementations.
From a motion planning perspective, these ideas can be used
as a final process in motion planning pipelines of autonomous
vehicles [30], [31]. Although we did not consider kinematic
constraints for this version, we plan to propose constructions
of that work on more complex robots.
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