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Abstract— For self-organized multi-robot systems, one of the
widely studied task domains is object clustering, which involves
gathering randomly scattered objects into a few piles. Earlier
studies have pointed out that environmental boundaries influ-
ence the cluster formation process, generally causing clusters
to form around the perimeter rather than centrally within the
workspace. But it is usually central clusters that are desired
in robotic clustering systems. In this paper, we derive general
conditions that prevent the problem of boundaries causing
perimeter clusters. We develop a mathematical model to explain
how sets of clusters evolve into a single cluster without any
boundary cluster being formed. Through analysis of the model,
we show that time-averaged spatial densities of the robots play
a significant role in producing conditions that ensure a single
central cluster emerges. Thus, local densities of robots can be
considered a system-level control parameter to achieve this task.
We further investigate how the physical packing of clusters
affects clustering dynamics. To do this, we introduce a measure
of scaled compactness and show that the lifetime of clusters is
well predicted by this descriptor.

I. INTRODUCTION

Studies of self-organized multi-robot systems attempt to
understand how to coordinate systems composed of large
numbers of simple robots, each typically have limited sens-
ing, communication, and computational capabilities. Despite
these minimal capabilities, self-organized multi-robot sys-
tems have been shown to exhibit complex collective be-
haviors via a combination of positive and negative feedback
and stigmergy. For these systems, the fundamental research
challenge is to tame the problem of emergent complexity and
turn it toward engineering ends. A crucial ingredient in this
is building models to understand self-organization better.

Object clustering was widely studied in the early days
of biologically-inspired multi-robot research. The task of
object clustering involves gathering scattered objects into a
single pile. Practical uses for this behavior are scarce, but
some authors propose employing clustering within a broader
pipeline of activities, much like raking leaves into a single
pile simplifies their subsequent processing, or in preparing
construction sites [1]. Within the existing works, the robots
typically execute a very simple control strategy. The strategy
usually amounts to a random walk in the workspace, with
the sensor(s) indicating when some number of objects are
encountered. This eventuality triggers some action, usually
a turn, before the robots resume their random walk. It is
remarkable that such a simple policy forms clusters repeat-
edly and reliably. Several authors have provided explanations
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for how clusters emerge through this process. Ultimately,
all these explanations boil down to a geometric argument
which says that the shape of the clusters either (1) causes
greater accretion with increasing size, or (2) less attrition
with increasing size, or (3) both.

While classic works focused on cylindrical objects (e.g.,
pucks, frisbees), our work has been exploring the task with
square objects. For a problem where the conventional wis-
dom that explains the clustering process hinges on geometric
arguments, it is somewhat surprising that no consideration
has been given to varying the shape of the objects. Square
objects heighten two effects which have been given a cursory
treatment in the existent work. Perhaps rather obvious is
the fact that square objects which get pushed against a
boundary usually remain there, producing cluster growth
at the boundaries rather than in the central region. Our
prior work explored methods to ameliorate this effect by
employing heterogeneous strategies by robots. Reflection on
why this solution worked lead to the realization that we were
manipulating the densities of robots so that impulses related
to box configurations near the boundary were increased.

The second observation is that existing models assume
a cluster of n items is symmetric and well-packed. Moving
beyond cylindrical objects, the shortcomings of this simplifi-
cation become acute. There can be a vast number of variables
in the stability of different arrangements of boxes, and even
the most stable configuration is not a smooth function of n.

As a consequence of both these observations, we enrich
prior models by treating spatially the densities of robots,
specifically with respect to a difference between boundaries
and the center of the workspace, and propose a model for
cluster compactness.

II. RELATED WORK

Deneubourg et al. [2] first proposed a sorting algorithm
inspired by brood sorting of ants and demonstrated how their
behavior could be used in a simulated multi-agent system.
Their simple behaviors, with only a local density sensor and
without direct communication between robots, successfully
achieved sorting. Thereafter, Beckers et al. [3] demonstrated
clustering behavior without requiring a density sensor. The
only sensor they used was a binary threshold on force. They
also explain the emergence of clusters via a probabilistic
analysis based on geometric characteristics of the clusters.

In a mathematical analysis of clustering dynamics, Mar-
tinoli [4] introduced a probabilistic model to quantify the
geometric notion under the assumption of rotationally sym-
metric clusters and demonstrated it through simulations as



well as physical experiments. Kazadi et al. [5] also proposed
a mathematical model of clustering dynamics, describing
cluster growth properties and arguing along similar geometric
lines to Martinoli.

Most previous work has indicated that environmental
boundaries affect the clustering process [6], [7]. For example,
Maris and Boeckhorst [6] considered objects to be lost once
they were pushed against the boundary. Using square objects
makes the task rather challenging because flat edges exacer-
bate adhesion to the boundary. Once against the boundary,
it is difficult for a cylindrical robot to move a box into the
center of the environment. This can be observed in the video
posted by Vaughan [8] in which 36 iRobot Creates created
clusters of square objects running only their default program.

However, despite the significant influence of the boundary
on the clustering process, many authors focus on empirical
demonstrations and ignore environmental effects like those
caused by the boundary in their models.

III. EXTENDING ANALYSIS OF CLUSTERING SYSTEMS:
A MATTER OF THE BOUNDARY

Earlier studies show that clustering along the boundary
of the workplace harms central clustering performance.
Nonetheless, many studies still ignore or simplify the effect
of the boundary when building a model. One standard way
is to ignore where the clusters are formed. This is fallacious
because the boundaries themselves buttress clusters, making
them behave as if they are part of a much larger cluster. Next,
we introduce an extended analysis of the clustering system by
considering the effect of the boundary and derive a condition
that is required to avoid the boundary interference.

A. Review: A Novel Approach for Object Clustering
In our previous work, we introduced two behaviors (twist-

ing and digging) where the robots in a team were assigned
to one of these behaviors with all robots executing their
behavior concurrently. We demonstrated that groups with a
mix of robots operating either of the two complementary
behaviors successfully generated a single central cluster and
overcame the problem of boundary cluster formation (see [9],
[10], [11] for more detail).

Fig. 1 depicts scenarios possible with the robot behaviors
during a clustering process. Twisters are likely to push
objects against the boundary or bring objects into the center.
On the other hand, diggers further separate twisted objects
from the boundary, but there is comparatively little chance
that twisted objects will be brought into the center because
those robots stay near the boundary. We simplify this by
assuming that diggers only interact with boundary objects
by performing the prying action, whereas twisters interact
with all objects by randomly moving in the entire workplace.
Fig. 2 provides the evidence that supports this idea by
showing a spatial distribution of a twister and a digger.

In general, clusters undergo accretion or attrition through
the random interactions between robots and objects (or object
clusters). That is, if the number of deposited objects in
any cluster exceeds the number of removed objects, the
cluster has an accretive tendency. Whereas the cluster has an

Fig. 1. A pictorial representation of the clustering process. (a) Prying
objects away from the boundary. Both the twister and the digger can pry
a square object loose from the boundary by hitting the object’s corner. (b)
Twisting behavior. A twister pushes the box shifted by the prying motion
and brings it into the center. (c) Digging behavior. A digger forms gaps
between boxes and boundaries and prevent boundary cluster growth. (d)
Trajectories of twisters and diggers after the prying motion. Twisters move
into the center while diggers proceed along a curved path to detect the
boundary.

Fig. 2. Spatial distribution of (a) a twister and (b) a digger. 1200 positions
of a single twister and a single digger are plotted in the workplace, without
any objects, every second. In the ideal case without interactions with other
objects, the twister covers most areas of the workplace, while the digger
moves around the perimeter of the boundary.

attritional tendency if deposits are smaller than removals. If
both are the same, the cluster is in equilibrium. Based on this
theoretical analysis, Kazadi et al. [5] proposed a clustering
model through a characteristic function that represents the
growth properties of the clusters. However, this model is
also built without considering the effect of the boundary, the
positions of the robots, or even the positions of the objects.

In order to analyze the clustering system with considera-
tion of the boundary interference, we divide the workplace
into a central region and a boundary. Through interactions
between robots and objects in the workplace, multiple clus-
ters emerge in the central region or the boundary. We expand
the clustering model to consider the effects of the boundary.

B. An Extended Model of the Clustering System
1) A model for the boundary: If multiple robots possess

a special treatment to release stuck boxes from the boundary
we can model a transition back toward the central region.



Fig. 3. Abstract state diagram of the proposed clustering system.

(If not, this flux will work out to be zero, as expected.) We
consider a robotic clustering system that is composed of the
two behaviors designed in our prior work [9], [10].

Fig. 3 shows the abstract state diagram of our clustering
scenario. The robots are capable of pushing an object and
depositing or removing an object from any cluster. This
means the robots can be thought of as a medium in which
the clusters occur. We consider one form of robot media for
the boundary and another for the central region. We also
assume that objects belong to one of four possible states:
the boundary objects (Ob), the objects pried away from the
boundary (Op), the unclustered objects in the central region
(Ou), and the objects belonging to any central cluster (OCi

).
Let us first examine the robot medium and objects in the

boundary region (we will investigate the central region in the
next section). While clustering work proceeds, the unclus-
tered objects in the central region Ou can be transferred to
the boundary Ob through the boundary robot medium. On the
other hand, objects in Ob may still stick on the boundary or
be detached from the boundary by robots’ special treatment,
like a prying motion in our clustering system. We define Op

as an intermediate transition state (transition from Ob to Ou),
which represents objects pried away from the boundary. The
objects in Op can be transferred to Ou or revert to Ob by
interactions with robots moving into the boundary.

Let δ be the number of objects transferred between states
during a time interval. According to the diagram in Fig. 3,
the rates of change of objects in the boundary region will be

dOu

dt
= δ3 − δ4, (1)

dOp

dt
= δ1 − δ2 − δ3, (2)

dOb

dt
= δ2 + δ4 − δ1. (3)

In general, self-organized clustering progress is non-
stationary because robots randomly interact with objects. On
the basis of this characteristic, we assume that the rate of
change of objects in each state depends on the averaged
frequency of interactions between individual robots and ob-
jects in the same region. That is, the more frequent contacts
between objects and the robots available to manipulate them,
the greater the number of the state transitions of objects.
Then δ can be expressed in terms of the local densities of
robots available to transfer an object and the likelihood of
object removal in any state. Let ρ◦T (·) and ρ◦D(·) be the time-
averaged local densities of twisters and diggers capable of
removing objects in a given state. Also, let L−T (·) and L−D(·)

be the likelihood of object removal in a certain state by
twisters and diggers, respectively. In the previous section,
we also explained that diggers only interact with boundary
objects Ob, whereas twisters interact with all objects in the
entire workplace. Accordingly, each δ can be written as

δ1 = ρ◦D(Ob)
· L−D(Ob), (4)

δ2 = ρ◦T (Op→Ob)
· L−T (Op), (5)

δ3 = ρ◦T (Op→Ou) · L−T (Op), (6)

δ4 = ρ◦T (Ou→Ob)
· L−T (Ou). (7)

2) The synthesis of a general model: We developed an
extended model that reflects clustering dynamics in the
boundary area. With this extension, we explain how general
clustering systems work, including the effect of the boundary.

Now suppose the entire workplace is partitioned into a
central region and a boundary region. The clustering process
in the central region can be treated with models such as those
by [5] or [12]. As shown in Fig. 3, multiple central clusters
interact with unclustered objects through the central robot
medium. By picking subscripts, without loss of generally,
we assume that the sizes of central clusters are C1 > Ci >
Cn. That is, C1 is the largest central cluster and Cn is the
smallest. The rate of change of the ith central cluster will be

dOCi

dt
= Φ+

i − Φ−i , (8)

where Φ+
i is the number of unclustered objects that are

deposited into the ith central cluster and Φ−i is the number
of objects that are removed from the ith central cluster.
According to a probabilistic analysis based on geometric
characteristics of clusters, larger clusters will be more likely
to obtain objects and less likely to lose objects than smaller
clusters.1 This means dOCi

dt = Φ+
i − Φ−i > 0 and dOCn

dt =
Φ+

n −Φ−n < 0. Under a recurrence of this clustering process,
the large clusters grow bigger, while the smallest cluster
becomes smaller and will eventually disappear. The model
for central clusters will also be extended by the notion of
the compactness of the clusters in the next section.

By considering clustering dynamics not only in the central
region but also in boundary clusters, we can more precisely
understand the evolution of the largest central cluster, and
the decay of boundary clusters.

C. Conditions to Prevent Boundary Cluster Growth
We have developed rate equations to describe the extended

clustering system. We now turn to examine a condition to
prevent boundary clusters from growing.

A net flow of objects between the boundary and the central
region is determined by the interactions between the bound-
ary robot medium and Ou. That is, if dOu

dt = δ3 − δ4 > 0
in the boundary region, the number of objects in Ob will
decrease and the quantity of Ou will increase as time
progresses. If we assume that the quantity of the intermediate
state Op is stationary, we obtain dOp

dt = δ1 − δ2 − δ3 = 0.
Rearranging δ3−δ4 > 0 and δ1−δ2−δ3 = 0, we can find that

1The basic argument is that it is easier to strike a smaller cluster at an
oblique angle that draws away an object than a large one. A very large
cluster has only tangents to the cluster perimeter.



Fig. 4. Time averaged local densities with respect to the ratio of twisters
to diggers.

δ3 > δ4 and δ3 = δ1− δ2. Thus, a condition required for Ou

to grow and for Ob to shrink may be written as δ1−δ2 > δ4
and so

δ2 + δ4 < δ1. (9)

From (4), (5), (7), and (9), in order to prevent boundary
cluster growth, we can obtain

ρ◦T (Op→Ob)
· L−T (Op) + ρ◦T (Ou→Ob)

· L−T (Ou)

< ρ◦D(Ob)
· L−D(Ob).

(10)

Since the majority of diggers that encounter boundary objects
successfully pry them away from the boundary in our system,
we assume that L−D(Ob) ' 1. Furthermore, because twisters
can always push a single object (e.g., an unclustered or a
pried object without loss), we assume that L−T (Op) ' 1
and L−T (Ou) ' 1. Under these assumptions, in order for
boundary objects to be removed from the boundary region,

ρ◦T (Op→Ob)
+ ρ◦T (Ou→Ob)

< ρ◦D(Ob)
. (11)

We hypothesize, if the time averaged local densities of
twisters and diggers satisfy (11), the boundary interference in
the clustering system will be negligible or eliminated entirely.

D. Experimental Results
In order to test how the local densities of the robots

influence the formation and removal of boundary objects, we
implemented a simulator for robotic clustering systems with
Box2D. Box2D is a 2D physics engine and an open source
C++ engine for simulating rigid bodies [13]. The simulation
environment is designed to the scale of the real environment
in our prior work [10]. We performed simulations for all
mixes of twisters (T) and diggers (D) with 5 robots: 1T4D,
2T3D, 3T2D, and 4T1D. We also used 20 objects, and 20
runs, each lasting 20 minutes (simulation speed is six times
faster than the physical experiment).

We obtain the local densities of available robots capable of
manipulating objects, ρ◦T (Op→Ob)

, ρ◦T (Ou→Ob)
, and ρ◦D(Ob)

,
which only affect the condition (11). To measure the sum
of ρ◦T (Op→Ob)

and ρ◦T (Ou→Ob)
, we observe the frequency

of twisters moving from the central region to the boundary
through the intermediate region during all trials. Then, we
obtain the sum of ρ◦T (Op→Ob)

and ρ◦T (Ou→Ob)
by dividing the

frequency by the perimeter of the central region. ρ◦D(Ob)
is

measured by counting the number of diggers passing through
a point on the boundary during the same period.

Fig. 4 shows the time averaged local densities for the
particular ratio of twisters to diggers in the simulation.
According to our hypothesis, 1T4D and 2T3D satisfy the
condition in (11) to stop boundary cluster growth. In order to

Fig. 5. The number of boundary objects over time during the clustering
process. Observed data of three of 20 trials for each labor mix are plotted.

Fig. 6. Boundary objects observed over time in physical experiments

validate our hypothesis, we analyzed the frequency of bound-
ary objects over time. Fig. 5 presents the number of boundary
objects with respect to the labor mix during the clustering
process in the simulation. As hypothesized, all trials for
1T4D and 2T3D successfully remove boundary objects. In
contrast, the robots of 3T2D and 4T1D failed to eliminate
boundary objects and even made the boundary clusters grow.
Table I also shows the averaged object distribution of 20
trials in each mixed strategy. We can observe that since the
average size of Ob in 1T4D and 2T3D is below 1, those
strategies can prevent forming boundary clusters. However,
3T2D and 4T1D struggled to eliminate the boundary objects.
That is, the simulation results support our hypothesis.

TABLE I
AVERAGED OBJECT DISTRIBUTION.

The number of objects
Ou Op Ob

1T4D 18.345 1.3708 0.3006
2T3D 17.712 1.6706 0.6344
3T2D 15.431 2.2206 2.3647
4T1D 11.995 2.3119 5.7097

In physical experiments, the results are similar to the
simulation results. Each trial lasted 90 minutes, with 20
objects. As shown in Fig. 6, all trials of 1T4D and 2T3D
successfully prevented forming boundary clusters. However,
3T2D and 4T1D failed to remove objects from the boundary
and eventually formed only boundary clusters.

Fig. 7 and Fig. 8 show the configurations in the simulation
and the physical experiments. We observed in both environ-
ments that 1T4D successfully formed a single central cluster,
but 4T1D failed throughout. In short, if we can control
the local densities of robots having a different purpose
(here, twisting and digging behaviors), we can prevent the
boundary interference in the clustering system which harms
central clustering performance. We are not aware of other



Fig. 7. Simulation experiments. (a) Initial configuration. (b) Final config-
uration (1T4D). (c) Final configuration (4T1D).

Fig. 8. Physical experiments. (a) Initial configuration. (b) Final configu-
ration (1T4D). (c) Final configuration (4T1D).

work which has influenced the density of robots in order to
influence cluster formation, let alone in a systematic way.

IV. EXTENDED ANALYSIS OF CLUSTERING SYSTEMS: A
COMPACTNESS OF CLUSTERS

In this section, we extend analysis by investigating the role
that the compactness of clusters has on the clustering process.
As mentioned in Section II, prior studies have developed
theories to describe how clustering systems work, however,
the theories introduce simplifying assumptions. A common
assumption is that the geometry of a cluster is rotationally
symmetric. However, since generally the clusters formed in
practice are asymmetric, we need to closely examine the
shape of the clusters for more accurate analysis.

A. The Compactness of Clusters
The compactness of a cluster reflects the degree of dis-

persion of items packed within the cluster. Fig. 9 shows that
the shape of a highly compact cluster of square items is
close to the square symmetry whereas a less compact cluster
is line-shaped. Moreover, for a given number of items, the
compactness relates to the number of ways items can be
removed from the cluster. Thus, a quantitative measure of
the compactness is expected to capture information about
the geometric configuration of a cluster and its robustness.

To quantify the degree of compactness, we compute the
second moment indicating a geometrical property of an area.
In the penny-packing problem, Graham and Sloane proposed
that minimizing the second moment of the pennies as a
solution for the tightest packing [14]. The second moment
of cluster ci, mci = 1

d2

∑n
j=1

∥∥pcij − ¯pcij
∥∥2, where, d is the

width of the object, n is the size of the cluster ci, pcij is the

center point of the ith object in cluster ci, and p̄ci is
∑

pcij

n .
A cluster that has a minimal moment is a compact cluster,

as all of the objects are distributed as closely to the cluster’s
centroid as possible. However, since the range of the cluster’s
second moment depends on its size, we normalize and scale
it according to the cluster’s size. Here, we can define the
compactness of a cluster as

Γci = (1− m̃ci)× nci , (12)

where, m̃ci is the second moment normalized to lie in [0,1],
nci is the number of objects in the cluster ci.

Fig. 9. Differing compactness for clusters of the same size (n = 4). The
more compact cluster is robust because the directions of contacts that the
robot can remove the object are few.

Fig. 10. Frequency of clusters occurring by compactness measure, which is
not scaled by the cluster’s size. The horizontal axis describes the normalized
compactness according to clusters’ size.

From (12), the compactness of a line-shaped cluster will
be computed as the minimum value (it has the maximum
second moment). This means the objects in the line-shaped
cluster will be easily removed by the robots. Whereas in
square symmetric clusters it is just the opposite (See Fig. 9).
Therefore, we can see that although the clusters’ sizes
are the same, the likelihood of growing the clusters might
not correspond according to the compactness of clusters.
In other words, the compactness is an essential factor to
consider when understanding how clustering occurs. Since
we consider an extended clustering system including the
analysis of boundary clusters, we distinguish between the
compactness of central clusters and boundary clusters by
multiplying -1 for the boundary case. Thus,

Γcci = (1− ˜mcci)× ncci , Γbcj = −(1− ˜mbcj )× nbcj , (13)

where, cci is the ith central cluster and bcj is the jth boundary
cluster. These signed measures will be useful for analyzing
precisely the clustering process, as we show next.

B. The Analysis of the Impact of the Compactness on the
Clustering Process

In order to investigate the impact of compactness on
clustering dynamics, we measured the frequency of the live
clusters according to their compactness for a fixed size of
clusters and we compare this across cluster sizes. We define
the size of a cluster as a group of more than tree objects,
each contacting at least one other. In Fig. 10, we show the
result as partitioned in three regimes, depending on the size:
small (3–6 objects), middle (7–13 objects), and large (14–20
objects) size of clusters. When clusters are small, they are
easily broken by robots unless the compactness is increased
sufficiently. The small cluster frequencies are relatively high
at low compactness because the clusters repeat the cycle of
creation and extinction, i.e., churn. For middle-sized clusters,
increasing the compactness for a given size causes a growth



Fig. 11. Comparison between (a), (c), (e) successful 1T4D and (b), (d),
(f) failed 4T1D in the simulation.

Fig. 12. Comparison of results between successful 1T4D and failed 4T1D
in physical experiments. We observed configurations at intervals of 5 mins.

point. For this reason, the frequencies of middle clusters are
slowly increased and have relatively low frequencies overall,
i.e., they represent a transition zone. The large clusters have
a comparatively long lifetimes with large compactness. That
is, the large clusters, which are packed tightly are robust
against removal actions of the robots. For example, when
the cluster’s size is 16, the cluster has a long life because
the cluster has the maximum compactness (square shape of
4× 4). This observation supports the suggestion that cluster
compactness is a significant factor.

To understand the clustering process with the compactness,
we compared the results of a successful experiment (1T4D)
and a failed experiment (4T1D). As shown in Fig. 11 (a)
and (c), even though 1T4D repeatedly created and destroyed
small central and boundary clusters at the beginning, a single
central cluster is finally formed after 420 sec. This result
can be explained by the compactness of the largest cluster.
In Fig. 11 (e), we observe that if the compactness of the
largest reaches a threshold level (here, 15), and it is a stable
and robust cluster. That is, the largest central cluster remains

steady by consistently increasing the compactness. On the
other hand, although 4T1D tried to generate central clusters,
the central clusters could not evolve into a larger cluster due
to the boundary interference and the lack of its compactness
(See Fig. 11 (b), (d) and (f)). As shown in Fig. 12, similar
trends are observable in physical experiments.

V. CONCLUSION
We proposed a model to help understand the dynamics

of a multi-robot clustering system. We contribute a model
which considers heterogeneity in different behavior as a
function of location. Through this we can capture a notion
of local spatial density, and also model state transitions in
the object being clustered (in this work, a transition of the
object into a pried mode), and context dependency (boundary
objects are modeled as behaving differently from one in the
central region). Using this model, we derived conditions for
evolution of the largest central cluster and for degeneration of
boundary clusters. We also investigated an important factor
which has been overlooked in the literate: there can be
a significant difference between two clusters of the same
size. We construct a measure, “scaled compactness” which
characterizes this fact, showing that it helps understand three
different regimes of cluster evolution.
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