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Abstract— Many envisioned applications of multi-robot
swarms involve the detection, production or maintenance of
global structures through only local means. This paper intro-
duces a scalable, distributed algorithm to approximately char-
acterize important global geometric and topological properties.
For a given spatial arrangement of robots, the algorithm esti-
mates the longest network (geodesic) distance in any direction as
well as the average Euclidean distance only using locally sensed
information. In so doing, the robots need only to communicate
with and sense (range and bearing) nearby robots.
The algorithm uses a greedy method to approximate both
distance metrics via parallel one-way message traversals. We
provide a bound for the number of such traversals, showing
a global characterization is produced in a running time that
is sublinear in the total number of robots. Along with this
analysis, we conduct simulations with hundreds of robots to
validate the algorithm.

I. INTRODUCTION

In recent years, multi-robot systems (MRS) with increas-
ingly large numbers of robots have been demonstrated in
research laboratories. Hardware for MRS with thousands of
robots will soon become a reality. Oftentimes robots are
required to collectively determine certain global, task-related
properties. This must be done efficiently despite each robot
having to sense, act and plan independently. We believe, with
increasing system sizes, even algorithms with running times
linear in the number of robots, will be too slow for dynamic
applications.

The goal of this paper is to show that useful global geomet-
ric and topological properties, which sketch the “shapes” of
a whole system, can be approximated using only a subset of
robots and limited communications. More specifically, we are
interested in measuring the geodesic distance which reflects
the minimum number of communication hops among two
robots in a distributed network and the path distance, which
is the sum of Euclidean edge lengths along a traversed path.
The geodesic distance provides an estimate of the message
broadcast time and the path distance measures the distance
of the two most distant robots along a given direction.
Therefore, these two metrics are useful for describing the
current system’s formation.

II. RELATED WORK

In order for future algorithms to scale to large-scale MRS,
the algorithms should establish the link between individual
robots and their global properties without involving every
robot. In the last decade there has been growing interest in

sublinear time algorithms [1], [2], [3] which were originally
designed to solve massive data processing problems. Many
property querying or testing algorithms [4], [5], [6] use sub-
linearity in order to test or query properties of massive
graphs. To the best of our knowledge, there has not been any
work done on sublinear time algorithms applied in distributed
MRS, with only some work in randomized algorithms for
robotic motion and path planning. It is worth emphasizing,
there are several challenges which arise in attempting to
apply existing property testing algorithms to MRS.

In MRS, robots only have the ability to communicate with
neighboring robots within some limited range, therefore the
information a robot can gain about the global state of the
MRS is limited. This makes for a fundamentally different
data access model than generally used for property testing.
Most of the work done on property estimation is in a
centralized context. Works such as [1], [7], [8], use either an
adjacency matrix or an incidence list to represent dense and
sparse graphs, respectively. Randomly sampling from these
structures is very different from an individual robot sampling
its local communication graph. Furthermore, these works do
not take advantage of the parallelism offered by MRS. For
the purposes of this work we are interested in the situations
where the size of the system is extremely large (i.e., many
hundreds of robots or even more) and the environment is
unknown prior to the execution of the system. In such cases,
it is not possible to set up the required type of communication
for the above global data structures.

The present work introduces an example of an algorithm
concerned with both network and embedding properties
that employs a message passing strategy which is easily
implemented on physical robots and is able to exploit parallel
phases of computation and communication.

III. PRELIMINARIES

We aim to develop algorithms for MRS with many hun-
dreds of robots. Although such systems do not yet exist, we
believe considering currently deployed systems is necessary
in order to build a theoretical model of the capabilities one
may reasonably expect such future robot systems to have.
For this purpose, we have considered the e-puck [9] as it is
a good representative class of swarm robot systems: indeed
at 70mm in size, 200g in weight, and relatively low cost,
it is an ideal robot for large-scale MRS. Most important
for this paper is the array of 8 infra-red proximity sensors,



which can be used for communication [10]. A compass
and the Range & Bearing Miniaturized Board [11] permits
the robot to identify, detect and communicate with a small
subset of neighboring robots. Along with communication
the device permits the robot to estimate a relative range
and bearing to each neighbor. As with all robotics, sensing
and communication involves noise and failure. Note that
our simulations explicitly consider the effect of noise by
perturbing input values provided to the robots.

Due to the spatial and sensing/communication restric-
tions, we model the MRS as a sparse graph, where the
vertices represent the robots and the edges represent the
sensing/communication connections. We assume each robot
has bidirectional communication, therefore we can analyze
the system as an undirected connected graph G = (V,E),
where |V | = n and e(u, v) ∈ E is an edge between vertex
u ∈ V and v ∈ V . The algorithm does not require multi-hop
or addressed communication. We do assume, any message
that is delivered, does not undergo corruption en route.
These communication assumptions are easily relaxed since
the bounds below are written in terms of expected packets
delivered.

Definition 3.1: The geodesic distance between two ver-
tices u and v is denoted by dG(u, v) and is calculated as
the total number of communication edges in the geodesic
shortest path between u and v.

Definition 3.2: The weight of an edge in the graph is the
sensed distance between u and v. The weighted path distance
(path distance) between u and v is denoted by dP (u, v) and
is the sum of all the edge weights in the shortest path from
u to v.

Definition 3.3: The geodesic diameter (DG) of a graph G
is defined as maxu,v∈V dG(u, v). Similarly, we define DP =
maxu,v∈V dP (u, v) to refer to the path diameter which can
approximate the physical size of the topology.

Definition 3.4: We use deg(v) to denote the degree of
vertex v, which means the number of directly connected
neighboring vertices with v.

Definition 3.5: An R-disk is a disk of radius R centered
on a given robot. We assume the R-disk graph on G
is connected; otherwise, we can consider each connected
component separately.

Definition 3.6: For any real number ε > 0, a (1 + ε)-
approximation of a quantity Q : G→ (0,∞) is an algorithm,
which on input G, with probability at least 2/3 outputs a
value in the interval [Q, (1 + ε)Q].

We use the notational convenience of dividing the system
into two disjoint sets Sp and Si, where Sp is formed from
all vertices on the periphery (i.e., the “hull”) of the graph
and Si contains all the remaining inner vertices.

IV. CHARACTERIZING SWARM SHAPES

A. Algorithm Stages

Our distance approximation approach is straightforward
and the principle idea is easiest to understand from the
continuum limit perspective. Imagine the large-scale MRS is
encircled by a differentiable periphery curve. One can then

uniformly sample q points on the periphery and calculate
the inward pointing normal as orthogonal to the tangent
for each point. The normals here are the global directions
for messages to traverse the system. Since the periphery is
continuously differentiable and closed, the normal directions
are expected to cover from 0 to 2π, therefore, likely to
capture the traversals in every direction, as illustrated in
Fig. 1. A high-quality approximation of the shape requires
only that q constitute a sufficient number of samples.

However, in practice the system is modelled to a graph
without a differentiable perimeter. We approximate the “nor-
mal” direction by averaging the directions of its incoming
and outgoing boundary edges. Actual measurements of the
MRS are achieved by message-passing in the communication
network, with two kinds of message:

Normal Traversal Message (NTM) contains a determined
normal traversal direction, a counter of visited robots (to
calculate dG), an odometer (to record dP ), an angular
accumulator (for calculating the angular deviations) and
a history of visited robots.
Peripheral Traversal Message (PTM) contains a peripheral
robots counter, the probability to trigger the NTM and a
short queued history of recently visited peripheral robots.

Stage 1: We denote by a1 the robot from the set Sp from
which the shape query is initiated, e.g., arbitrarily selected
by an outside (human) operator. Robot a1 then initiates and
sends a PTM to the nearest peripheral robot a2, which serves
to determine the passing direction; assume counter-clockwise
for the remainder of this work. To search the successive
peripheral neighbor, each robot chooses the edge which is the
right or left most among all its outgoing edges, depending on
the passing direction. The PTM continues until it returns to
a1 after each robot along the loop is flagged as a peripheral
robot in Sp and each records its predecessor and successor
along the “chain”. Finally the size of Sp, denoted ñ, is
obtained.

Stage 2: After robot a1 obtains ñ, the sampling probability
Ps is determined via dividing sample size q (discussed in
Section IV-C) by ñ and saved in the PTM. The message is
then resent along the periphery. Each periphery robot which
receives a PTM with Ps immediately passes it to its successor
and runs a random generator to decide with probability Ps
if it should initiate a NTM. If a NTM is to be sent, the robot
initiates it with dG = 0, dP = 0 and sends it to a neighbor
in the normal direction. A NTM ends its life cycle of normal
traversal when it reaches a new periphery robot. Each robot
in Si that receives the NTM updates the odometer records
of dG and dP as well as the information of angular deviation
and traversed history.

Stage 3: Any robot in Sp immediately passes any received
message to its peripheral successor along the determined
peripheral “chain.” Robot a1 collects all of the packages
and ultimately computes approximate shapes from the two
distance metrics.

Stage 4: The results are broadcast via any appropriate
propagation strategies to the robots requiring the approx-
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Fig. 1. (a) A periphery agent with the peripheral message passing (solid
arrows) and inner “normal” direction (dashed arrow); (b) Message passing
between two inner agents along the normal direction; (c) Sampled dark
peripheral agents send NTMs. Arrows denote approximate traversal paths.

(a) (b)

Fig. 2. (a) An e-puck mobile robot; (b) R-γ-sector with a robot at pole
O of polar coordinate system.

imation. These strategies are not the focus of this work
and we assume only the initiating robot a1 requires the
approximation.

B. NTM Traversal and R-γ-sector Algorithm

When a NTM is received by a robot, ai, in Si, ai will de-
termine its successor neighbor by selecting the robot nearest
to the normal transversal direction. We want to investigate if
there is a one-way transversal path which can approximate
both of the distance metrics under certain conditions.

In dynamic systems, the edge lengths may not be identical,
however each edge length is bounded by a constant sens-
ing/communication radius R. We use a 2-dimensional polar
coordinate system to describe the positions of the robots. In
this representation, each robot is at the pole O and its goal
direction is the polar axis L. Therefore, inside the R-disk,
an arbitrary robot ai can be described with (ri, θi), where
ri ∈ [0, R], and θi ∈ [−γ/2, γ/2]. Here, γ is the angle within
which the message can be passed. Hence, the message can
be passed only to the robots inside the [−γ/2, γ/2] region,
which we term as the R-γ-sector, see Figure 2(b).
R-γ-sector algorithm: Inside the R-γ-sector, the robot

at pole O always chooses the neighbor which is farthest
from O to be the NTM successor. If there are no robots in
the R-γ-sector, then the neighbor closest to the normal will
be chosen.

We are interested in the constraints of the angle γ as
well as the radius R with regard to some specific (1 + ε)-
approximation.

Theorem 4.1: Given a large set of robots which are uni-
formly distributed in Euclidean space, the path of R-γ-sector
algorithm approximates the geodesic distance and shortest
path distance well, given there is at least one robot in the
R-γ-sector.

Proof: It is difficult to prove this fact using determinis-
tic methods, therefore we will analyze the algorithm from the
stochastic perspective. More specifically, we investigate the

conditions which can bound the algorithm’s approximation
of the optimal geodesic distance and shortest path distance.

Since in any local area the robots are uniformly distributed,
thus the ri (as well as θi) are i.i.d. random variables. Between
any two robots with a geodesic distance greater than 1,
the lower bound of the geodesic distance dGb in a specific
direction can be expressed as dGb = dE0/R, where dE0

is the Euclidean distance between the two ending robots.
Suppose the R-γ-sector algorithm returns d

′

G, then we seek
a bound in the form

d
′

G ≤ (1 + ε) · dGb, (1)
where d

′

G is the number of edges in the path, calculated using
the Euclidean distance, dE0, divided by the expectation of
each edge projection on dE0:

d
′

G =
dE0

E[rmaxi · cos(θi)]
=

dE0

E[rmaxi ] · E[cos(θi)]
, (2)

where

E[cos(θi)] =

∫ γ/2

−γ/2
cos(θi) ·

1

γ
· dθi =

2

γ
· sinγ

2
. (3)

The expectation of the farthest distance in a R-γ-sector
(as the selection of a in Fig. 2(b)), denoted by E[rmaxi ],
can be calculated by using order statistics. Assume N is the
number of robots in the [−γ/2, γ/2] R-γ-sector. The event
rmaxi ≤ t is equivalent to the event that ri ≤ t, ∀i ≤ N .
Therefore rmaxi has distribution function

Fmax(t) = F (t)N , (4)
where F (t) = t/R is the distribution for each ri, i ∈ [1, N ].
The expectation of rmaxi can be obtained by

E[rmaxi ] =

∫ R

0

t · dFmax(t) =
N ·R
N + 1

(5)

Combining (1)—(5), we get the relation
N

N + 1
· sin(γ/2)

(γ/2)
≥ 1

1 + ε
. (6)

Next we want to compare the path distance between the R-γ-
sector algorithm and the lower bound dE0. The path distance
d
′

P from our algorithm is

d
′

P = E[

∆
′
P∑

i=1

rmaxi ] =

∆
′
P∑

i=1

E[rmaxi ] = ∆
′

P · E[rmaxi ], (7)

where ∆
′

P is the number of edges, ∆
′

P = d
′

G, thus

d
′

P =
dE0

E[cos(θi)]
. (8)

To bound d
′

P within a (1 + ε)-approximation, let
d
′

P ≤ (1 + ε) · dE0, therefore
sin(γ/2)

(γ/2)
≥ 1

1 + ε
. (9)

Equations (6) and (9) are two bounds for (1 + ε)-
approximations of geodesic distance and shortest path dis-
tance, respectively. The comparison between them reveals
that (6) is the more constrained and bounds both approxima-
tions. Moreover, if N is large enough, (N/(N + 1) → 1),
then (6) and (9) are approximately equal, which suggests
our algorithm can simultaneously (1 + ε)-approximate the
geodesic distance and the shortest path distance.



C. Bounding the Number of NTM Samples

In this section we investigate the lower bound of NTM
samples required in Sp to capture the distribution of the
distance metrics. We have shown in the previous sections,
our approach can approximate the geodesic distance and
shortest path distance following a traversal direction under
certain densities. Here we use the geodesic distance metric to
analyze the minimal number of samples required. The main
idea is from the perspective of comparing the averaged dis-
tances obtained from the chosen samples, with the theoretical
expectation of all robots in Sp. In other words, we want to
bound the probability that the average of our outputs satisfies
the (1 + ε)-approximation.

We are inspired by the work of [1]. The difference between
the MRS and a common graph problem is the communication
graph is completely unknown before the message traversals
and this needs the robots to exploit the graph using local
sensing information along the traversals. Also the robots are
distributed, which means approximation tasks can be exe-
cuted in parallel. Here we assume robots on the periphery are
also distributed uniformly, which guarantees well distributed
paths if we uniformly sample a subset of robots among them.

Theorem 4.2: A (1 + ε)-approximation of the average
distance for a distributed MRS can be achieved by using
a sample size q = Θ(3

√
2ε−2
√
ñ), where ñ = |Sp|.

Proof: Assume the geodesic distance d between any
two peripheral robots along the normal traversal direction
satisfies d ∈ [ď, d̂], where ď and d̂ are the shortest and longest
geodesic distances between any two peripheral robots, re-
spectively. Let ∆d = d̂ − ď, and pi denote the fraction
of paths with geodesic distance di = ď + i in all ñ paths
(i ∈ [0,∆d]). Then let η denote a random variable which
takes value di with probability pi and let η1, η2, ..., ηq be
independent random variables which are distributed the same
as η. From the definition of (1 + ε)-approximation, we bound
the probability that the average of the output, q−1

∑q
j=1 ηj ,

deviates from its expectation E[η] by more than εE[η]. From
Chebyshev’s inequality, we have:

Pr

∣∣∣∣∣∣q−1

q∑
j=1

ηj − E[η]

∣∣∣∣∣∣ ≥ εE[η]

 ≤ E[η2]− E[η]2

qε2E[η]2
(10)

Since η is integrally ranged in [ď, d̂], following the definition
of E[η2] yields

E[η2] =

∆d∑
i=0

pi · (ď+ i)2 ≤ d̂ · E[η]. (11)

Here pi represents the fraction of a subset of vertices in all
peripheral vertices, so we have pi ≥ 1/ñ, and consequently

E[η] =

∆d∑
i=0

pi(ď+ i) ≥ 1

ñ

(ď+ d̂)∆d

2
=
d̂2 − ď2

2ñ
. (12)

Since we assume E[η] ≥ ď ≥ 1, namely −ď2 ≥ −E[η]2, we
may substitute into (12) obtaining

2ñ · E[η] + E[η]2 ≥ d̂2. (13)
Combining (11) and (13) to cancel d̂ we get

E[η2]2 ≤ 2ñ · E[η]3 + E[η]4 ≤ (2ñ+ 1) · E[η]4. (14)

Note the relaxation of (14) is because E[η] ≥ 1. Therefore,

E[η2] ≤
√

2ñ+ 1 · E[η]2. (15)
From Definition 3.6, to obtain a (1 + ε)-approximation of
E[η], means

Pr

∣∣∣∣∣∣q−1

q∑
j=1

ηi − E[η]

∣∣∣∣∣∣ ≥ ε · E[η]

 ≤ 1

3
. (16)

Combining (15) and (10) we obtain
q ≥ 3ε−2(

√
2ñ+ 1− 1). (17)

Therefore, a sample of size q = Θ(3
√

2ε−2
√
ñ) will

suffice to approximate the average distance.

D. Running Time Analysis

The overall running time is O(ñ), which is sublinear with
regard to O(n). The time complexity is measured by the
time steps of message passing hops. In Stages 1 and 2, there
are two rounds of sequential message passing in the set of
Sp, so the running time is O(ñ). Also in Stage 2, because
the path along the normal direction in Si is shorter than
the length of the perimeter of the network, and the message
passing implemented in parallel, the running time in this
part of Stage 2 is also O(ñ). In Stage 3, there is at most
one more round of sequential message passing in Sp, so the
running time is still O(ñ), even considering the overhead in
Stage 2. The propagation procedure in Stage 4 can also be
controlled within O(ñ) by broadcasting from Sp to Si in
parallel). Therefore, the overall running time is O(ñ), which
is determined by the number of peripheral robots for a given
uniformly distributed MRS.

V. EXPERIMENTS

We simulated the algorithm with hundreds of robots in
order to validate the approach. To permit easy visualization
of the message passing results, we generated the networked
topology in a 2-dimensional plane. All the robots are ho-
mogeneous and have identical sensing and communication
ranges. Within the sensing/communication range, each robot
is capable of recognizing its neighbors as well as their
distances and bearings. In order to simulate the errors, we
perturb each neighbor’s sensed distance by a random value
in the range [−20cm, 20cm] and perturb every neighbor’s
sensed bearing by a random value in the range [−5◦, 5◦]. All
information is collected and gathered via the PTM and NTM
message packages. The multi-robot topology is generated
by randomly perturbing well arranged formations; topologies
are controlled to give different typical shapes such as circles,
ellipses, dumbbells and squares; see Figure 3. The simulation
environment is a 100m×100m square. The density, as well
as the degree, is controlled by adjusting the total number of
robots in specific sized areas. To simplify the analysis, we
set the diameter of all shapes to be 100 meters, which means
the major axis of a ellipse, the longest axis of the dumbbell
and the diagonals of a square are all equal to 100 meters. The
results below are the mean values of 10 sets of experimental
data.



(a) (b) (c)

Fig. 3. Typical topological shapes. (a) Convex ellipse with smooth
periphery; (b) Non-convex dumbbell with smooth periphery; (c ) Convex
square with sharp corners.

TABLE I
DIAMETER TESTING

Increasing degree (fixed γ = 30◦ ) Increasing γ (fixed deg=20)Shape Measure
deg=10
†

deg=20 deg=30 γ =
40◦

γ =
50◦

γ =
60◦

DG 17.9 17.1 16.2 15.8 15.1 14.3

εDG
0.43 0.37 0.30 0.26 0.21 0.14

σ∠DG
8.2◦ 5.0◦ 3.3◦ 4.2◦ 9.7◦ 18◦

Ellipse
DP 103 101 99.1 106 104 104

εDP
0.03 0.01 0.01 0.06 0.04 0.04

σ∠DP
10◦ 7.3◦ 3.7◦ 9.8◦ 3.5◦ 8.7◦

DG 17.7 16.9 16.6 16.0 15.0 14.5

εDG
0.42 0.35 0.28 0.28 0.20 0.16

σ∠DG
4.2◦ 6.0◦ 3.9◦ 3.3◦ 8.2◦ 11◦

Dumbbell
DP 102 101 99.8 99.5 102 104

εDP
0.02 0.01 0.0 0.01 0.02 0.04

σ∠DP
5.1◦ 5.7◦ 2.9◦ 3.6◦ 7.0◦ 9.4◦

DG 16.7 16.0 15.2 15.6 14.9 14.3

εDG
0.34 0.28 0.22 0.25 0.19 0.14

σ∠DG
11◦ 15◦ 8.0◦ 5.8◦ 17◦ 11◦

Square
DP 92 89 93 92 107 112

εDP
0.08 0.11 0.07 0.08 0.07 0.12

σ∠DP
6.5◦ 11◦ 21◦ 9.7◦ 10.6◦ 19◦

† degree = 10, meaning ∼300 robots in our simulation; degree = 20,
meaning ∼600 robots, etc. The sensing range R = 8m.

Table I lists the diameter testing results of the three typical
shapes. The measurements include the geodesic diameter
DG, the ε value εDG with regard to lower bound DGb, and
the standard deviation of angles σ∠DG indicating deviation
from the true diameter directions. Similarly, DP , εDP and
σ∠DP are the counterparts of shortest path distances. We first
fixed the γ angle to be 30◦ and observed the performance
while varying the degree of the graph. Then we fixed the
degree at 20 and observed the performance as γ varies.
In Table I, the diameter variances and angular deviations
indicate the algorithm estimates both the geodesic and short-
est path diameters relatively well. The results also imply
that the larger the degree, the better the path quality; see
Figure 4. However, the increasing γ causes deterioration in
the measurements, especially in the shortest path distance.
In addition, the results of the ellipse and dumbbell are better
than the square, implying the algorithm works better for
shapes with smooth peripheries. Notice that the diameter is
just a special distance among all distances of every direction,
which were also measured and can be queried via the
algorithm.

Table II is the comparison of NTM passing between
the R-γ-sector method (Rγ) and normal-closest the (NC)
method which greedily chooses the robots which are closest
to the normal direction. We fix the γ angle to be 30◦

(a) (b) (c)

Fig. 4. Quality of traversal paths with different degrees. (a) deg ≈ 12
(n=400, R=8); (b) deg ≈ 24 (n=800, R=8); (c) deg ≈ 48 (n=800, R=12).

TABLE II
R-γ-SECTOR (Rγ) VS. NORMAL CLOSEST (NC)

Degree 10 15 20 25 30

NC DG 17.2 17.8 18.3 18.5 19.1

Rγ DG 17.9 17.2 17.1 17.0 16.2Ellipse
NC DP 101 100 101 99.9 99.7

Rγ DP 103 102 101 101 99.1

NC DG 16.7 17.2 18.0 18.4 18.8

Rγ DG 17.7 17.7 16.9 16.6 16.1Dumbbell
NC DP 99.9 99.6 99.5 100 99.2

Rγ DP 102 104 101 99.7 99.8

NC DG 15.9 16.6 17.6 17.6 18.4

Rγ DG 16.7 16.1 16.0 15.7 15.2Square
NC DP 85.2 87.0 95.5 93.1 91.0

Rγ DP 92.1 89.9 89.9 92.2 93.4

and gradually increase the degrees, then compare the DG

and DP . The results indicate the Rγ method approximates
the NC method well and becomes increasingly accurate as
density increases. Figure 5 also shows the similarity of the
shortest paths from the two methods. The Rγ method is
better than the NC method in that, as the density increases,
the geodesic diameter DG becomes much more accurate
(actually converges to the bound) than NC method (diverges
from the bound).

Table III shows the effect of changing the number of
NTM samples. This is directly determined by the sampling
probability Ps, which is obtained by setting the ε value. The
results show, as ε increases, both the geodesic diameter and
path diameter decrease, and some geodesic diameters even
fall below the lower bound as the approximation becomes
coarse and inaccurate. In addition, as ε increases, the average
distances d̄G and d̄P oscillate with increasing amplitude and
tend to diverge, which is indicated by the standard deviations
σdG and σdP , respectively. In Table III, the reason Ps = 1.0
when ε ≤ 0.6 is that the number of peripheral robots
is insufficient (currently our simulation supports ∼1,000
distributed robots). The bound derived in Section IV-C is
particularly useful when ñ is very large.

Table IV shows the number of peripheral robots and total
time steps used in a MRS with 1,000 robots. Each time step
represents the time for a sequential communication hop or

(a) (b)

Fig. 5. Paths when degree ≈ 20. (a) Path of normal-closest method; (b)
Path of R-γ-sector method (γ=30◦).



TABLE III
BOUNDING NUMBER OF NTM SAMPLES

Shape Measure ε=0.3 ε=0.6 ε=0.9 ε=1.2 ε=1.5 ε=1.8

Ps 1.0 1.0 0.71 0.40 0.25 0.17

DG 15.2 15.2 14.5 14.1 14.0 13.6

Ellipse DP 101 101 98.6 98.2 98.5 95.4

d̄G
(σdG

)
10.3 (0.2) 10.3 (0.2) 10.3 (0.4) 10.0 (0.5) 10.5 (0.8) 10.7 (1.1)

d̄P
(σdP

)
68.7 (2.9) 68.7 (2.9) 67.6 (5.1) 67.7 (7.7) 70.4 (8.0) 69.0

(11.4)

Ps 1.0 1.0 0.71 0.40 0.25 0.18

DG 15.9 15.9 15.2 13.7 14.0 12.3

Dumbbell DP 102 102 100 99.7 98.3 90.9

d̄G
(σdG

)
9.7 (0.5) 9.7 (0.5) 10.4 (0.8) 9.5 (0.7) 9.4 (1.2) 8.9 (1.7)

d̄P
(σdP

)
64.3 (3.5) 64.3 (3.5) 63.6 (6.2) 62.1 (8.2) 67.8 (7.4) 59.5 (9.3)

Ps 1.0 1.0 0.68 0.38 0.25 0.17

DG 14.4 14.4 13.6 12.9 12.2 11.7

Square DP 94.9 94.9 92.1 88.4 78.0 80.4

d̄G
(σdG

)
10.2 (0.3) 10.2 (0.3) 10.0 (0.9) 10.7 (2.1) 10.3 (1.7) 9.2 (2.8)

d̄P
(σdP

)
70.4 (4.1) 70.4 (4.1) 71.2 (7.5) 71.8 (7.3) 72.0 (9.8) 66.6

(15.2)

In each experiment we use 1,000 robots. The sensing range R = 8m.

TABLE IV
TIME COMPLEXITY TESTING WITH 1000 ROBOTS

Radius Measurement Circle Ellipse Dumbbell Square

R = 8m |Sp| 65 54 55 59

(deg≈30) time steps 187 157 162 170

R = 6m |Sp| 87 70 74 80

(deg≈15) time steps 246 203 214 226

multiple parallel hops (a hop includes the time of processing
the message data and passing it to the successor), and thus
reflects the time complexity. The total time steps shown in
Table IV records the first 3 stages described in Section IV-A.
We show results with two different average degrees, obtained
by adjusting the sensing/communication radius R while
fixing the robots size and density. The results indicate that
shorter sensing/communication distance increases the time
complexity. However, as long as the network is connected,
the total time steps are much less than the total number of
robots.

VI. DISCUSSION

The focus of our work is on using only simple local
communication and sensing to provide approximate char-
acterizations of global geometric shape without involving
every robot. It is worth pointing out, an alternative approach
would be to employ robot to robot pairwise measurements
around the periphery and simply connecting these positions
after the first phase of the algorithm. Doing so would
accumulate errors and any small errors at first could be grad-
ually magnified for large-scale MRS, which would greatly
distort the shape. This requires the method to have either
reliable localization for each robot or some relaxation-based
method to redistribute the error. Should a coarse global shape
descriptor be adequate, we believe the proposed algorithm,
based on the independent sensing and communication, to be
superior. Moreover, communication at different ranges may
permit an extension of the present work to yield estimates
without involving every robot on the periphery.

It should be noted, the proposed algorithm can approxi-
mate the average distances (both geodesic and path distance)
well but it may not successfully capture the diameters if the
shape is very irregular, e.g., a hook-like shape. When there is
no NTM path along the real diameter direction, this will not
be captured by the algorithm. Analysis of the distribution
and/or local structure in this distribution could however,
permit one to construct a signature for such irregular shapes.

To improve accuracy of the approximation and further re-
duce the time complexity, there are several worthy directions
for future work. One may reconstruct the shape of the swarm
by first computing the convex-hull, by using information
from NTMs and the inaccurate recursive positions mentioned
above. Additionally, one may improve the sampling strategy
by considering the peripheral curve’s “derivative” (more
samples in the sharp corners and less in the parts with limited
curvature). Certainly insights will likely be gained about real
systems by considering explicitly models of sensor noise (or
communication unreliability) and their effect on the bound
of accuracy or the numbers of samples required.

VII. CONCLUSION

This paper introduces a simple algorithm which uses
limited sensing information and a sublinear amount of time
to approximately characterize the shapes of a multi-robot
system. It is able to achieve this runtime because only a
subset of the robots are used in a bounded number of phases.
The method captures the longest path/geodesic distances
in any direction, including the diameter and its associated
direction, as well as the average distances of a given MRS.
We show theoretical analysis and simulation results with
hundreds of robots to validate the algorithm.
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