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Abstract— This paper considers a particular form of incre-
mental assignment problem that can be used to achieve efficient
topological morphing in a network of robots. The assignment
problem arises from a task-allocation formulation in which
destination locations for newly deployed robots are added as
tasks to an existing allocation. We adapt the bipartite matching
variant of the Hungarian algorithm—originally designed to
solve the optimal assignment problem—to perform path routing
by showing that there is a three-dimensional spatial interpre-
tation of the Hungarian graph. The assignment is globally
reallocated in an efficient manner when new agent-task pairs
are inserted. The algorithm uses a parameter to adjust the
optimization criterion: from minimizing global time (or energy,
or distance), to minimizing disruption (i.e., obtaining the fewest
number of robot reassignments), and mixtures in-between.

The algorithm can be directly applied to wirelessly networked
robot systems in which graph edges reflect robots whose
signal strength can be measured and used for gradient-based
traversal from a particular node. The adjustable optimization
criterion permits the degree to which potentially unreliable long
traversals are favored over more costly short traversals to be
tuned. Our results suggest that the algorithm works well for
sparse graphs making it well-suited to networks of robots with
limited communication.

I. INTRODUCTION

Topal et. al [1] introduced the following multi-robot mor-
phing problem: a set of robots (at particular, known initial
locations) are added to a mesh network of already deployed
robots, along with a specification of a set of new desired
target locations. The problem is to decide which nodes
should be moved, and to where. Typically the movement
that minimizes (global) summed distance while ensuring
that there is a robot at each target location, would involve
allocating a newly deployed robot to a new target location.
However, if the robots are interchangeable, a whole chain of
robots may simultanously move toward the target, with each
robot taking the place of the last. Despite the total distance
increasing, improvements in other aspects (e.g., reduced time
until deployment) can make this worthwhile. In this paper,
we develop a parameterized algorithm permits one to obtain
solutions that balance the minimization of summed distance
against number of robots that are redeployed.

While developing this algorithm, we realized that this form
of multi-robot path routing is applicable more generally. The
optimization criteria do not depend on particular locations,
rather known or estimated distances or traversability costs be-
tween robots can suffice. As a motivating example, consider

a swarm of wirelessly networked robots whose positions are
not known. Local signal strength readings can be used both
to estimate costs, and actually to perform gradient-based
traversal from a particular node to another.

In greater detail, the assignment problem treatment of the
task is as follows: A group of robots are assigned to different
task locations and each robot has reached the target place.
Assume that new tasks are added and redundant robots are
to be deployed to these new task locations. Robots need to
be reassigned so that globally all robots can arrive at the
newly assigned task locations as quickly as possible. Such a
scenario is also useful in monitoring tasks. Different focuses
on minimal distance versus time can be important in wireless
networking when the traversal is performed by gradient
seeking to a particular location: we want to minimize time
while also limiting the number of slow, unreliable seeking
movements (i.e., limiting the number of reallocations). The
model can also be extended to topological change of large
scale agents. For instance, by disconnecting individual agent-
task pairs from the topology and reconnect them with new
task assignments, we can “morph” the topology very quickly
using our algorithm. This can be well utilized in the simu-
lation of flocking formations, or global shape morphing of
particle system, or the topological variations of mobile robots
in irregular confined environments, etc.

In this paper, we propose the following ideas:
• Extension of the classic Hungarian complete bigraph

(bipartite graph) treatment to sparse bigraphs, along
with the conditions for producing valid solutions.

• We identify that the bigraph can be treated as a two-
layered 3D graph that models a path routing problem.

• We design a tunable strategy that can adjust the opti-
mization output to trade between minimal distance/time
and minimal reallocation solutions.

• Investigate cases that involve insertion of multiple re-
dundant robots and/or tasks. (Note, however, that in-
cremental assignment problems have been considered
in the literature, cf. [2] — but without considering the
particular routing problem instantiation.)

II. HUNGARIAN ALGORITHM

The Kuhn-Munkres Hungarian algorithm [3] can effi-
ciently solve an n × n assignment problem in O(n3) time.
The algorithm based on the graph matching formulation



is presented as Algorithm II.1 on the following page. It
treats the input n×n utility matrix as a weighted adjacency
matrix for a complete bipartite graph G (or bigraph). In the
algorithm, steps 2 to 4 describes the procedure of looking for
and flipping an augmenting path. We call a single iteration
of this procedure a stage. Note that each stage finds exactly
one augmenting path and this increases with exactly one
matching edge, thus the Hungarian algorithm repeats at most
n stages to obtain all n matching edges, which form the
optimal assignment solution. The algorithm works well on
the complete n× n edged bigraph, and we show below that
it also works for some non-complete bigraphs. We use the
term sparse bigraph if a bigraph satisfies |E| < n2.

Preliminary 2.1: We define xij such that:

xij =

{
1 if e(i, j) ∈ E,
0 otherwise.

Then for any sparse bigraph with each partition of size
n, the Hungarian algorithm outputs an optimal solution if
and only if there is such a set |{xij}| = n of utility matrix
elements that satisfies:

n∑
i=1

xij = 1, j = 1, · · · , n

and
n∑

j=1

xij = 1, i = 1, · · · , n. (1)

Proof: Necessity follows the constraint definition of the
assignment problem. Sufficiency: |{xij}| = n implies that
there must be at least n edges in the bigraph. We can prove
the sufficiency by discussing two cases: (i.) if |{xij}| = n
and all xij satisfy (1), it indicates each vertex in the bigraph
has unit degree, thus the n edges form a set which is a perfect
matching, which is the optimal solution. (ii.) if |{xij}| > n
and there is a subset that satisfies (1), then the Hungarian
algorithm does not output an optimal solution only because
it halts without finding an augmenting path. However, this
cannot happen since each vertex has at least one augmenting
path in this case.

Two corollaries are given based on the proof of Prelimi-
nary 2.1:

Corollary 2.2: In a sparse bigraph, a Hungarian stage
continues if and only if an augmenting path can be found
connecting a free pairwise agent and task.

Corollary 2.3: In a sparse bigraph, newly introduced
agents and tasks can be incrementally assigned if and only
if one can incrementally find augmenting paths between the
newly introduced agents set and task set.

III. FROM ASSIGNMENT PROBLEM TO MORPHING

Multi-robot morphing involves performing efficient spatial
changes to a network of robots when new available agent-
task pairs are inserted. More formally, morphing is the
global reconfiguration of a multi-robot network topology, and
ideally this reconfiguration is a seamless transition from the
prior task assignment to a new task assignment that will
redeploying the fewest agents and/or using the shortest time
to complete such a transition.

Algorithm II.1 The Hungarian Algorithm
Input:

A valid n×n assignment matrix represented as the equiv-
alent complete weighted bipartite graph G = (X,Y,E),
where |X| = |Y | = n.

Output:
A perfect matching, M .

1: Generate an initial labelling l and matching M in Ge.
2: If M perfect, terminate algorithm. Otherwise, randomly

pick an exposed vertex u ∈ X . Set S = {u}, T = ∅.
3: If N(S) = T , update labels:
δ = minx∈S,y∈Y−T {l(x) + l(y)− w(x, y)}

l′(v) =

 l(v)− δ if v ∈ S
l(v) + δ if v ∈ T
l(v) otherwise

4: If N(S) 6= T , pick y ∈ N(S)− T .
(a) If y exposed, u → y is augmenting path. Augment
M and go to step 2.
(b) If y matched, say to z, extend Hungarian tree:
S = S

⋃
{z}, T = T

⋃
{y}, and go to step 3.

Notes:
• Equality graph Ge = {e(x, y) : l(x) + l(y) = w(x, y);
• Neighbor N(u) of vertex u ∈ X:

N(u) = {v : e(u, v) ∈ Ge}.

Fig 1 illustrates how the Hungarian bigraph for morphing
results in a routing problem. In Fig 1(a), a new agent-task
pair is introduced to a prior perfect matching: the bold edges
are the previous matched edges, and the node a4 (leftmost
node in top partition) and t4 (rightmost node in bottom
partition) are newly inserted agent and task, respectively.
One more incremental Hungarian stage will obtains a new
assignment solution, as shown in Fig 1(b). Notice that the
augmenting path connecting a4 to t4 is a4 → t1 → a1 →
t2 → a2 → t4. The nodes in each partition are shown as
on a straight line, but when the target positions and robots
are on a 2D plane, the bigraph can be visualized within 3D,
as illustrated in Fig 1(c). (This is merely a visualization,the
matching configuration still holds because the weights on the
edges do not change.) The dashed graph on the top layer,
and projection of the matching (as arrows) to this plane is a
routing solution.

Within the context of the morphing, the 3D model in
Fig 1(c) represents the spatial relationship between the agents
and task locations in the following way: the nodes in bottom
layer represent the task locations, and the nodes in top
layer are the agent assigned or to be assigned. Before the
introduction of new agent-task pairs, the positions of nodes
in top layer and bottom layer are vertically aligned and
are pairwise matched with bold edges, indicating that they
have reached their assigned task locations and executing
respective tasks. When a new agent-task pair is inserted and
connected to the mesh, an addition stage of the Hungarian
algorithm incrementally run will find an augmenting path
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Fig. 1. Morphing

to connect this new agent-task pair, and the matched edges
in the augmenting path provide exactly the global morphing
solution. Take Fig 1 as an example, the augmenting path of
a4 → t1 → a1 → t2 → a2 → t4 means that agent a4 should
move to task location t1, and a1 move go to t2, and a2 to
t4. This is reflected in the planer routing solution of the top
layer in Fig 1(c), as the routing path in red dashed arrow.

Theorem 3.1: So long as the 2D network for routing
problem is connected, there are always morphing paths.

Proof: The graph being connected means that any node
can reach some other node through a routing path. Because
any routing path represents a specific morphing solution, we
can always find at least one morphing paths for any agent-
task pair.

IV. MORPHING CONTROL

We are primarily interested in two properties of the
resultant morphing paths: (1.) The total number of agents to
be reassigned, since usually each agent reassignment is not
costless; (2.) The total time of the morphing, since and we
usually expect to minimize the summed morphing time.

The Hungarian algorithm aims at maximizing the utility,
while a stereotypical routing problem aims at minimizing the
path length; we transform the routing minimization problem
to maximization problem by negating all utility values (the
Euclidean distance) in the input. In addition, when all

Fig. 2. Example topology of networked robots

agents have reached their task locations, to guarantee the
vertical pairwise agent-task assigned (matched) relationship,
we assign the utility of this vertical edge with at least the
maximal utility of its all outgoing edges. Therefore, if we
define utility matrix U :

U =


u11 u12 . . . a1n

u21 u22 . . . a2n

...
...

. . .
...

un1 un2 . . . unn


then uij ≤ 0, and uii ≥ max{uij}. If e(i, j) /∈ E,

then uij = −∞, which read simply as that edge
e(i, j) not existing. The larger the value of uii, the
more likely that edge e(i, i) remain matched when
incrementally run Hungarian stages, and vice versa. Let
diag(U) = diag(u11, u22, ..., unn) denote the diagonal
matrix of U . Then, with scaling parameter λ ∈ [0, 1], we
get a new diagonally scaled utility matrix:

U
′

= U + (λ− 1)diag(U) (2)

=


λu11 u12 . . . a1n

u21 λu22 . . . a2n

...
...

. . .
...

un1 un2 . . . λunn

 (3)

In U
′
, only the diagonal is scaled, i.e.,

diag(U
′
) = λdiag(U). We initialize each uii with

uii = max{uij}, then by tuning λ ∈ [0, 1] , the diagonal
utilities vary as u

′

ii ∈ [uii, 0] correspondingly.
To demonstrate this, we use the example in Fig 2, in

which nodes 0–5 are agents previously assigned which have
reached their respective task locations. Nodes 6 and 6

′
are

a newly introduced agent and task respectively. Fig 3 shows
different morphing paths as a function of λ, and Table I
provides statistics for total path length, number of reallocated
robots, average path edge length and overall morphing time.
To compare the difference between the sparse and dense
graph (bigraph), we also run the experiments on the dense
graph constructed from Fig 2, where each node is connected
to all other nodes. The statistics of routing property testing
for this dense graph is shown in Table II. Both Table I and
Table II are similar except when λ ∈ [0, 0.4], this is because
in dense graph there are edges directly connecting the newly



(a) λ = .1—.4 (b) λ = .7 (c) λ = .8—.9 (d) Insertion of
multiple agent-task
pairs

Fig. 3. Examples of routing results

introduced agent-task pair, thus a shorter alternative path
will be found. The similarities between the sparse graph and
dense graph solutions reflects the fact that edges connecting
nearest neighbors, despite producing a sparse graph, permits
most morphing paths to be captured. We provide the results
from experiments with large scale networks in Section V. In
addition, we are also interested in the condition of simul-
taneously inserting multiple agent-task pairs, as illustrated
in Fig 3(d). Following Corollary 2.3, this can simply be
solved by incrementally running multiple Hungarian stages
via constructing the Hungarian tree rooted at the new inserted
agent set.

TABLE I
ROUTING PROPERTY TESTING WITH SPARSE GRAPH

λ Total Len Realloc # Avg. Len Total time
0–.4 4.8 2 2.4 2.4/v
.5–.6 5.3 3 1.77 1.77/v
.7 6.3 4 1.58 1.58/v
.8–.9 7.2 5 1.44 1.44/v

1 8.3 6 1.38 1.38/v

TABLE II
ROUTING PROPERTY TESTING WITH DENSE GRAPH

λ Total Len Realloc # Avg. Len Total time
0–.3 4.3 1 4.3 4.3/v
.4 4.8 2 2.4 2.4/v
.5–.6 5.3 3 1.77 1.77/v
.7 6.3 4 1.58 1.58/v
.8–.9 7.2 5 1.44 1.44/v

1 8.3 6 1.38 1.38/v

V. EXPERIMENTS AND RESULTS

A. Large Scale Network Testing

The algorithm was tested in Matlab. We constructed
sparse graphs consisting of hundreds of vertices in order
to simulated a large scale networked multi-robot system. In
the graph, vertices represent the stationary working robots,
and edges represent traversability links. The vertices were
randomly generated, each connected with its k nearest neigh-
bors (i.e., the degree of each vertex is k), where k can be
controlled with specific input.
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Fig. 4. Morphing properties as a function of weighting parameter λ

We first investigated the influence of degree on the quality
of the morphing paths. We evaluated the effect of degree
by using fixed number of vertices in fixed locations, and
generating data after gradually reducing the degree by lim-
iting the number of nearest neighbors. Fig 5 is an example
illustrating the morphing paths in graphs of different degrees:
Fig 5(a)—5(d) have the same size and same tuning parameter
λ, but the degrees are controlled to be ∼ 50, ∼ 30, ∼ 10,
and ∼ 5, respectively. The newly inserted agent-task pair
is located in the bottom left corner (agent) and upper right
corner (task). The morphing paths have few changes for
graphs with degrees above 10, whereas there is an obvious
change happens when the degree is 5. We ran many different
experiments with graph size from tens of vertices to hundreds
of vertices, and found a trend that: despite the size, the graphs
with degree of above ∼ 10 generate very similar morphing
paths, but the consistence is not guaranteed under the degree
of ∼ 7. This characteristic suggests a good fit in practical
applications, involving communication with few neighboring
robots.

Next we examined the relationship between the properties
of morphing paths and tuning parameter λ. Fig 6 shows
different paths when λ decreases from 1 to 0.1, which
gradually “straightens” the paths with shorter total lengths.
We collected statistics from ten sets of experiments, each



0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Large scale multi−robot network topology
Size: 300   Degree: 50   λ: 0.7

x

y

(a)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Large scale multi−robot network topology
Size: 300   Degree: 30   λ: 0.7

x

y

(b)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Large scale multi−robot network topology
Size: 300   Degree: 10   λ: 0.7

x

y

(c)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Large scale multi−robot network topology
Size: 300   Degree: 5   λ: 0.7

x

y

(d)

Fig. 5. Morphing paths in large scale multi-robot topologies of varying degree.
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Fig. 6. Morphing paths in large scale multi-robot topologies of varying λ.
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Fig. 7. Multiple optimal morphing paths

of which has a size of 300 and a degree of 10, and the
mean of the results are plotted in Fig 4. We are interested
in three properties: the number of robots reallocated (blue
bars), the overall morphing time (green bars) and the average
distance each robot moves, i.e., average edge length in the
morphing path (maroon bars). From Fig 4 we observe that:
as λ increases, the number of reallocated robots increases,
whereas both the overall morphing time and average moving
distance decrease and appear to flatten out. Moreover, the
rates of either the increment or decrement are bigger when
λ < 0.5 than those in the other part. This implies that the
tuning step should be smaller when λ is close to 0.

We also tested the cases when multiple agent-task pairs

are introduced simultaneously. Fig 7 is an example showing
two agent-task pairs that are inserted at the same time.
The agents (robots) are located in the bottom corners and
tasks are assigned in upper corners. Fig 7(a) and Fig 7(b)
describe two separate paths when only one agent-task pair
is inserted, and Fig 7(c) is the case when the two pairs are
added simultaneously. The new paths in Fig 7(c) have better
qualities than the cases of single pairs, and this is because
the morphing solutions are generated from the Hungarian
algorithm, which always finds the optimal solutions globally.



B. Analysis

In this paper we consider a routing problem via a task
allocation treatment, and we believe it has the following
advantages compared to other routing algorithms which may
also be utilized for the morphing problem:

1) Low computational complexity: each Hungarian stage
requires O(n2) for dense bigraph [2], and for a sparse
bigraph with edge degree of k, the computational
complexity is bounded by O(kn). When the problem
arises from a network of robots communicating with
nearby neighbors, we expect that this latter bound will
be applicable.

2) Incremental paradigm: the assignment results are al-
ways saved for future usage, thus multiple and redun-
dant agents and/or tasks can be morphed with low
computational complexity. Moreover, because of the
special aligned matching relation, any vertical matched
pair can be easily removed from the 3D topology by
disconnecting incoming and outgoing edges.

3) Tunable paths with easy scaling method: The algorithm
does not modify any information of the 2D network,
but achieves different featured reassignment solutions
via scaling a special “virtual” edge for each node via λ,
which can be easily computed.

VI. CONCLUSION

In this paper we propose a solution to the morphing
problem in a multi-robot system. Our experience suggests
that this same model can be used in route planning for
wirelessly networked robot systems. Our approach transfers
the Hungarian algorithm, which is designed to solve optimal
assignment problem, to a path routing problem, which is im-
plemented in a two-layered 3D bipartite graph. This method
solves an incremental multi-robot task assignment problem
where the tasks represent new destination locations for
newly deployed robots. The algorithm globally reallocates
the assignment when new agent-task pairs are inserted, with
different required target optimizations.
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