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Abstract— There are several practical reasons to endow a
mobile robot with a tether, but doing so adds considerable
complexity to the problem of moving the robot. The feasibility
of a particular motion in such systems depends on topological
constraints imposed by the interplay of the robot’s tether and its
environment. The physical properties of the tether may also rule
out configurations that would be possible otherwise. Little work
has addressed these latter constraints, despite the considerable
interest in motion planning for tethered robots recently. We
examine the problem of planning motions of a planar robot
connected via a cable of limited length to a fixed point in R2

when the tether has a constraint on its curvature, which adds
appreciably to the realism of the cable model over existing
work. We incorporate Dubins’s theory of curves with work
on planning with topological constraints to concisely represent
the configuration space manifold, leading to an atlas of the
manifold consisting of locally continuous charts that represent
the cable’s curvature limits conveniently. Any configuration of
the tether and the robot is described in our representation with
two elements: (1) a discrete structure that characterizes the
cable’s position and (2) an element within a single continuous
chart. We provide an algorithm that explores the necessary
parts of this atlas on-the-fly to locate paths efficiently.

I. INTRODUCTION

The many practical reasons to tether a mobile robot
include: the ability to provide power (electrical, pneumatic,
hydraulic) from off-board sources, reliable high-speed com-
munication, and security should the robot need to be physi-
cally retrieved after a failure. Cables have also been used for
manipulation by helping robots collect [1], [2] or separate
objects [3]. Motivated partly by its practical importance,
recent research has begun exploring motion planning for
tethered robots [4]–[8]. This body of work considers a
simplified model of the tether (e.g., assuming an infinitely
thin, frictionless, or taut cable) to build and search over a
representation of the configuration space (c-space). Within
this vein, we also make several modeling simplifications, but
this paper represents a step toward a more realistic model:
we take into consideration the potential for limited flexibility,
or stiffness, in the cable with a parameterized curvature
constraint on the cable.

Even the simplest case involving a frictionless, taut and
unconstrained flexible cable imposes two constraints on the
motion of the robot: (1) the radius of the robot’s movement
is limited by the cable’s length (Fig. 1a), and (2) topological
constraints are imposed by the cable and the obstacles in
the environment (Fig. 1b). For a stiff cable, an additional
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(c) The blue dotted circle represents the cable’s curvature
constraint. Owing to the stiffness of the cable, it does not
bend around sharp angles. The gray arrow shows a planned
motion for the robot. The figure on the left depicts an invalid
configuration for the cable after execution of the motion. The
valid configuration is shown on the right.

Fig. 1: The three constraints imposed on the motion of a robot that are
caused by a stiff cable.

third constraint is imposed, not to the robot’s motions, but
to the feasible cable configurations: (3) the cable cannot be
bent around sharp angles (Fig. 1c). One naı̈ve approach is to
consider a discretization of the cable which is then forced to
abide by the curvature constraint. This technique, however,
leads to a high dimensional space and requires computation
that will be costly if it is not to be excessively imprecise.

We take advantage of two complementary ideas to tackle
this problem. We generalize the decomposition method pro-
posed in our earlier work [8], which separates topological
regularities from the continuous aspects of the c-space.
Then we employ Dubins’s theory of optimal trajectories
under curvature constraints [9] to exclude infeasible cable
configurations from the robot-cable c-space. We build a
concise representation of this manifold, enabling efficient and
complete search for paths. In Section IV, we present an algo-
rithm that explores the c-space while searching it, computing
parts of the manifold as and when they are needed. This form
of on-line search and exploration minimizes the memory
requirements of the method. We also demonstrate that use of
parameterized curvature makes the method a general enough
technique to solve several related problems.

II. RELATED WORK

Two distinct areas of motion planning research are closely
related: planning for tethered mobile robots, and nonholo-



nomic motion planning. It is important to note that the
nonholonomic constraint in this problem is not imposed by
the robot’s mechanics but reflects, instead, the feasible poses
of the cable. The robot is treated as controllable in its degrees
of freedom (x, y, and θ), but the cable must not be bent
beyond a certain limit once anchored.

The standard approach for planning motions of tethered
robots is to create a graph approximation of the configuration
space that is then searched to find some solution among paths
in the same homotopy class. Xavier [10] first utilized the
visibility graph to trace back the cable and store changes in
the visibility of the vertices in the environment. He constructs
a path from the collected vertices and modifies it to its
shortest equivalent in the same homotopy class. Grigoriev
and Slissenko [11] and Narayanan et al. [12] addressed the
problem by representing paths in a given homotopy class by
defining an alphabet used to describe ray crossing events.
Determining whether two paths are homotopy equivalent
then requires comparison of their associated strings (the
latter paper also addresses homological equivalence). Bhat-
taharya et al. [4] employ the Cauchy Integral Theorem in 2D
space to define homotopy classes of trajectories. Influenced
by the work of Igarashi and Stilman [5], we introduced a
technique to decompose the c-space into cells [8]. The cells
are then used to create an atlas whose structure is stored
in an accompanying graph, which factors out the discrete
properties of the c-space from those that are continuous.

There has been considerable work on the general topic
of nonholonomic motion planning. Dubins [9] proved that
any optimal path in an obstacle-free unbounded environ-
ment consists of 3 segments which are either straight line
segments or circle sectors. Jacobs and Canny [13] provided
an algorithm that finds a δ-robust approximate shortest path
by using a plane sweep technique along with quadtrees.
Their method describes a graph that divides the c-space into
simple trajectories made up of subpaths that pass between the
points on the boundaries of the obstacles. Agarwal et al. [14]
extended Dubins’s theory to deal with environments with
so-called moderate obstacles. By improving on Jacobs and
Canny’s work, the paper provided an algorithm that builds
a graph of straight lines and circles. This graph was then
searched to find an optimal path. The total time of this
method is O(n2 log(n)), where n is the total number of
edges. Their later work [15] took a similar approach to find
the shortest path in an obstacle free environment but with
polygonal boundaries with n edges in time O(n2 log(n)).
There are also several works addressing the problem from a
control perspective (see [16], [17] and the references therein.)

Unlike prior work, we consider both curvature and topo-
logical constraints while modeling the robot-cable configu-
rations. We believe the method introduced herein describes
the robot-cable configuration space precisely and elegantly,
capturing the necessary constraints before the search phase.

III. THE PRELIMINARIES

A. Curvature Constraint and Stiff Cables

Definition 1. Nonholonomic Constraint: If r is the radius

vector of an object in R2, a constraint f of the form
f(r, ṙ, t) = 0 is nonholonomic if it cannot be expressed as
f(r, t) = 0 [18].

Definition 2. Average Curvature: For a path P : I → R2,
the Average Curvature is

κ(s) =
d2P (s)

ds2
,∀s ∈ I, (1)

and therefore is a nonholonomic condition.

Definition 3. Curvature Constraint: If there exists an upper-
bound κ0 ∈ [0,∞) on the average curvature of a path, we
say the path has a curvature constraint of κ0. That is

κ(s) ≤ κ0 =
1

r0
,∀s ∈ I, (2)

where r0 is the radius of the smallest circle that the path
can turn around.

Since a stiff cable cannot be bent beyond a certain limit
defined by some curvature constraint, κ0, any robot-cable
configuration in which the cable is bent with a radius
less than r0 is infeasible and is excluded from c-space
(see Fig. 1c). Notice that equation 2 provides a general
model since a cable without curvature constraint can be
parametrized as limr0→0 κ0 =∞.

B. Problem Statement

Definition 4. Pose: A pose, Pk, is a pair Pk = (pk, θk)
where pk ∈ R2 is a point and θk ∈ S1 representing
the location and orientation, respectively. Alternatively, the
orientation can be represented by a velocity vector vk =

(vkx, vky) ∈ R2 of unit length where θk = arctan
vky
vkx

.

This work considers the problem of planning from an
initial pose, Pi, to a goal pose, Pg , for an oriented point
robot1 situated in R2 among polygonal obstacles whose
vertices are known to the robot. The robot is tethered to
a fixed base with pose Pbase, via a cable with curvature
constraint κ0 = 1/r0. It is assumed that the cable has a
maximum length l and is always retracted to its tightest form.
By tight we mean there is no perturbation that can be applied
to the path such that it would make the length of the given
path shorter without violating either the length or curvature
constraints.

C. Shortest Curvature Constrained Paths

Let M be a 1-connected unbounded manifold in R2 and τ
be a path contained in M . Following the terminology in [14],
a C-segment of τ is a non-empty maximal subpath of τ that
has the form of a circular arc with radius r0; an L-segment
is a non-empty maximal subpath of τ that has the form of a
straight line segment. We say, for example, a path is of type
CLC if it is made up of only three segments of types C, L,
and C in this order.

Definition 5. Shortest Curvature Constrained Path: De-
noted by Pa  Pb, a shortest curvature constrained path

1We discuss how to apply the technique developed in this work to a
tethered robot with extent in Section IV-A.



Fig. 2: The two types of Dubins Path. The path on the left is of the type
CLC, and the path on the right is of the type CCC. The three segments are
colored blue, magenta, and yellow, respectively. The arrows at the beginning
and at the end of the paths depict the initial and goal poses, Pi and Pg ,
respectively.

(a) (b)

Fig. 3: In the case of a symmetry between CL(i) and CL(g) with CR(i)
and CR(g) finding a shortest curvature constraint path makes it possible
to find the second shortest curvature constraint path by doing a reflection.
Figures 3a and 3b show the two optimal ways of reaching the goal pose
when the path begins with turning left first and right first, respectively.
Different colors in the paths illustrate their different segments.

is a minimal length path in M from initial pose Pa to goal
pose Pb, with curvature constraint κ0.

Theorem 1. Dubins’s Theorem [9]: Every shortest curva-
ture constrained path in M is necessarily a path of type CLC
or CCC or a substring of either of these (see Fig. 2).

Let Px = (px, vx) be a pose in the environment. Let Lx

be the line parallel to vx which passes through px. We use
the notation CL(x) and CR(x) for the circles to the left and
right (according to vx) of Lx which are tangent to Lx at px.
We will call CL(x) and CR(x) the tangent circles to Px.

Let Pi and Pg be the initial pose and the goal pose re-
spectively. It is important to notice that the shortest curvature
constrained path in M , as defined in Definition 5, is not
unique in a set of special configurations of Pi and Pg . When
pg is on Li, there is a symmetry between CL(i) and CL(g)
with CR(i) and CR(g). Therefore, if there is one shortest
curvature constrained path τ = Pi  Pg , a second path can
be created by reflecting τ about Li (see Fig. 3).

Now let M be an unbounded2 subspace of R2 with
polygonal obstacles and τ be a curvature constrained path
in M . We have C- and L-segments defined as before, but
now introduce an O-segment of τ as a maximal segment
of τ that lies on the boundary of an obstacle. A C-segment
is called terminal if it is the first or last segment of a path.

Lemma 1. Non-terminal C-segment [14]: A non-terminal

2If M is bounded then we require that the boundary of the environment
be define via boundary obstacles.

C-segment of a locally shortest path3 is either tangent to at
least one obstacle or it is adjacent (on the path) to a terminal
C-segment.

Corollary 1. If any subpath of a locally shortest path
contains O-segments, they are either at the beginning or at
the end of the subpath.

Proof. Follows from Lemma 1.

Lemma 2. Dubins Subpaths [13], [14], [19]: Any subpath
of a locally shortest curvature constrained path is itself a
shortest curvature constrained path if the subpath does not
touch any obstacle.

D. C-Space Skeleton

Throughout this work, we use the term “decomposition”
to emphasize the difference between our approach and that
of “discretization.” Our decomposition is a representation
of c-space as a graph whose vertices represent the largest
subspaces of c-space in which the solution to the motion
planning problem is calculated in O(1). Whereas, a dis-
cretization method provides an approximation of c-space.
A cable induces structure reflected in the c-space manifold
which can be exploited in an elegant way: an appropriate
decomposition of c-space yields a concise discrete topo-
logical skeleton and a set of continuous subspaces. This
observation was made in our earlier work [8] where the cable
in each subspace is always in the form of a straight line.
Here, we construct solutions from simpler subpaths found
in subspaces but must now demand that the cable be in
the form a shortest path in each subspace as defined by
Definition 5. This means the same data structures and path
finding algorithms function as before, but with modifications
to adapt the method for finding shortest curvature constrained
paths. Once this method has been determined, we define the
appropriate cell decomposition, as is discussed next.

E. Decomposition Method and Dubins Cells

Since the cable is always taut, it lies on a path from Pbase
to Pg , where each of its segment is a locally shortest path.

Corollary 2. Taut Cable Decomposition: Every taut config-
uration of a curvature-bounded cable that lies on the path τc
can be decomposed into subpaths, each of which is a Dubins
Path.

Proof. If the cable does not touch any obstacle along its path,
τc from Pbase to Pg , then the locally shortest path is also the
globally shortest path, and hence following Theorem 1 it is
a Dubins path. In this proof, we employ regular expression
notation to describe the string representing the C-, L-, and O-
segments in a path. Let [C,L]∗ be a path composed of zero
or more C- or L-segments. Moreover, let O[C,L]∗ denote a
path beginning with an O-segment and followed by a path of
type [C,L]∗. [O[C,L]∗]+ denotes one or more consecutive
paths of type O[C,L]∗. Finally, C[O[C,L]∗]+C is a path

3A path is locally shortest if any perturbation in the path is physically
impossible or lengthens the path.



beginning with a C-segment, followed by a path of type
[O[C,L]∗]+, and ending in a C-segment. By Corollary 1,
if the cable does touch obstacles, then τc is always of
type C[O[C,L]∗]+C since the O-segments only occur at
the beginning or at the end of each subpath. Then each
such subpath is in the form of O[C,L]∗. If [C,L]∗ is an
empty string, then it represents a path of zero length which
is trivially a shortest curvature constrained path. Otherwise,
since it is a subpath of a locally shortest path and it does not
touch any obstacle, by Lemma 2, it is a shortest curvature
constrained path. Thus, breaking a locally shortest path into
subpaths at the points where obstacles are touched will yield
a set of subpaths such that each is a shortest curvature
constrained path.

This decomposition corollary is the basis for constructing
a skeleton of the c-space. Since the environment contains
semi-algebraic obstacles, it can be partitioned into a semi-
algebraic set Mobs consisting of all the obstacles and the free
space Mfree that is the complement of Mobs [11].

Definition 6. Dubins Cell: Given a base pose Pb, a Du-
bins Cell is a chart, (U,ϕ), where U ⊆Mfree; the homeo-
morphism ϕ is ϕ(x, y) = (x, y); and every point inside U
can be reached from Pb via a shortest curvature constrained
path.

A Dubins Cell can be represented with the following four
attributes (see Fig. 4):
• Base Pose: Pb = (pb, vb), where pb is the location of the

base and vb is the orientation of the cable at pb.
• Parent Cell: a reference or pointer to the cell describing
the robot-cable configuration directly before occurrence of
the O-segment.
• Cable Length: L, determines the maximum allowed
distance between the robot and the base pose. The exact
value is L = Parent.L− Length(Parent.Pb  Pb)

• Stitch Line: this is the line where one chart is connected
to another is the interface between them. Formally, it is
the domain for the transition map, ϕ, between the two
charts. Once the robot crosses this line, a contact is made
or released and the robot will be transfered from a chart
(cell) to the other.
Fig. 5 shows a single Dubins Cell in an environment

without any obstacles. Notice how the boundary of farthest
reachable points take the shape of an Archimedean spiral,
which arises from the curvature constraint. To understand
why the boundary is this shape, imagine the cable is anchored
with pose P0 = (p0, v0) where p0 = [r0, 0] and v0 = [0, 1]. If
the robot moves along the boundary of maximal curvature for
θ radians, then (r0θ) of the cable’s length will be consumed.
Therefore the polar equation r = l − r0θ will describe the
farthest boundary of the cell. The general equation can easily
be obtained.

F. The Boundaries of a Cell

The curvature constraint means that the boundaries of a
cell are dependent on the base pose and goal pose. This

Pbase

Pb

L

Length(Parent.Pb↝ Pb)

Fig. 4: The defining attributes of a Dubins Cell. The blue dotted circles are
the boundaries of maximum curvature. The green arrows are the orientations
at the base poses of each cell.

subsection gives a better understanding of the boundaries.
Let cl(x) and cr(x) be the centers of CL(x) and CR(x)

respectively, and let d(px, py) denote the Euclidean distance
in R2 between the points px and py . There are four possible
conditions regarding the Euclidean distance between the
centers of the tangent circles of Pi and Pg .

1) d(cl(i), cl(g)) ≥ 4 and d(cr(i), cr(g)) ≥ 4.
2) d(cl(i), cl(g)) < 4 and d(cr(i), cr(g)) ≥ 4.
3) d(cl(i), cl(g)) ≥ 4 and d(cr(i), cr(g)) < 4.
4) d(cl(i), cl(g)) < 4 and d(cr(i), cr(g)) < 4.
Notice that condition 2 and condition 3 give the same

planar configuration via reflection. Also, condition 4 raises
three possible scenarios [20]:

4.1) Shortest curvature constrained path from Pi to Pg is a single
C-segment with length less than πr0, or the concatenation
of two C-segments with a total length less than πr0.

4.2) The four tangent circles enclose a region Ω. The boundary of
Ω is concatenation of six circles with radius r0 (see Fig. 6).

4.3) Shortest curvature constrained path contains either a C-
segment with length at least πr0, or an L-segment with
length at least 4r0.

We adopt the following four proximity conditions from
Ayala and Hyam in [20].
Proximity Condition A. If Pi and Pg satisfy condition 1.
Proximity Condition B. If Pi and Pg satisfy condition 2 or 3.
Proximity Condition C. If Pi and Pg satisfy condition 4.1 or 4.2.
Proximity Condition D. If Pi and Pg satisfy condition 4.3.

A path τ : [0, 1]→ R2 is not in Ω if ∃s ∈ [0, 1] such that
τ(s) /∈ Ω. Therefore, Ω divides all paths from Pi to Pg into
two disjoint sets of paths: ∆(Ω) the set of all paths in Ω,
and ∆′(Ω) the set of all paths not in Ω. The importance of

Fig. 5: A single Dubins Cell in an environment without obstacles. The red
dotted circles show boundary of maximal curvature. The magenta spirals
show the boundary of farthest reachable points (without considering a goal
pose). The green arrow shows the orientation of the robot at the base pose.
Cable’s length is 60 units with curvature constraint κ0 = 1/20.



(a) There is no continuous transformation that can convert the
yellow path to the red path that can maintain the curvature
constraint throughout the transformation. The boundaries of
maximum curvature (dotted blue) and the yellow path form
a bight.

(b) Any path that leaves the Ω region is not homotopic to
the paths that are entirely inside the Ω region.

Fig. 6: The Ω region divides the set of all path going from Pi to Pg into
two disjoint sets. One contains all the paths that are completely contained
within this region and the other set contains the rest of the paths.

the existence of the Ω region is that the paths in ∆(Ω) and
∆′(Ω) belong to different homotopy classes [20] and hence
they should be uniquely identified. To better understand this
see Fig. 6. The yellow path in 6a is of type CCC. This
path cannot be transformed into the red path as we have
d(cl(i), cl(g)) < 4 and d(cr(i), cr(g)) < 4. Therefore it is
not possible to push the middle C-segment of the blue path
through CL(i) and CL(g); in other words, the blue path and
CL(i) and CL(g) form a bight.

The next subsection explains how one may uniquely
identify all the possible conflagrations of a robot and its taut
curvature-bounded cable.

IV. THE PLANNING ALGORITHM

Let Li be the line tangent to pose Pi = (pi, vi), i.e., it
passes through pi and is parallel to vi. Also, let CL(i) and
CR(i) be the circles tangent to Li at point pi on the left and
on the right side of Li, respectively, when looking in the
direction vi from pi.

Algorithm 1 details how to find a Dubins path from Pi to
Pg . Line 4 produces four tangents for each pair of circles,
of which only one is compatible with direction of both vi
and vg (see Fig 7). Line 5 will remove the tangents that are
incompatible, yielding in only one Dubins path. In line 9,
the length of each path is calculated and is then compared
to the current minimum in line 10. Finding the length of a
Dubins path is done by accumulating the length of the L-
segment and r0 × θ for C-segment(s) (arcs), where θ is the
angle traversed on C-segment in radians.

Recursive Algorithm 2 solves the problem of planning
from an initial pose, Pi, to a goal pose, Pg , for a planar robot,

Algorithm 1: Find Shortest Curvature Constrained Path
1: FindDubinsPath(Pa, Pb)
2: Find CL(a), CR(a), CL(b), and CR(b)
3: minPath = ∅
4: t =

{
all common tangents between

(
Ci(a), Cj(b)

)
; i, j ∈ {L,R}

}
5: Remove incompatible tangents from t
6: for all tk ∈ t do
7: pa,k = point at which tk touches Ci(a) for i = R or L
8: pk,b = point at which tk touches Ci(b) for i = R or L
9: d = Length

(
arc(pa, pa,k) + (pa,k − pk,b) + arc(pk,b, pb)

)
10: if d < Length(minPath) then
11: minPath = arc(pa, pa,k) + (pa,k − pk,b) + arc(pk,b, pb)
12: end if
13: end for
14: return minPath

whose pose is denoted Pr, situated in R2 in the presence
of polygonal obstacles. Information regarding the cable’s
maximum length and its base pose is encoded within cell
passed as an input argument. The algorithm is initiated by
passing the following arguments: current cell in which the
robot is situated, Pi, Pg , and an empty path. The condition
in Line 4, checks whether there exists a shortest curvature
constrained path which is completely contained in cell.
Finding the shortest curvature constrained path is achieved
by Algorithm 1. The condition on line 4 ensures that the
robot will not leave cell. If so, a robot path is created
and is appended to the end of the path taken up to this
point (see Section V-B). Otherwise the algorithm proceeds by
searching down the tree in a depth-first fashion and storing
the minimum length path that is found (or ∅ if no such
path exists). Any graph search method can be used in place
of the Depth-First Search. The next step is to look up the
tree (ancestors) for a solution and compare the result of this
search to the minimum length path found in child nodes. The
root cell of the atlas does not have a parent (the value being
set to ∅). Line 7 is a critical part of Algorithm 2, allowing
the method to search for child cells and expand the tree only
as needed. Algorithm 3 provides details.

A. A Note on a Tethered Robot with Extent

Throughout this work, we have considered the motion
planning problem for a point robot. This eases understanding
of the representation introduced in this work, but it is
possible to plan motions for robots with extent using the
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Fig. 7: The blue dotted circles show the boundaries of maximum curvature.
The red lines show the tangents from initial circles to goal circles. The
green arrows show the orientation of the initial and goal poses.



Algorithm 2: The Shortest Path Algorithm
1: FindPath(cell, Pi, Pg , path)
2: mark cell as visited
3: minPath = ∅
4: if cell.Pb  Pg is completely within cell then
5: minPath = path.Append(cell.Pb  Pg)
6: else
7: children = GetChildCells(cell)
8: for all c ∈ children do
9: τ =

path.Append(Find robot’s path inside cell to c.StitchLine)
10: τ = FindPath(c, robot.Pr, Pg , temp)
11: if τ is shorter than minPath then
12: minPath = τ
13: end if
14: end for
15: if Parent 6= ∅ and is not yet visited then
16: τ = path.Append(Find robot’s path inside cell to cell.Pb)
17: τ = FindPath(Parent, cell.Pb, Pg , temp)
18: if τ is shorter than minPath then
19: minPath = τ
20: end if
21: end if
22: end if
23: return minPath

Algorithm 3: Algorithm for Getting Child Cells
1: GetChildCells(cell)
2: children = ∅
3: C = {CL(cell.Pb), CR(cell.Pb)}
4: keep valid circles of C
5: for all c ∈ C do
6: for all po ∈ Vertices such that po is inside cell do
7: L = { tangents to c passing from po}
8: remove incompatible tangents from L
9: for all l ∈ L do

10: vo = direction of l
11: Po = Pose(po, vo)
12: child = cell with Parent = cell and Pb = Po

13: children = children ∪ {child}
14: end for
15: end for
16: end for
17: return children

representation too. The standard technique is to reduce the
problem of a robot with extent to a point robot using
Minkowski sums [21]. In the context of planning for a
tethered robot, the map produced by such procedures cannot
be applied to the cable as the cable always makes contact
with the actual vertices of the obstacles (as opposed to the
vertices in the reduced problem). To overcome this, one plans
the path for the robot using the map of reduced problem, but
the length of the cable and the boundaries of the cells should
be calculated using the actual location of the vertices of the
obstacles.

V. DISCUSSION OF THE METHOD

To demonstrate the method and evaluate its performance,
we developed a simulation environment and implemented
the algorithm in MATLAB (see Figs. 8–17). In the following
sections provide some observations.
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Fig. 8: An example a final configuration of the robot and its cable after exe-
cution of the shortest path plan. (r0 = 20 cm, κ0 = 5 m−1, cable = 5 m).

Fig. 9: The performance of the curvature parameter. As demonstrated in
this figure and the four that follow, increasing the radius of curvature
requires the robot to take longer paths to reach its destination. Note
the comparatively sharp angle in the cable’s configuration in this figure.
(r0 u 0, κ0 =∞, cable = 5 m).

A. Memory Consumption

The method uses few graph vertices in memory during
the search because it benefits from on-line exploration of
the c-space. The atlas uses a data structure for all of the
Dubins Cells stored in the graph and doing so requires only
a constant amount of memory regardless of the cell’s volume.
These memory saving aspects of the approach is discussed
in greater detail in our previous paper [8].

B. Discussion of the Algorithm

The main algorithm presented in this work is a graph
search problem which expands the unexplored parts of the
c-space only as needed. In this problem, the combinatorial
nature of the homotopy classes induced by cable configura-
tions can result in a space which is exponential in the number
of vertices.

However, the basic function calls in Algorithm 2 are all
polynomial in the number of vertices in the environment, n.
Algorithm 1, for finding a Dubins Path is a constant time
operation, resulting in O(n) time in line 4. Finding a path
for the robot in line 5 is also computed in O(n) since all
the boundaries of a Dubins Cell are known. The robot is
assumed to be controllable in all three degrees of freedom,
so its path inside a cell is a straight line when not obstructed
by the boundary of maximal curvature or any obstacle.
Otherwise, the path is a line segment tangent to the boundary
followed by a segment supported by the boundary, followed



Fig. 10: Parameterized curvature continued. Note the last portion of the path
is a CCC path. (r0 = 20 cm, κ0 = 5 m−1, cable = 5 m).

Fig. 11: Parameterized curvature cont. (r0 = 50 cm, κ0 = 2m−1, cable =
5 m).

by another tangent from the boundary to the goal point.
Finally, Algorithm 3 returns a set with O(n) elements.

C. Parameterized Curvature Constraint

An advantage of this method is its versatility in modeling
different cable specifications. To demonstrate this capability,
we tested the algorithm with different curvature upper-
bounds. Fig. 9 illustrates a cable without curvature constraint
(i.e., r0 = limx→ 0+). As a result, the cable is able to have
a sharp angle bend around the corner of the obstacle on the
path Pb  Pg . In contrast, Figs. 10–12 r0 show a nonzero
positive values for r0 limiting the freedom with which the
cable may bend. For example, the algorithm is unable to
find any feasible solution the problem in Fig. 12. Note that
increasing the cable length in Fig. 13 leads to a solution from
the initial to goal pose.

VI. CONCLUSION

This paper addresses the problem of planning motions
for tethered robots when the tether has a constraint on
its curvature—an investigation motivated by the fact that
in practice cables have limited flexibility. Since existing
methods ignore this constraint, they may plan motions that
pass through unreachable configurations. Even in environ-
ments with few obstacles, the topology of the configuration
space for a robot with a curvature constrained tether is
complex; though we know of no existing implementations,
naı̈ve approaches to this problem that are sound and complete
require extremely costly computations.

Fig. 12: Parameterized curvature cont. In this figure there is no solution
to the problem because the cable has insufficient length. (r0 = 1 m,
κ0 = 1 m−1, cable = 5 m).

Fig. 13: Parameterized curvature cont. In this instance we have tested
the problem in Fig. 12 with a longer cable and the solution is a CCC
path.(r0 = 1 m,κ0 = 1, cable = 10 m).

In tackling this problem, we found it useful to combine
ideas from two distinct areas of motion planning research,
planning for tethered mobile robots and nonholonomic mo-
tion planning. We generalized the decomposition method
proposed in our earlier work [8], to separate topological
regularities from the continuous aspects of the c-space by
representing it with an atlas and its accompanying graph.
We also employ Dubins’s theory [9] to exclude infeasible
cable configurations from the robot-cable c-space. This paper
presents an algorithm to explore the c-space lazily while
searching it. Our method benefits from the on-line explo-
ration to minimize the memory requirements. Finally, we
note that the use of the parameterized curvature constraint,
makes this method suitable for solution of several other
related problems.
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