
Covering space with simple robots: from chains to random trees
Asish Ghoshal and Dylan A. Shell

Abstract— Inspired by the Rapidly-exploring random tree
data-structure and algorithm for path planning, we introduce
an approach for spanning physical space with a group of
simple mobile robots. Emphasizing minimalism and using
only InfraRed and contact sensors for communication, our
position unaware robots physically embody elements of the tree.
Although robots are fundamentally constrained in the spatial
operations they may perform, we show that the approach —
implemented on physical robots— remains consistent with the
original data-structure idea. In particular, we show that a
generalized form of Voronoi bias is present in the construction
of the tree, and that such trees have an approximate space-filling
property. We present an analysis of the physical system via sets
of coupled stochastic equations: the first being the rate-equation
for the transitions made by the robot controllers, and the second
to capture the spatial process describing tree formation. We are
able to provide an understanding of the control parameters in
terms of a process mixing-time and show the dependence of
the Voronoi bias on an interference parameter which grows as
O(
√

N).
I. INTRODUCTION

This paper considers the problem of having a group of
simple mobile robots span a physical space. We describe
an approach that is useful for simple robots, equipped
only with limited sensing and short-range communication,
in circumstances requiring systematic search or coverage
of a space. Several researchers, starting with [1], but also
[2] and [3], demonstrated algorithms for forming chains of
robots. In these cases, a subset of the available robots move
to locations that serve to guide peers, or maintain shared
information, allowing the group to collectively overcome
individual sensing limitations and improve performance, e.g.,
in foraging, transport or delivery tasks.

We show how mobile robots can form an incremental
tree by following a process analogous to a well known
data-structure, the Rapidly-exploring random tree (RRT) [4].
In fact, “analogous” is too weak a word. The robots ac-
tually implement the tree creation algorithm, but they do
in an unconventional way: information usually stored in
programmatic variables is encoded in the robot’s poses. This
falls within the family of work on reducing, externalizing
and redistributing information required for performing tasks,
cf. [5, 1, 6]. In this paper, the robots store information in
space by “being there.”

Apart from the fact that trees generalize chains, this
work was motivated by the particular strengths of the RRT:
its ability to rapidly explore a configuration space through
its bias towards unexplored regions, and its space filling
property in the limit of many samples. These properties are
desirable for groups of simple robots attempting to span a
physical space, and we show that versions of these properties
carry over to our implementation. For example, Voronoi
bias, which causes the tree to grow rapidly towards larger
unexplored regions, is preserved under conditions on the
density of robots.

II. RELATED WORK

The RRT was adopted because of the attractive properties
of the process that produces the tree (e.g., the ease with
which the underlying operations can be translated into phys-
ical actions) and properties of the tree itself. As we have
interpretations and treatments of some of those properties,
we highlight important theoretical models and analysis of
sampling based path planning algorithms here:
• Lamiraux and Laumond [7] were the first to study the

probabilistic convergence of random sampling based plan-
ners using the theory of Markov chains and diffusion
processes to analyze the RPP algorithm, concluding that
the probability of failing to find a valid path when one
exists decreases exponentially with the number of sam-
ples. Similar analysis was performed for RRTs [8], and,
hence, its probabilistic completeness. Also, recently, non-
optimality of RRT’s paths was characterized [9].
• Kuffner and LaValle [10] studied RRTs as space-filling

trees. In this paper we build upon our previous work [11]
to define a notion of an (δ ,ε)–space-filling tree and also
formally analyze the Voronoi bias of the RRT. We also
present a model for the expected contact distance for the
points of the tree. Such contact distance distributions are
a useful way to study simple point processes and thus
provide important insights into embeddings of RRTs.

Additionally, we employ the macroscopic rate-equation
model widely used to analyse the performance of the multi-
robot swarms [12, 13, 14]. Important recent work has at-
tempted to extend these models to capture time-delays [15],
and treat spatial properties [16]. Herein, we couple a descrip-
tion of the distribution of controller states with a stochastic
model of the tree and its growth, enabling some spatial
dependency to be captured without resorting to partial dif-
ferential equations.

III. APPROACH

A. The RRT data-structure
Algorithm 1 is the original algorithm for constructing an

RRT for a general configuration space; here qinit is the initial
configuration and G represents the tree.

Algorithm 1 BUILDRRT
Require: qinit, I, ∆q

1: G.init(qinit);
2: for i = 1 to I do
3: qrand ← RANDCONF();
4: qnear ← NEARESTVERTEX(qrand, G);
5: qnew ← NEWCONF(qnear, ∆q);
6: G.add vertex(qnew);
7: G.add edge(qnear,qnew);
8: end for
9: return G

A random configuration, qrand, is chosen in each iteration
which determines the new vertex that will be added to the
graph G. The vertex in the tree, qnear, which is nearest to qrand
is computed. In step 5 of the algorithm a new configuration,
qnew, is computed by selecting an action that moves qnear a
distance, ∆q, in the direction of qrand. In the final step of
each iteration, the vertex qnew and the corresponding edge
(qnew,qnear) is added to the tree. In our implementation,
robots represent both vertices and edges of G, where vertex
and edge robots are identified based on the operations that
they can perform. Fig. 1 shows vertex robots (colored in
blue) and edge robots (colored in grey).Initially, all the robots
except the robot denoting the root of the tree, start out
wandering in the arena.The key difference between the above
algorithm and ours is that we grow the tree asynchronously,
via two operations:
ADDEDGE: a new edge is added to the tree that grows progres-

sively towards qnew.
EXTENDEDGE: robots are added as edge nodes in order to extend

the edge each time until the length of the edge becomes ∆q.
(Abusing notation slightly, we use ∆q∈Z+ to denote the number
of robots on an edge, unlike line 5 above.)

By asynchronous we mean that the steps of the algorithm
are not atomic but span multiple iterations and may happen
in parallel e.g., while a new edge is being added on to the
tree at one point (ADDEDGE operation), another robot might
be extending an incomplete edge (EXTENDEDGE) so long as
they do not interfere with each other. (Analysis below will
model interference directly as a function of robot density.)

1) Initialization: The root of the tree, qinit, is logically
denoted by placing a static robot in the environment. Other
robots, which we call “wandering robots”, perform a random
walk to reach different points within the workspace space.

2) Choosing a random configuration: The random con-
figuration, qrand, is obtained the following way: wandering
robots independently transition (with some probability) to
a “spiralling” state wherein they execute the maneuver
described in the next paragraph. Assuming robots perform
random walks for sufficient time (i.e., the probability of
spontaneously transitioning is small so they randomly walk
for a time comparable to the mixing-time) then the robot
approximates a configuration chosen uniformly at random.

3) Finding the nearest neighbor: The vertex in the tree
nearest to qrand is found by having the robot spiral out until
it bumps into a vertex robot which is already part of the
tree. A spiraling robot may bump into another wandering
robot in which case it resumes a random walk (i.e., qrand is

(a) Nearest neighbor search (b) Successful search (c) Tree joined

Fig. 1: Illustration of a spiralling robot joining the tree by initiating a new
edge. The blue robots depict vertex robots while the grey robots denote
edge robots. The edge length (∆q) is 2.

WANDERING SPIRALLING

TREEALIGN

TRACE

(a) Actual states (b) Simplified states
Fig. 2: Controller states of a robot.

discarded). If either spiraling or wandering robots bump into
an edge robot then the robot begins to trace the tree in an
attempt to complete an incomplete edge, i.e., performing the
EXTENDEDGE operation.

4) The ADDEDGE operation: This operation is initiated
only when a spiraling robot bumps into a fully formed edge
(vertex robot) in which case it is added in place to the tree,
increasing the edge in the direction of the randomly chosen
point from where the robot started spiraling. If a spiraling
robot bumps into an edge robot, it begins tracing the tree
and if it finds a half formed edge then the EXTENDEDGE
operation is initiated. This is shown in Fig. 1.

5) EXTENDEDGE operation: This operation occurs when
wandering or spiraling robots bumps into an incomplete edge
(some edge robot). The robot is added to the tree as an edge
robot by aligning itself with the existing edge in straight
line. While multiple EXTENDEDGE operations need to be
performed to fill out the edge, they make up only a single
“add edge” operation in the original algorithm.

The abstracted controller states of a robot are shown in
Fig. 2(a). The two ways in which a robot can join the tree
becomes clear by looking at the state transitions of a single
robot. To initiate a new edge a wandering robot transitions
to the spiralling state and then to the tree state if possible.
Upon failure to transition to the tree state from the spiralling
state, a robot tries to join the tree by extending incomplete
edges through a series of transitions through the trace and
align states. A wandering robot may also join the tree by
extending incomplete edges.

IV. IMPLEMENTATION
In order to prove the feasibility of the algorithm, we im-

plemented the algorithm in our laboratory using eight iRobot
Create robots, each equipped with an Asus Eee 1005HA
netbook and augmented with an IR LED transmitter capable
of transmitting one byte of information. A paper reflector was
used to disperse the IR radiation with the aim of creating
an IR field around the robot. The experimental arena was
an 3.66m× 5.05m rectangular area with the starting point
located near the center of the top edge of the arena.

The first set of experiments aimed at forming a tree with
all robots starting in wandering state, while the next set
of experiments demonstrated four robots joining a partially
formed tree of three robots (one vertex robot and two edge
robots). Experiments were repeated by varying the parameter
∆q from 1 to 3. We were successfully able to form trees of
seven robots with ∆q set to 3. (Fig. 3 is an example from
such a trial.) This combination proved to be the most efficient
in terms of the time taken for all robots to join the tree.

Fig. 3: A typical trial using 7 iRobot Create robots with ∆q = 3. The logical tree is shown inset. A branch has been formed in the tree, but edges
with robot #2 and robot #7 are not yet complete. Additional robots would need to perform EXTENDEDGE operations for that to occur. This illustrates the
asynchronous growth process involved in forming the RRT.

A set of experiments were run where bumper taps did
away with IR communication messages. A protocol was
devised where different taps viz. short tap, long tap, double
tap, etc. conveyed information. Success was had with ∆q
as 1, but alignment for the EXTENDEDGE operation proved
challenging when ∆q > 1 as communicative bumps slowly
pushed robots out of the tree.

V. ANALYSIS
Motivated by the performance of the physical robot sys-

tem, we developed a mathematical model of our algorithm
in order to understand the parameters that have the most
influence on the properties of the tree. In particular, we were
concerned with the tree growth rate, bias of the tree growth
processes, and the expected quality of the RRT (i.e., space-
filling behavior).
A. Definitions, Simplifications, and Roadmap

The stochastic process that generates the tree is influenced
by the region in which the tree is embedded. We denote
the subset of the two dimensional euclidean plane in which
the tree is embedded by A. A critical factor is the sampling
distribution, ψ(x) : x→ [0,1] for all x ⊆ A, that determines
the probability, Pr [qrand ∈ x], with which the random sam-
ples are chosen from the bounded closed region x. The
sampling distribution determines the Voronoi bias of the
tree; it is desirable for it to be uniform over A so as to
weight the exploration towards larger unexplored regions.
So Pr [qrand ∈ x] = λ2 (x)/λ2 (A), where λ2 (.) is the area of
a region.

A complication arising from the distributed construction
of the data-structure is that multiple operations may proceed
in parallel, without mapingp to a single atomic step in the
original algorithm. Finding the nearest neighbor, computing
the location of the new node, and finally adding the node
to the tree are intermingled. There are several points of
potential failure (e.g., due to interference among robots,
communication failure, etc.) from the time a point is logically
sampled until the new node is added to the tree. To address
this we introduce, and formalize in detail in §V-D, a joining
distribution, which gives the probability of actually adding a
node for each point sampled. As will be shown, this affects
the performance of the system, the Voronoi bias, and the
resulting tree.

Consider the following generalized model: the system
consists of N homogeneous robots, executing identical con-
trollers, in a convex polygonal obstacle free region A. The
robots can be abstracted as points with radius of influence
ρ > 0. Since in our case robots only employ contact sensors,

the radius of influence is the radius of the robots. Our
implementation only considered the case of A being a square,
but the analysis holds for any convex region in the two
dimensional euclidean plane. Convexity is imposed so that
for qrand = x, an edge can be constructed incrementally that
joins qnear to qnew = y∈A, which need not always be possible
for a non-convex region. A non-convex polygonal region
has complex influences on the joining distribution which are
difficult to characterize analytically. We first consider the
case in which the edge length, k ≡ ∆q, is 0 i.e. all robots
are vertex robots. We then extend the model for the more
general case of edge length greater than 0. The RRT step
size is r = 2(k+1)ρ .

The simplified controller with high level behaviors is in
Fig. 2(b). Each circle corresponds to a robot’s state at any
point in time. A wandering robot begins the nearest neighbor
search procedure once it transitions to the spiralling state.
The rate at which those transitions occur is given by system
design parameter fws. We assumed that a spiralling robot
making contact with the tree immediately becomes a node
in the tree, i.e., transitions to the tree state. This rate of
transition is given by fst and is dependent on the size and
structure of the tree, and interference between spiralling and
wandering robots. Since only spiralling robots join the tree it
may be tempting to set fws as high as possible to maximize
rate at which the tree grows. Doing so cause the uniform
density and independence of the samples to be violated, since
the robot does not have an opportunity to “lose” the history
of the last spiralled transition. While setting fws to a very low
value gives a desirable sampling distribution, the tree growth
can be tedious. The effects of the design parameters are the
topics of subsequent sections: First we describe the method
to compute the minimum value fws that ensures that the
sampling distribution is close to uniform. Next, we examine
the tree’s dynamics to compute fst , and characterize the rate
at which the tree grows given fst and fws.

Although we use the standard rate equation approach
developed in [13], what distinguishes this work is coupling
between two different stochastic processes, one characteriz-
ing the random tree itself and the other characterizing the
interactions between multiple agents to form the tree.
B. Uniform Sampling: Understanding fws

For the sampling of qrand to be uniform, the positions
from which robots start spiralling should be uniform over A.
Let τ denote the time for which a wandering robot should
wander before transitioning to the spiralling state. So τ

must be sufficient to ensure independence. If the stochastic

process Xt denotes the location of a wandering robot at time
t then: Pr [Xt+τ ∈ y|Xt ∈ x] = λ2 (y)/λ2 (A) for all bounded x,y⊆
A. Thus, if the wandering robot is uniformly distributed at
time t i.e., Pr [Xt ∈ x] = λ2 (x)/λ2 (A), then Xt+τ and Xt would
reflect independence. Since robots are initially (at time t = 0)
distributed uniformly over the area A, a wandering robot
should wander for t ≥ τ before spiralling out so that the
sampling distribution remains uniform. If the average speed
of the wandering robot is ϑ then the distance covered by the
wandering robot in time ∆t is ϑ∆t. The wandering motion
of the robot can be approximated by dividing the region A
into (ϑ∆t)× (ϑ∆t) sized grids and assuming that if at time
t the robot is present at a particular cell, the position of the
robot at time t +∆t is uniformly distributed over the eight
neighboring cells and the current cell. Thus, a wandering
robot can be thought of as executing a random walk on
a three dimensional torus with the number of vertices, n =⌈√

λ2 (A)/(ϑ∆t)2
⌉
. Since the transition matrix of the random

walk is symmetric, the stationary distribution is uniformly
distributed over all the states. Thus, if τmix is the mixing
time of the Markov chain then the parameter τ is given by
τ = τmix∆t. The analysis is simplified if we consider the walk
to be lazy, that is, at every time step the robot stays at its
current position with probability 1/2 and moves to one of
its neighbors otherwise. Also the mixing time obtained for
the lazy random walk can be used as an upper bound on the
actual mixing time. The following theorem is due to [17].

Theorem 1: For the lazy random walk on the d-
dimensional torus Zd

n ,
τmix(ε)≤ d2n2 log2(ε

−1), (1)

where ε is the variation distance (via stationary distribution).
Thus, the parameter τ is given by:

τ = τmix∆t ≤ 9λ2 (A)
4ρ2 log2(ε

−1).

Where the last line follows from the fact that ∆t is chosen
such that ϑ∆t = 2ρ , the diameter of the robot. Since there
is at most N wandering robots at a given time out of which
one should be selected to join the tree, the transition rate for
each robot of transitioning from wandering state to spiralling
state is given by, fws:

fws =
1

Nτ
, (2)

which is a function of ε , selected based on how close to
uniform we desire the sampling to be. Next, we model the
stochastic process that generates the RRT.

C. Modelling Random Trees: Understanding fst

The RRT vertices are a realization of a simple point
process in R2; let Tn be the random set denoting the tree
of n nodes, n ∈ N∗, and let pm

n ∈ Tn denote the mth point in
the random set Tn where m ∈ N and 0≤ m < n. D(pm

n ,r) is
the closed disc of radius r centered at pm

n and C(pm
n ,r) is the

circle of radius r centered at pm
n , similarly d(pm

n ,r) denotes
the open disc. T1 = {qinit} where qinit ∈ A is the tree’s root.

Consider T2; Let T2 = T1
⋃
{x| for some x ∈ A}. The next

node, x, will lie in the closed disc D(p0
1,r) given the RRT

step size r. Yet, the probability of the next point lying in

the closed disc D(p0
1,r) is not uniform over the area of the

disc i.e. Pr
[
x ∈ B|x ∈ D(p0

1,r)
]
6= λ2 (B)/λ2

(
D(p0

1,r)
)

for all
B ⊆ D(p0

1,r), where B is a bounded closed set, since specif-
ically, Pr

[
x ∈ d(p0

1,r)|x ∈ D(p0
1,r)

]
= λ2

(
d(p0

1,r)
)
/λ2 (A) and

Pr
[
x ∈C(p0

1,r)|x ∈ D(p0
1,r)

]
= 1− λ2

(
d(p0

1,r)
)
/λ2 (A). There-

fore, any tree can be thought of as comprised of long edges
(with length r) and short edges (length < r). The probability
of adding an edge depends on the type of edge. It is more
complicated for Tn, when n > 1, since the probabilities
depend on the area of Voronoi regions induced by points
in the tree. Despite the distribution of points in the tree
converging in probability to the sampling distribution [18],
this does not provide information about the distribution of
the points in the tree (Tn) for small values of n. Being unable,
therefore, to reason about the distribution of realizations of
RRTs, we consider the stochastic process Cn defined as:

Cn = λ2

(
n−1⋃
i=0

D(pi
n,r)

)
, (3)

i.e. Cn is the area of the union of all r-discs of the points in
tree Tn. If the (n+1)th point lies outside area Cn then a long
edge will be added to the tree, while if the point lies inside
Cn then it will be added in place, producing a short edge.
Characterizing the distribution of Cn does not determine the
distribution of Tn, but for our purposes it suffices to compute
E [Cn]. Intuitively, Cn can be thought of as the area “covered”
by the tree. In this way, we define what we call an (δ ,ε)-
space-filling tree.

Definition 1: A tree Tn for any n ∈ N∗ is called (δ ,ε)-
space-filling in [0,1]2 if there exists a node pi

n in the tree
such that any point x ∈ [0,1]2 is within ε distance of pi

n for
1≤ i≤ n with probability at most δ for any ε,δ ∈ [0,1].

Thus, for the tree Tn if Pr [Cn ≥ c] ≤ p for some c ∈ R
and c≤ λ2 (A), then the tree is (δ ,r)-space-filling in A with
δ = pc/λ2 (A) here, again, r is the RRT step size. The
stochastic process Cn determines how quickly the distribution
of points in the tree converge to the uniform distribution
given a uniform sampling distribution. By using the Markov’s
inequality we get δ = E [Cn]/λ2 (A).

In our physical robot implementation, the edges consist of
physical agents and for a given edge length k, the tree can
only be (δ ,r)-space filling with r = 2(k+1)ρ since the step
size is fixed and all edges are of length r; some points within
the region can only be r units close to a vertex since robot
that start spiralling out a distance less than r from the tree
do not join the tree.

To analyze tree coverage processes, we first consider the
simplest case when A is the real line [0,R] and the step size is
r. Suppose that only long edges are added to the tree. When
qrand is less than r distance from its nearest neighbor, then it
is not added to the tree, so Cn+1 =Cn. The subscript n here
denotes the number of points that have been sampled, which
may exceed vertices in the tree |Tm|, because short edges are
not added. For the one dimensional case we define Cn as:

Cn = λ1

(
m−1⋃
i=0

D(pi
m,r)

)
, (4)

0

1000

2000

3000

4000

5000

6000

0 2000 4000 6000 8000 10000

long edge
short edge

n

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000

P
b

n

long edge
short edge

Fig. 4: Relative proportion of long edges in red vs. short edges in blue.
(Left) Mean and Standard Deviation for number of long edges and short
edges in a RRT as a function of number of nodes in the tree and (Right)
the corresponding probabilities of getting a long edge and short edge for
the experimental setup.

where λ1 (.) represents the length of the line segment
contained within the union of all r− discs. Thus, for the
one dimensional case, Cn is a linear tree with a length that
is a multiple of r. Introduce the function pl(n) defined as:

pl(n) =
n−1

∑
k=1

Pr [Cn = (k+1)r|Cn−1 = kr]Pr [Cn−1 = kr] . (5)

Here, pl(n) denotes the probability that the nth sampled point
will lie on a long edge. Starting from (5) we get:

pl(n) =
n−1

∑
k=1

(
1− kr

R

)
Pr [Cn−1 = kr] (6)

= 1− 1
R

n−1

∑
k=1

(kr)Pr [Cn−1 = kr] = 1− E [Cn−1]

R
. (7)

Thus, E [Cn] is given as E [Cn] = (1− pl(n + 1))R, which
yields bounds on pl(n):

pl(n) ≥ Pr [Ln = nr] =
n−1

∏
i=1

(
1− ir

R

)
≥

(
1− (n−1)r

R

)(n−1)
≈ e−(n−1)2r/R (8)

The general two dimensional case follows:
E [Cn] = (1− pl(n+1))λ2 (A) . (9)

In the general case Cn is a discrete time non-homogenous
Markov chain on a continuous state space. We obtained pl()
experimentally by computing the fraction of long edges that
are present in a tree with n nodes. In general pl(n) decreases
exponentially and for RRT of step size, r = 2 and embedded
in a 100×100 sqaure, pl(n) takes the form:

pl(n) = αe−βn, (10)

for some positive constants α and β . We obtained values
for these parameters for a given scenario by performing
simulations in CGAL [19]. Fig. 4 shows the number of short
edges and long edges for an RRT and the corresponding
probabilities of obtaining a type of edge; note the exponential
curve. The experimentally determined parameters were α =
0.99 and β =−0.00009.

D. Modelling Interaction Dynamics
Let Qt be the stochastic process representing the state

of a robot at time t with the state space given as
{wandering,spiralling, tree}. The variable Qt is macroscopic
variable of the system— the fraction of robots in a particular
state. Next, we examine the process Qt describing the growth
of the tree, and whose transition probabilities are determined
by the stochastic process Cn.

The state of the system is given by three variables:
Ns(t),Nw(t), Nr(t) where representing the number of spi-
ralling, wandering, and tree robots, at time t with N being

the total number of robots. The transition rate of a robot
transitioning from wandering to the spiralling is given by fws
as mentioned earlier and is obtained from (2). A spiralling
robot transitions to the tree state only when it collides
with a tree robot. If a spiralling robot starts spiralling
out at a distance d from its nearest neighbor in the tree,
then the probability of it transitioning to the tree state is
given by the probability that the spiralling robot covers
a radial distance d without colliding with a wanderer. A
spiralling robot traces out an archimedean spiral given by
r = a+ bθ , with the separation between successive rings,
2πb, being constant. The radial distance covered by the
robot is determined from the arc length of the spiral, given
by S(θ) = (1/2)(b)

[
θ
√

1+θ 2 + ln(θ +
√

1+θ 2)
]
. We assume

that the tangential acceleration of the spiralling robot, a, is
constant. After differentiating S(θ) and some algebra, the
radial distance covered up to time t is: r(t) =

√
(aρ/π)t1.

Now let Bn be the bounded closed region formed by union
of all the r−discs of the points in the tree Tn, that is,

Bn =
n−1⋃
i=0

D(pi
n,r). (11)

By definition, Cn = λ2 (Bn). At any time the wandering
robots are distributed uniformly over the region A/Bn. The
following lemma gives the expected distance of a randomly
sampled point from its nearest neighbor among a set of points
drawn from a distribution f (x) over the unit square in R2.

Lemma 1: Let f (x)> 0 be a probability density function
defined on the unit square Q = [0,1]2 in R2. Let U =
{X1,X2, · · · ,Xn} be a set of n independent samples drawn
drawn from f (x). The expected contact distance E [Dn(x)] is
given by:

E [Dn(x)] =
1

2
√

n

∫
Q

f (x)−1/2dx (12)

Proof: Let Pr [Dn(x)> k] be the probability that the
contact distance is at least k. This means Xi /∈ D(x,k) for
1≤ i≤ n, i.e., no point in the tree is present inside the disc
of radius k centered at x. The expectation is given by2:

E [Dn(x)] =
∫

Q

∫
∞

0
(1−U(x,k))ndkdx ≈

∫
Q

∫
∞

0
e−πn f (x)k2

dkdx

=
1

2
√

n

∫
Q

f (x)−1/2dx.

Since, there are N−Nr(t) robots distributed uniformly over
the region A/BNr(t), the mean free time of a robot follows
from (12) and is then given by3:

τ f ree(Nr) =
1

2vrel
√

N−Nr(t)

∫
A/BNr (t)

1√
λ1 (A)−λ1

(
BNr (t)

) dx

=
1

2vrel

√
λ1 (A)−λ1

(
BNr (t)

)
N−Nr(t)

. (13)

The average collision rate given by 1/τ f ree is constant
for a given free space and number of tree robots at time t,
since collisions between robots are independent events. The

1The radial distance covered depends on how the robots trace out their
spirals. Our controller maintains constant angular velocity and increases the
tangential velocity linearly.

2Pr [Dn(x)> k] =
∫

Q(1 −U(x,k))ndx where U(x,k) =
∫

D(x,k) f (x)dx.
U(x,k)≈ π f (x)k2, and (1−U)n ≈ e−nU .

3vrel is the average relative speed of a robot.

collision times can be then be approximated by a Poission
distribution: the time between collisions is exponentially
distributed with rate λt = 1/τ f ree(Nr). The random variable
S represents the time for which a spiralling robot spirals out
before coming in contact with a wandering robot, thus, has
the following distribution:

Pr [S≤ t] =
{

1− e−λt t , t ≥ 0
0, t < 0.

(14)

Now, consider the Voronoi tessellation of the region A so
that Vk represents the Voronoi cell of the node k ∈ Tn, i.e.,
Vk = {x | ||x,k|| ≤ ||x, j|| ,∀x ∈ A and j ∈ A and j 6= k}. If V =⋃

k∈Tn Vk, then V (t) is the Voronoi region of the entire tree
at time t. Then any robot spiralling out from within A/V (t)
would strike the boundary before any tree nodes, and would
never join the tree. Note that V (t) varies with time as the
size of the tree grows. Thus, the nearest neighbor search is
successful only if a robot starts from within region V (t) and
if it hits a tree robot without colliding with any wanderers.
Let the probability that a robot starts spiralling out from
within V (t) be represented by pv(t) = λ2 (V (t))/λ2 (A). We
can evaluate the joining distribution, J(x), introduced earlier,
as a function of distance from tree; i.e. J(x) represents the
probability of a spiralling robot, at a distance of at least x
from the tree, will join the tree follows from memorylessness
of the exponential distribution:

J(x) = pv(t)Pr
[
Qt+r−1(x) = tree|Qt = spiralling

]
= pv(t)Pr

[
S > r−1(x)

]
= pv(t)e

−λt

√
π

aρ
x
. (15)

We simplify the analysis by ignoring boundaries, but
effects of walls on performance is examined in the discussion
section. Doing so, the simplified cumulative distribution
function of J(x) and associated probability density function
j(x) are:

Ĵ(x) = 1− e
−λt

√
π

aρ
x
, j(x) =

d
dx

(Ĵ(x)) = λt

√
π

aρ
e
−λt

√
π

aρ . (16)

Thus, the instantaneous transition rate of transitioning
from the spiralling state to the tree state, fst , is given by 4:

fst = lim
∆t→0

1
∆t

Pr [Qt+∆t = tree|Qt = spiralling]

= lim
∆t→0

1
∆t

[∫
γ∆t

0

∫ 2π

0
j(x)dxdθ

]
= 2πλt = 4πvrel

√
N−Nr(t)

λ2 (A/BNr)
. (17)

These rate equations describe the average number of wan-
dering robots, spiralling robots and tree robots respectively
with time:

d
dt

(
Ñw(t)

)
= Ñs(t)(1− fst)− Ñw(t) fws,

d
dt

(
Ñs(t)

)
= Ñw(t) fws− Ñs(t) fst − Ñs(t)(1− fst),

d
dt

(
Ñr(t)

)
= Ñs(t) fst . (18)

4γ =
√

aρ/π . The simplification on the first line reflects the fact that
only spiralling robots in the (γ∆t)-disc around the nearest neighbor can
reach the tree by time t +∆t. The last line shows that the transition rate
depends on collision parameter λt .

The preceding analysis does not consider the time (and
robots) involved in EXTENDEDGE operations. When k >
0, wanderers can join the tree to extend an incomplete
edge. The state transitions must be augmented slightly. The
probability of a wandering robot joining the tree is maximal
when the length of the edge is k+1, i.e., only one robot is
required to complete the edge, since the wandering robot can
hit any one of the k+1 robots, after which it will skirt the
edge and join at the end. On the other hand, the probability
of a wandering robot of joining the tree is 0 when the nearest
neighbor is a vertex robot and no edge has been initiated.
There are at most dNr/k+1e vertex robots which can have
edges k + 1 robots long and the probability of completing
one of those edges is (k+1)/Nr. Thus, the transition rate of
transitioning from the wandering state to the tree state is
given as follows:

fwt ≤ (k+1)
τ f ree(Nr)

=

(
k+1
Nr

)
2vrel
√

N−Nr

λ2 (A/BNr)
. (19)

Since a spiralling robot can initiate an edge and join the tree
only when it hits a vertex robot and the probability of hitting
a vertex robot is 1/(k+1), the modified transition probability
of transitioning from the spiralling state to the tree state is
given by: fst

′ = fst/(k+1) and the rate equations for the
general case of k ≥ 0 is given by:

d
dt

(
Ñw(t)

)
= Ñs(t)(1− f ′st)− Ñw(t). fws− Ñw(t) fwt , (20)

d
dt

(
Ñs(t)

)
= Ñw(t) fws− Ñs(t) fst

′− Ñs(t)(1− fst
′), (21)

d
dt

(
Ñr(t)

)
= Ñs(t) f ′st + Ñw(t) fwt . (22)

When k > 0, expression (18) gives a lower estimate of the
average number of tree robots at time t, while (22) is an
overestimate of the average number of tree robots.

E. Voronoi Bias

Earlier we described the Voronoi bias as a desirable
property for the tree growth process, which we interpreted as
implying an aspiration for uniformity in the sample distribu-
tion. Here we examine the effect of the joining distribution,
j(x), on the bias, broadening the notion of a Voronoi bias.

Definition 2 (Strict Bias): Let P(x) be the parent of x =
Tn+1/Tn, the (n + 1)th node added to the tree, and let
G(k) : k → [0,1] for all k ∈ Tn such that ∑k∈Tn

G(k) =
p, Pr [P(x) = k] = G(k) and Pr [x = φ] = 1− p for p ∈
[0,1]. Then the tree Tn is said to have a Voronoi bias if
λ2 (V (k))/λ2 (V (k′)) = G(k)/G(k′) for all k,k′ ∈ Tn.

Distribution G(x) sums to p over all the nodes in the tree
which may be ≤ 1 (accounting for the fact that with positive
probability none of the nodes may be picked as the nearest
neighbor, giving Tn+1 = Tn). From (16) we have G(k) as:

G(k) =
∫

Vk

j(x)dx. (23)

Thus, for a tree to have Voronoi bias the function j(x)
should be uniform over the region A i.e. j(x) = p/λ2 (A);
while, in our implementation, this is true as λt → 0, it will
be violated otherwise since j(x) drops off exponentially with
distance from the tree. Nevertheless, the following definition,

Time
6000 8000 10000 12000400020000

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

ro
b

o
ts

 i
n

 t
h

e
 t

re
e

12

13

14

15

16

17

18

19

20

21

22

11

Experimental

Mean Underestimate

Mean Overestimate

(a) k=1

0 8000600040002000 10000 12000

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

ro
b

o
ts

 i
n

 t
re

e

16

17

18

19

20

21

22

23

24

25

26

27

Time

(b) k=2

0 2000 4000 6000 8000 10000 12000
Time

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

ro
b

o
ts

 i
n

 t
h

e
 t

re
e

16

17

18

19

20

21

22

23

24

25

26

27

(c) k=2, with boundary
Fig. 5: Plot showing the underestimate (black) and overestimate (red) of the average number of tree robots at a given time. The average number of robots
in the tree calculated experimentally are shown in blue.

in which nodes with larger Voronoi regions are favored over
nodes with smaller regions (although not necessarily pro-
portionally), still captures the intuitive idea of a exploration
oriented bias.

Definition 3 (Weak Bias): Let P(x) be the parent of x =
Tn+1/Tn, the (n + 1)th node added to the tree, and let
G(k) : k → [0,1] for all k ∈ Tn such that ∑k∈Tn

G(k) = p,
Pr [P(x) = k] = G(k) and Pr [x = φ] = 1− p for p ∈ [0,1].
Then the tree Tn is said to have weak Voronoi bias if
λ2 (V (k))≥ λ2 (V (k′))⇒ G(k)≥ G(k′) for all k,k′ ∈ Tn.

In general, the joining distribution j(x) depends not only
on the area of V (k) but also on its shape. While one can
contrive cells in which this weak bias is violated (long,
skinny cells having large area but limited j(x) density)
assessing their likelihood of occurrence would depend on
an understanding of how “well-behaved” the distribution of
Voronoi cells is. It is clear that this weaker definition depends
on λt less strongly. Under either definition, it is clear is that
the quality of the tree’s expansion decreases with large λt ,
itself scaling as O(

√
N).

VI. RESULTS
In order to carry out larger scale experiments to validate

our model, we implemented a version of the algorithm
in the Stage simulator. Experiments were performed with
N = {15,30} robots in a square arena of size 15m×15m. The
detection region was the radius of the robots, ρ = 0.1778m.
Parameters were determined as: α = 0.99, β = 0.003393,
and γ = 0.015, the average relative velocity used was 0.07
and parameter fws was set to 0.01 sec−1. Experiments were
carried out with edge lengths k = {1,2,3}. Fig. 5 shows
results averaged over 10 trials for each value of k. For k = 1
the initial size of the tree was 11, for k = 2 the initial size
of the tree was 16.The initial size were chosen such that all
trees had 6 nodes (vertex robots) including the initial node.

VII. CONCLUSION

The previous section compares results from simulation
experiments and the overestimate and underestimate of the
mean, finding good agreement between the model and exper-
iment. The analysis relies on a few simplifications regarding
the environment: the region is convex and obstacle free,
and spiralling robots do not collide with the boundary.
Boundary effects are taken into account(Fig. 5) by scal-
ing fst appropriately. Analysis for non-convex regions is
complicated due to the fact that non-convex regions and
obstacles introduce shadows and holes in the region which
have complex influences on the joining distribution j(x).

The work demonstrates what we believe to be a broader
idea of physical data-structures: namely that several existing
spatial algorithms with well-understood properties can be
directly implemented on robot hardware so that the re-
sulting properties describe the robots’ configurations. The
primitives employed by the algorithm point to behaviors
that robots need to be able to execute. If an asynchronous
implementation of a synchronous data-structure can be made
consistent, then the algorithmic analysis can be carried over
to the state of the robots themselves. In this particular case,
we have extended and broadened some existing definitions
(e.g., distance dependant sampling success, Voronoi bias, and
the space-filling property) in analyzing the behavior of our
multi-robot system.

REFERENCES
[1] B. B. Werger and M. J. Matarić, “Robotic ‘Food’ Chains: Externalization of State

and Program for Minimal-Agent Foraging,” in Proc. Sim. of Adaptive Behr, 1996,
pp. 625–634.

[2] S. Nouyan, A. Campo, and M. Dorigo, “Path formation in a robot swarm,” Swarm
Intelligence 2(1), pp.1–23, 2008.

[3] F. Ducatelle, G. A. Di Caro, C. Pinciroli, and L. M. Gambardella, “Self-organized
Cooperation between Robotic Swarms,” Swarm Intelligence Journal, vol. 5, pp.
73–96, 2011.

[4] S. M. LaValle and J. Kuffner, Jr., “Rapidly-exploring random trees: Progress
and prospects,” in Proc. Workshop on the Algorithmic Foundations of Robotics,
2000.

[5] B. R. Donald, J. Jennings, and D. Rus, “Minimalism + Distribution = Super-
modularity,” Journal of Exp. and Theoretical Artificial Intelligence, vol. 9, no.
2–3, pp. 293–321, Apr. 1997.

[6] D. Payton, M. Daily, R. Estowski, M. Howard, and C. Lee, “Pheromone
Robotics,” Auto. Robots 11(3):319–324, 2001.

[7] F. Lamiraux and J. P. Laumond, “On the expected complexity of random path
planning,” in ICRA, 1996, pp. 3306–3311.

[8] S. M. LaValle and J. J. Kuffner, Jr., “Randomized kinodynamic planning,” IJRR,
vol. 20, no. 5, pp. 378–400, 2001.

[9] S. Karaman and E. Frazzoli, “Sampling-based Algorithms for Optimal Motion
Planning,” ArXiv e-prints, May 2011.

[10] J. J. Kuffner Jr. and S. M. LaValle, “Space-Filling Trees,” RI, Pittsburgh, PA,
Tech. Rep. CMU-RI-TR-09-47, 2009.

[11] A. Ghoshal and D. Shell, “Being there, being the RRT: Space filling and
searching with minimalist robots.” in AAAI Spr. Symp., Multirobot Systems and
Physical Structures, 2011.

[12] K. Sugawara and M. Sano, “Cooperative acceleration of task performance:
Foraging behavior of interacting multi-robots system,” Physica D, 100(3/4), pp.
343–354, 1997.

[13] K. Lerman and A. Galstyan, “A General Methodology for Mathematical Analysis
of Multi-Agent Systems,” USC Information Sciences Institute, Tech. Rep. ISI-
TR-529, 2001.

[14] A. Martinoli, K. I. Easton, and W. Agassounon, “Modeling of Swarm Robotic
Systems: A Case Study in Collaborative Distributed Manipulation,” IJRR, 23(4),
pp. 415–436, 2004.

[15] T. W. Mather and M. A. Hsieh, “Analysis of Stochastic Deployment Policies
with Time Delays for Robot Ensembles,” IJRR, vol. 30, no. 5, pp. 590–600,
Apr. 2011.

[16] S. Berman, V. Kumar, and R. Nagpal, “Design of Control Policies for Spatially
Inhomogeneous Robot Swarms with Application to Commercial Pollination,” in
ICRA, May 2011.

[17] D. A. Levin, Y. Peres, and E. L. Wilmer, Markov chains and mixing times. AMS,
2006.

[18] J. J. Kuffner Jr. and S. M. Lavalle, “Rrt-connect: An efficient approach to single-
query path planning,” in ICRA, 2000.

[19] “CGAL, Computational Geometry Algorithms Library,” http://www.cgal.org.

