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Abstract— Multi-robot task allocation is a practical way to
identify synergies between robots. When all the robots within
a system fall under the auspices and authority of a single
organization, they can simply be compelled to share their
information and participate in cooperative protocols. But when,
for instance, they are rivals vying in the marketplace, their
own private data may be copyrighted or sensitive, so that
disclosing information may erode a competitive advantage. Yet,
even limited cooperation, by offering some arbitrage of common
resources (such as shared infrastructure), often reduces costs
for all parties; indeed, competition and cooperation are not
mutually exclusive. We examine the question of how to allocate
robots to tasks optimally while ensuring that no task valuations,
utilities, positions, or related data are released. We do this via an
auction-based assignment algorithm implemented using secure
multi-party computation operations, without requiring any
trusted auctioneer. The approach offers precise and effective
privacy guarantees that are stronger than present methods.
We demonstrate the feasibility of the approach via tests in a
case study inspired by autonomous driving. First, we tested
the approach in a single-computer setup, using parties with
virtual network interfaces, where we studied the effects of
varying the number of parties and the associated parameters
of the auction. Next, we tested the approach in a decentralized,
physical test-bed using single board computers running over
a WiFi LAN network. Finally, we conducted a small proof-
of-concept experiment using two autonomous mobile robots
performing a decentralized, private auction.

I. INTRODUCTION

Multi-robot task allocation addresses the problem of multi-
robot coordination by decomposing the work that a set of
robots seeks to accomplish into smaller, self-contained sub-
elements called tasks, and then matching robots to those
tasks. A variety of classical algorithms have been employed
in robotics to solve the simplest case of this combinatorial
problem [25], viz. for the single-robot tasks, single-task
robots, instantaneous assignment (ST-SR-IA) problem. These
include direct methods, ranging from heuristic techniques
(such as picking greedy associations), to exact direct so-
lutions (e.g., the Hungarian method, Linear Programming
approaches). Such methods are usually implemented via a
centralized algorithm on a single node that computes on
aggregated data. When this happens, that node is privy
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Fig. 1: A demonstration experiment: Subfigure (a) shows the initial position
of the robots. At the end of the auction, each robot will be assigned a target.
In subfigure (b) both robots start their motion toward their assigned targets.
In (c) robot 2 detected an object and stops to avoid a collision using infrared
sensors. Finally, in (d), both robots reached their target positions

to task evaluation information for each robot. Sharing this
information may be undesirable.

In contrast, so-called market-based techniques are alter-
natives that are intrinsically more distributed. They em-
ploy auctions (e.g., [48], [24], [4]) or other economics-
inspired means (e.g., [30]), and they may apply to ST-SR-
IA instances, or more involved forms that allow additional
constraints (e.g., [27], [12]). Though these approaches are
more decentralized in general, they do usually involve some
arbitrator (for auctions, termed an auctioneer). Less informa-
tion is proffered to this party: bids are typically not placed
on undesirable items/tasks, their values are only indirectly
and imprecisely divulged. Even so, these are merely informal
privacy properties and what is disclosed will vary depending
on the items/tasks and robots participating. When informa-
tion security is vital, new techniques with stronger privacy
guarantees —such as the one we provide— are valuable.

The key innovation in this paper is that it shows how to
use secure m-party computation (SMC) to enable distributed
task-allocation without the robots revealing their preferences,
nor the participating robots learning others’ final assign-
ments. We describe a probabilistic variant of the auction
algorithm for assignment [21], [4], modified for the SMC
setting. This algorithm, though implemented using crypto-
graphic primitives, is practically feasible for real systems,
illustrated via the experiments we conduct (including in a
small-scale case study with basic robotic hardware).

Briefly, contributions of the paper can be summarized
as: it presents a privacy preserving solution to the multi-
robot task allocation problem, along with specialized privacy
preserving constructions for the case of multi-vehicle rout-
ing. We provide an analysis of the algorithm (specifically:
correctness and its probabilistic behavior, aspects of its



complexity, and the compositional-basis for its security). And
then we describe our fully distributed implementation of the
approach, report data from experiments, and a demonstration
on physical hardware (see Figure 1). We also present a case
study of autonomous vehicle ride-sharing for participants
who require transportation between locations while preserv-
ing privacy.

II. RELATED WORK

Multi-robot task allocation (MRTA) is a central problem
in multi-robot teaming and distributed robot systems [38];
it involves the assignment of robots to tasks to maximize
the collective performance of the system. Several reviews
of this sub-area have been published [26], [28], [35], [25],
speaking to both the applicability of the approach and the
rapid evolution of the area. Part of the increment of the
work deals with more complex, constrained, or specialized
variants of the problem (e.g., [40], [45], [43]). One nascent
line of work, highly relevant to the present study concerns
robust or resilient task allocation (e.g., [32], [46], [34], [36]).
Perhaps the closest work in spirit to the present paper is that
of Prorok and Kumar [39], where an assignment problem is
tackled where information leakage is explicitly considered
as undesirable. That paper uses the differential privacy set-
ting [20], where adding suitable noise will suffice, as distinct
from the cryptographically secure model considered herein.

Our work is inspired by the use of Secure Multi-Party
Computation (SMC) in auctioneering outside the robotics
setting. Several types of auctions and benchmarking pro-
cedures have been proposed (see [14] for an overview and
examples). Particularly related to our approach is Denmark’s
sugar beets auction problem [6], one of the first real-world
deployments of SMC. In addition, [7] and [8] are prior
works on maintaining fairness, privacy, and transparency in
allocation and assignments.

Our approach employs the same techniques and tools as
some of the recent applications of Machine Learning using
Shamir Secret Sharing (SSS). Examples include Deep Neural
Networks [1], Decision Trees [18], and Ridge Regression [5].
These approaches modify ML algorithms to use secure
primitives that work on shared data; we provide similar
modifications too. Secret Sharing has also been used in
sensor processing where privacy is desired, such as fall
detection [31]. Our work also connects with research that
applies different SMC techniques to problems in estimation,
control, robotics and sensor fusion [29], [2], [47].

III. PRELIMINARIES AND PROBLEM FORMULATION

We have a group of m robots that are moving in a two-
dimensional workspace W ⊂ R2, containing an obstacle
region O ⊂ W . The robots move in the free space of the
environment, defined as E =W\O. The robots are modeled
as points in E , and each senses its own position via, say, GPS
or other sensors (perhaps along state estimation techniques).

There will be m tasks that the robots need to accomplish,
each of the robots has a valuation that encodes the preference
for each task. We will denote by vi,j the preference that

the i-th robot has for the j-th task. Let V be the valuation
matrix, whose entries are vi,j . The goal of our protocol will
be to assign robots to tasks. Let A be the assignment matrix
comprising entries ai,j with ai,j = 1 if robot i is assigned
task j and ai,j = 0 otherwise.
Privacy-Preserving MRTA: Given a group of m robots
and m tasks, obtain an assignment A which maximizes the
sum of the selected valuations, without revealing either the
robots’ valuations V or the tasks assigned to others.

IV. SECURE MULTY-PARTY COMPUTATION FRAMEWORK

We will succinctly describe only the basic elements of
Secure Multi-party Computation used in this paper. For a
complete treatment, see standard references [15], [22].

A. Shamir Secret Sharing
We employ MPC based on Shamir Secret Sharing

(SSS) [42]. This procedure distributes S, a secret, to a group
with m parties, by creating m shares {S1,S2, . . . ,Sm} with
the following properties: i ) every subset of t parties can
recover the secret and ii ) no subset of (t− 1) or fewer can
reconstruct the secret.

SSS relies on the fact that t points are sufficient to
uniquely determine a polynomial on a finite field GF (p)
(with p a prime of appropriate size) of degree less or
equal than t − 1. We represent the secret S as an element
b0 ∈ GF (p) and then choose randomly t − 1 elements
b1, b2, . . . , bt−1 from GF (p) to build the polynomial f(x) =
b0+b1x+b2x

2, . . . , bt−1x
t−1. After the polynomial is built,

m points are obtained from this polynomial (i, f(i)) with
i ∈ {1, . . . ,m} and each given to the participant i. This
procedure is shown in Protocol 1 [11].

Protocol 1 ShamirShare(S,m, t, p)
Inputs: S ∈ GF (p) the secret, m the number of parties,
t threshold for reconstruction, p cardinality GF (p)
Output: Shares [s]j for each of the m parties

1: Party Pi selects b1, b2, . . . , bt−1 from GF (p)
2: foreach j ∈ {1, 2, . . . ,m}

3: [s]j ← S +
t−1∑
k=1

bkj
k

4: Send [s]j to party Pj

5: end foreach

The secret S can be reconstructed if t or more parties com-
bine their shares. Any subset of t parties can interpolate the
polynomial to obtain f(0) = S = b0. This is achieved by the
routine OpenShare(A, [s]) [11], where [s] are the shares of
the secret and A is a set of parties with |A| > t. OpenShare
can be implemented using Lagrange interpolation [11].

B. Secure Operations on Secrets
One key aspect of SSS is that it allows each party to

perform locally linear computations of secrets and public
values. These linear combinations of secrets and public
values include:

• Addition of secrets [c] ← [a] + [b], in which each
party Pi computes locally its share of the result
[c]i ← [a]i + [b]i.



• Addition of a secret and a public value [c]← [a]+α,
α ∈ GF (p) in which each party Pi computes locally
its share of the result [c]i ← [a]i + α.

• Multiplication of a secret and a public value
[c]← [a] · α, where α ∈ GF (p) in which each party Pi

computes locally its share of the result [c]i ← [a]i · α.
We will write the addition operation on secrets as

Sum([a], [b]), where [x] represents the shares of x for
x ∈ {a, b}. Another important primitive in shares is
Mul ([a], [b]) that calculates the product of two shared num-
bers. This operation requires an interactive protocol to ensure
that the resulting polynomial is uniformly random and has a
degree t. (An implementation can be found in [11].)

Several other important operations can be built using these
primitives. For example, Inner([a], [b]) which calculates the
inner (dot) product between two shared vectors a and b
(vectors are shared elementwise). Inner can be implemented
naively via Sum and Mul or through a customized protocol.

Also, we will use other operations on shares built on
these primitives such as LEqualThan([a], [b]), which takes
two shared scalars a, b ∈ GF (p) and returns 1 if a > b
and 0 otherwise, and Min([a]) which returns a share of the
smallest number in the shared vector [a]. Details on these
primitives can be found in [11] and implementations in the
packages VIFF [23] and MPyC [41].

V. METHODS

We will perform the m × m assignment through the
AUCTION algorithm [4], [21], where one might consider the
interpretation of each robot as a self-interested agent acting
in a market. Each task j will have a price, denoted price[j],
and the robot needs to pay this price to get assigned this
task. Therefore, the utility that each robot will get by getting
assigned task j is ui,j = vi,j − price[j]. Each robot wants
to obtain an assignment that maximizes its utility.

A. Privacy-Preserving Auction Algorithm

Protocol 2 gives the proposed procedure for carrying out
task allocation via a secure auction, where bidding is man-
aged via MPC primitives using shares. In the pseudocode,
Pi is the party whose Vi valuation row is an input to the
Auction , and ShamirShare is used to split the shares between
all parties to maintain privacy. Boolean variable ‘match’
indicates if the given matrix [A] leads to an assignment (a
perfect matching), i.e., one that has none of the m parties
claiming the same task. The vector variable ‘prices’ is
shared among all robots, initialized with 0 values, and is
monotonically increased over time to resolve ties. In lines 4–
12, each Pi computes their preferences locally and securely
enters the computation.

After each auction round, lines 13–23 determine whether
there is a winner who will be assigned a task if [A] is a
match. Otherwise, every Pi will compute the δ, the difference
between the two highest utilities |u(1)i − u

(2)
i | and again

share it securely between the parties using ShamirShare .
This is so that all the parties will jointly compute the value
[inc] which is the increment for to the ‘prices’ vector to

Protocol 2 Auction(V )
Inputs: [V ] = {[V1], [V2], . . . , [Vm]} where

each vector [Vi] = {[vi1], [vi2], . . . , [vim]}
Output: [A] = {[A1], [A2], . . . , [Am]} where

each vector [Ai] = {[ai1], [ai2], . . . , [aim]}

1: Initialize: prices← {0, 0, . . . , 0}
2: match← False
3: while ¬match do
4: foreach i ∈ {1, 2, . . . ,m} do in parallel
5: Pi locally computes ui ← (vi − prices[i])
6: Pi locally computes posi ← argmax(ui)
7: Pi locally sets ai ← {0, 0, . . . , 0}
8: Pi locally sets ai,posi ← 1
9: foreach j ∈ {1, 2, . . . ,m}

10: Pi shares ai,j into [ai,j ]← ShamirShare(ai,j)
11: foreach i ∈ {1, 2, ...,m} do in parallel
12: Pi computes match← IsAMatch ([A])
13: if match then
14: return [A]
15: else
16: Pi computes δi ← |u(1)i − u

(2)
i |

17: Pi shares δi into [δi]← ShamirShare(δi)
18: Pi computes [inc]←Min(δ)
19: if LEqualThan([inc], [1]) then
20: [inc]← [ε]

21: [C]← {
m∑
i=0

[ai,1],
m∑
i=0

[ai,2], . . . ,
m∑
i=0

[ai,m]}

22: foreach j ∈ {1, 2, ...,m} do
23: if GreaterThan([Cj], [1]) then
24: prices[j]← prices[j] + [inc]
25: end while

break the tie existing between the parties. In the case that
LEqualThan([inc], [1]), we add a small numerical value: [ε].
The column totals are placed in [C] for all [A]. In lines 23–
24, we check if GreaterThan([Cj], [1]) so that we increase
the ‘prices’ vector by [inc] at the j-th position.

Protocol 3 (see the next page) is designed to check if the
given assignment matrix [A] is a perfect match based on a
probabilistic algorithm that is dependent on the calculated
determinant of a matrix [X]. The determinant of [A] being
zero can be an indication that some task may still be
unassigned; unfortunately, it can also result when there is
redundancy (or additional choice). The solution we employ,
inspired by the idea of probabilistic polynomial identity
testing introduced in the Schwartz–Zippel lemma [19], is to
pick random directions from the values that are assigned. On
the basis of A, in Protocol 3, we construct a random matrix
X: each zero element in A gives a corresponding zero in
X , but each ai,j = 1 results in a non-zero xi,j , picked as a
random integer between {1, . . . , 2m}. (See Lines 2–7.) We
then compute the determinant of the resulting X; if A has
some unassigned task, so the matching is not perfect, then
Determinant(A) = 0 and also Determinant(X) = 0. The
false positive that Determinant(A) = 0 but the matching
is perfect, will result in Determinant(X) = 0 only if the



Protocol 3 IsAMatch ([A])
Inputs: [A] = {[A1], [A2], . . . [Am]} where each

vector [Ai] = {[ai1], [ai2], . . . , [aim]}
Output: True if [A] has a match, otherwise False.

1: [X] ← [zero(X, len(A)]
2:3: foreach t ∈ {1, 2, . . . , k} do
4: foreach i ∈ {1, 2, . . . ,m} do
5: foreach j ∈ {1, 2, . . . ,m} do
6: if ai,j = 1 then
7: [xi,j ]← RandInt([1, . . . , 2m])
8: else
9: [xi,j ]← [0]

10: [d]← Determinant([X])
11: if Equal([d], [0]) then
12: return False
13: return True

random selections also happens to be linearly dependent.
From [19], we see that the preceding gives a randomized

protocol with error probability less than 1
2 . By running this

protocol k times (Line 1), we can make the probability of
error arbitrarily small. Our secure determinant was inspired
by [5] where we use a secured determinant function based
on secured primitives (line 8) to compute the determinant of
matrix [X]. In lines 9–10, if [d] is Equal to 0, then return
false, and terminate the loop. Otherwise, iterate through the
process again. Only after k successes, does it return true.

B. Complexity

We will proceed to calculate the complexity of the algo-
rithm, first in the time required for each individual party, and
then in communication and round complexity related to the
interactive parts of the protocol.

1) Computational Complexity: The computational com-
plexity of protocol 2 depends on the number of auction
rounds r (While loop in Line 3, Protocol 2). Lines 5 and
8 are constant (O(1)), while lines 6 and 7 are O(m), where
m is the number of parties and tasks. The time required
in line 15 is O(k · m3) in the worst case, i.e., when
Protocol 3, IsAMatch ([A]), is called. Here, k is parame-
ter of the randomized algorithm for checking the match,
while O(m3) represents the computational complexity of
calculating the determinant of an m × m matrix. Since k
is a fixed small constant (in practice, 4 or 5 is suffices to
get a high probability of match detection), we will write
it as O(m3). The function call in line 15 dominates the
computational complexity for the while-loop in each round
of the protocol. Therefore, the worst-case complexity for
Protocol 2 is O(r ·m3), where r is the number of auction
rounds and m is the number of tasks.

2) Round Complexity: The other factors that affect the
performance of the algorithm are the round and communica-
tion complexity. A round is a logical unit of the protocol
when the parties must block to wait for messages from
other parties to continue their computation [11]. To illustrate:

unlike local addition of shares (for Sum([a], [b])), the multi-
plication primitive Mul ([a], [b]) requires one round of com-
munication to be completed. The reader is referred to [11]
for round complexity analysis of several SSS primitives.

The primitives in lines 10 and 19 in Protocol 2 take 1
communication round, while the primitives in lines 20, 21,
and 26 take 4+log(`+2) communication rounds [11], where
` is the length in bits of p in GF (p) (e.g., if p = 2` − 1).
Since the while-loop in line 3 repeats per round, it would be
r ·(2+3(`+4)+γ), where γ is the number of rounds needed
by line 14, which calls Protocol 3 (i.e., IsAMatch ([A])).

Protocol 3’s number of rounds includes k · m2 calls to
RandInt (each of which takes takes one round [11]), a call
to Determinant (which can be implemented in a constant
number of rounds d following the protocols presented in [5],
[13]), and a call to Equal (which takes 2 + log(`) rounds).
Therefore, γ = 2+log(`)+k ·m2+d and the total number of
rounds for Protocol 2 is r·(2+3(`+4)+2+log(`)+k·m2+d).

C. Correctness and Convergence

Our privacy-preserving algorithm is based on the AUC-
TION algorithm for optimal assignment presented in [4], [21],
and as such it inherits its convergence and approximation
properties as it will be discussed in the following subsections.

Proposition 1: Protocol 2 halts after a finite number of
steps and finds a match with a probability of at least
1−

(
1
2

)k
, where k is the parameter that randomized match

checking procedure of Protocol 3.

Proof Sketch: The termination analysis is based on the
ideas in [21]. Procedure of protocol 2 will stop when the
vector ‘prices’ becomes market-clearing, so that each robot
gets assigned a different task in the assignment matrix. It can
be proven (see [21, Chapt. 10, and references therein]) that
for any set of robot valuations, there exists a set of market-
clearing prices. Unlike [21, chapt. 10], we do not solve the
bipartite matching problem, but instead, owing to the privacy
requirement of our approach, implement IsAMatch . It has at
least 1− ( 12 )

k probability of success in detecting matches.

D. Security Analysis

Proposition 2: Protocol 2 is secure under the semi-honest
model when fewer than 1

2m parties are corrupted.

Proof Sketch: The analysis of the security of Protocol 3
based on Canetti’s Universal Composition framework [10]
that enables the modular analysis and design of complex
cryptographic protocols from simple building blocks.

More specifically, Protocol 2 is built upon these
7 primitives: ShamirShare , LEqualThan , Min , GreaterThan ,
RandInt , Equal , and Determinant . Each of these primitives
have been proven to be either perfectly secure or statistically
secure under a passive adversary. See [11] (plus references
therein) for the first 6 primitives; the comparable result for
Determinant appears in [5], [13].

Therefore, if at some point during the execution of the
protocol, the adversary has access to at most t < m

2 shares
of the Shamir’s (t,m)-threshold secret sharing scheme the



reconstructed secret will be a random element in the field
GF (p). Thus, the privacy property holds.

VI. EXPERIMENTAL RESULTS

A. Case Study

Motivation for our ideas comes from the problem of ride-
sharing vehicles wherein clients ought to be transported
between places, but privacy between elements participating
in the system is a valuable. Autonomous cars may wish to
perform their tasks cooperatively whilst maintaining their
privacy, working in a decentralized fashion so that multiple
parties jointly perform a set of tasks without disclosing
private information. One wishes that there is a fair approach
to guarantee a satisfying assignment to all parties.

Our problem is formulated as follows: different au-
tonomous robot taxis R = {r0, . . . , rm} are requested to
transport a set of clients C = {c0, . . . , cm} between points
g = {g0, . . . , gm} based on distance D = {d0, . . . , dm}
guaranteeing that set of tasks T = {t0, . . . , tm} are con-
ducted privately using our secure Protocol 2.

We are interested in testing our Protocol 2 for task allo-
cation in R2 in a world using robots as a proof-of-concept.
Each robot knows its location as well as the coordinates
of the targets C = {c0, . . . , cm}, through a visual fiducial
system [37] (this will be discussed in more detailed in
Section VI-D.

We calculate the distance between robot ri to the targeted
positions in R2 following the ideas in [17, Chapt. 5]. The Eu-
clidean distance di between ri and ci is privately computed
in R2 by finding the square root of the dot product where
the distance between gi and gj determines ri’s preferences.
We assume every ri wishes to get the furthest distance di to
maximize their return.

B. Single Computer Experiment

The single computer experiment was done using one
computer which runs on an Ubuntu 18.04 LTS machine with
an Intel i7 3.60GHz CPU and 16 GB RAM using Python 3.
Each simulation experiment runs 30 times. Every time ri
receives a random coordinate from the world R2. Each party
has a communication profile, which contains an IP and port
number preserved for TCP/IP socket connections, and that
is used to communicate with other parties.

Each party runs in a different virtual network interface
that is associated with an MPyC asynchronous operation
as discussed in detail here [16]. This means the auction
runs with parties using a TCP/IP connection between each
possible pair of parties, for a total of

(
m
2

)
connections

where m is the number of parties. The simulation results
are constructed after the robots reach the optimal allocation
where they run the distributed algorithm using the virtual
interfaces.

Every m − by − m simulation experiment is conducted
30 times with random positions of robots R and clients
C. The destinations g is computed based on finding the
Euclidean distance d as mentioned previously. Every sim-
ulation experiment consists of a different number of rounds

where the number of rounds depends on the number of ties
between parties preferences. Our results are promising and
precise, but the number of parties bidding in the auction plays
an important role in finding a fast match. For example, an
auction between 3 parties will take less time than an auction
between 10 as shown in Figures 2 and 3. We observe that
most of the time spent is to break the ties between conflicting
parties. For clarifications, each green triangle in the figures
represents the average of round or time respectively. Some
outliers shown as solid rounds appear in a few figures in
particular experiments.

Our single computer experiment was conducted on a range
of 3× 3, 5× 5, 7× 7, and 10× 10-sized auctions between
simulated parties. Figures 2 and 3 show the number of rounds
and time in ms required for each experiment depending
on the m × m size of the array. Of note is that while
time increases at a exponential rate (appropriate provided
the nature of matrix operations), the number of comparative
operations, rounds, increases almost linearly.

Fig. 2: Number of rounds for auctioning m different simulated target
locations and m simulated parties on single computer.

Fig. 3: Time (in ms) for auctioning m different simulated target locations
and m simulated parties on single computer on a logarithmic scale.



Following this, in Figures 4 and 5, a series of tests were
carried out on 5 × 5 arrays in which the increment value,
ε, is increased. As a general trend, an increasing value of
ε leads to a decreasing number of rounds and total time.
However, this seems to reach a limit and converge, as
values significantly over 1 (the value used as reference) saw
continuously decreasing outputs.

Fig. 4: Number of rounds by Epsilon value for auctioning 5 different
simulated target locations and 5 simulated parties on single computer.

Fig. 5: Time (in ms) by Epsilon value for auctioning 5 different simulated
target locations and 5 simulated parties on single computer.

We also vary the values for k to 3, 4, 5, and 6. There
appears to be no direct correlation between a change in its
value and a change in either time or rounds taken as shown
in Figures 6 and 7.

C. Distributed Computer Experiments

We conducted a 3 × 3 experiment using 3 single board
computers each with a 1.5GHz 64-bit quad-core CPU (4GB
RAM) in a distributed fashion. Each single board computer
runs a Raspbian OS, and communicates through WiFi LAN
predefined with the MPyC package.

Fig. 6: Number of rounds by k value over 30 experiments on 5-by-5
assignment grids.

Fig. 7: Time (in ms) by k value over 30 experiments on 5-by-5 assignment
grids.

Figure 8 shows the single board computers as well as
three other dummy targets randomly placed on the map.
Each party set their preferences by calculating the distances
between their own position and positions of the targets and
then, jointly participating in the auction. (See Figure 9.)

Fig. 8: Distributed Single Board Computer setup

The average time for the 30 experiments on 3 single
board computers and 3 target locations in Figure 10 (e) was
considerably longer than the experiment performed on the
single computer because the specs of the single board com-



Fig. 9: Multi-Robot Task Assignment Using Privacy-Preserving Auction
Algorithm.

puters are significantly different, and also the communication
bandwidth between the physical devices is limited. However,
the average number of rounds conducted for the experiment,
Figure 10 (f) was similar to the single computer experiment.

(e) (f)

Fig. 10: Subfigure (e) shows the Time (in ms) of 30 experiments for
auctioning 3 different target locations from 3 distributed single-board
computers. Subfigure (f) shows the number of rounds of 30 experiments
for auctioning 3 different target locations from 3 distributed single board
computers.

D. Mobile Robot Experiments

We have conducted physical experiments with two iRobot
Create 2, each connected to a single board computer for
controlling purposes. A video of this experiment can be
found at https://youtu.be/a1B4jFGaZYM. For localization
purposes, we use a visual fiducial system called AprilTag [37]
to detect markers among other features in a natural scene.
AprilTag is designed for a wide variety of tasks, including
robot and camera calibration, where tags can be used as
targets and could be detected using AprilTag software that
computes the orientation and identity of the tag with respect
to the camera. Our localization module, AprilTag, operates
on a general purpose laptop. A unique tag is placed on
top of each robot to identify and localize it with respect
to the camera frame which later transforms to the map
frame. Each robot receives its map coordinate over WiFi
from the AprilTag server which is running on an off-board
computer. All processes and communication between single
board computers and the AprilTag server are established
using the ROS packages [33], [9]. A demonstration of the
world and robots outputs are shown in Figures 11 (g) and (h),
respectively.

Each robot is equipped with a differential drive PID
controller to navigate in the map while avoiding inter-robot
collision using infrared sensors. First, robots set their task

(g) (h)

Fig. 11: (g) is the world as in RVIZ (ROS visualization) and (h) is the
output screen of both robots.

preferences based on the proposed auctioning algorithm.
Once task preferences are completed, then they generate
point-to-point trajectories to move toward their target loca-
tions as shown in Figure 1. It required around 45 seconds
to perform protocol 2 and finally assigned the two robots to
their final tasks.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed an approach based on
Shamir Secret Sharing to allocate robots to tasks optimally
while no information is released using an auction-based
assignment algorithm. The algorithm was analyzed and tested
in a single computer simulating network interfaces, a decen-
tralized test-bed, and mobile robots. Several exciting research
directions are open for future research.

In the applied direction, we believe that the analysis
in simulated network interfaces, wireless deployments, and
robot experiments supports the practical feasibility of the
approach. We are currently working on two fronts. First,
we want to conduct experiments with more mobile robots
in a larger workspace and perhaps include other types of
mobile robots. Second, we would like to explore other multi-
robot task allocation study cases to extend the range of
applications of our ideas. In addition, we will study adopting
our algorithm to dynamic environments where prices and
valuations change due to unforeseen obstacles. On the other
hand, we will study when the robots have some kind of
malicious behavior where they try to attack each other to
reconstruct the secret and take advantage.

Given an assignment matrix, we use probabilistic poly-
nomial identity derived from the Schwartz–Zippel lemma
to test for the existence of a match. We are exploring
replacing this probabilistic test with approaches in Linear
Programming [44] or Maximum Flow [3].

When the number of tasks and robots differ, a standard
approach is to pad the assignment matrix with dummy tasks
or robots to ensure that the rows and columns match. The
addition of dummy robots, however, demands additional
computational elements; the addition of dummy tasks re-
quires awareness of this fact by all the robots involved.
We have not tackled the problem of mismatched task/robot
numbers as this would likely leverage the mechanism used to
inject tasks into the system, and those aspects have not been

https://youtu.be/a1B4jFGaZYM


the specific focus of study herein. An interesting question is
to ask whether the addition of dummy elements leaks any
important information.
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[15] R. Cramer, I. B. Damgård, et al. Secure multiparty computation.
Cambridge University Press, 2015.
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