
Planning for Actively Synchronized
Multi-Robot Systems

Patrick Zhong1, Federico Rossi2 and Dylan A. Shell1

1 Texas A&M University, College Station TX 77840, USA.
{patrickzhong|dshell}@tamu.edu

2Jet Propulsion Laboratory, California Institute of Technology, Pasadena,
CA 91109, USA. federico.rossi@jpl.nasa.gov

Abstract. We tackle planning under uncertainty when multiple robots
must proactively plan perception and communication acts, and decide
whether the cost needed to obtain a state estimate is justified by the
benefit of the information obtained. The approach is suitable when ob-
servations are costly but, when they do occur, are of high quality and
recover the system’s joint state, either alone or along with communica-
tion. Such cases allow one to sidestep the construction of the full joint
belief space, a well known source of intractability in planning. Formu-
lating the problem as a class of Markov decision processes to be solved
over joint states and structured to allow decentralized execution, we give
a suitable Bellman recurrence using macro-actions. We solve for policies
for the individual robots, providing a simulation case study and reporting
on a physical robot implementation. Based on our experience with hard-
ware, we examine some non-idealities identified in practice, proffering
suitable enhancements to the basic model.

1 Introduction
A fundamental challenge in dealing with a typical distributed system is that
the state of the overall system is not known to all the constituents at all points
in time. In multi-robot systems, this challenge is particularly vexing owing to
uncertainty, born of imperfect actuation and sensing, and intermittent or unreli-
able communication. Treating the whole multi-robot system jointly, as within a
centralized model, usually imposes constraints that are either utterly unrealistic,
or impracticably onerous to meet. Yet, fully general solutions that model local
beliefs about the global state are very costly. Oftentimes prohibitively so.

This paper studies a class of multi-robot systems where information is ob-
tained actively: the robots in the system plan and, through fully distributed
execution, realize a jointly endogenous observation process. Observations are
either direct simultaneous measurements of joint system state, or are sufficient
when combined via communication. The system can be considered ‘synchronized’
when the joint state is known by all; at such junctures the system must also de-
cide, as a function of the observed state, when the next observation should take
place. And because such sensing and communication can be costly, the process
of optimization may result in sparse observations.

Acknowledgement: Research supported by ONR under Award #N00014-22-1-2476. Part of this
research was carried out at the Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space Administration (80NM0018D0004).

2 Patrick Zhong, Federico Rossi, Dylan A. Shell

(a) A pair of gliders making measurements
along two parallel transects of ocean.

(b) Control uncertainty leads to error,
visible in this a bird’s eye view.

Fig. 1: Ocean sampling example. A pair of underwater gliders are tasked with mak-
ing near-simultaneous measurements with a pre-defined spatial offset within a region of
interest, employing the characteristic sinking/rising pattern of locomotion. The devices
can communicate and obtain reliable position estimates only once surfaced (depicted in
orange). Observations are costly and, as varying conditions affect the reliability of their
dead-reckoning, they determine when to check-in next based on their relative error.

Concrete Example 1 (Ocean sampling). Consider the situation depicted in
Figure 1 wherein a pair of underwater gliders sample a transect of ocean by
tracing parallel tracks, with a pre-defined offset distance between them. The
figure shows how these devices move: they dive and float by adjusting their
buoyancy, and use hydrofoils to turn vertical forces into translational move-
ment. Individual gliders only have access to precise pose measurements in the
global reference frame at the surface, and challenges imposed by underwater
attenuation mean that communication is all but infeasible except at the sur-
face. The gliders’ predominant mode of operation involves being sensing- and
communication-deprived, punctuated by intermittent moments of high-quality
state sensing and communication. Once surfaced, they determine how much their
separation has deviated from the desired offset, what actions will help correct
this error, and—more subtly—how deep to dive before resurfacing again. Given
the energy required to use the GPS and communication hardware, longer se-
quences with deeper dives between re-surfacing represent an energy saving. On
the other hand, sparse pose estimates mean greater between-track error, poten-
tially tainting the gathered data. ♢

Note how using the full state, the system decides when next to sense state,
balancing the cost of reducing uncertainty against the value that information
provides. While there is uncertainty in the motion dynamics and the observations
will likely be sparse, the sensors provide high-quality estimates of state and, at
specific junctures, communication is available to reconstruct joint state. The
contribution of this paper is the identification and specialized study of such
multi-robot planning problems as a specific class of Markov decision processes
(mdps): this includes the formalization via two orthogonal species of composition
(macro–joint actions are formed that aggregate across agents and across time),
as well as experimental examination of solutions, and insights derived therefrom.

Planning for Actively Synchronized Multi-Robot Systems 3

As we explain, the multi-robot case requires careful consideration in selecting
reference frames, action representations and maximum strides, and in assessing
the impact of observation non-idealities (asymmetry and delay).

2 Related work

Observations that are sparse can be treated via a partially-observed Markov de-
cision process (pomdp), and when dealing with multiple agents there exists work
on decentralized pomdps [1]. These approaches, reviewed recently in [2], seek
approximate search algorithms to handle the enormous space of beliefs arising
from partial observability and the combinatorial nature of the joint-action space
in Dec-pomdps. The generality of the pomdp formulation overlooks structure
ripe for exploitation: our formulation has no explicit representation of beliefs as,
at the synchronization points, beliefs project back to the state space. Further,
in contrast, we can compute exact solutions under our model.

Also within the literature, decentralized mdps utilize local observations from
distributed agents, such as in [3]. In that model, as also in our case, when ob-
servations arrive their union provides the joint system state. Unlike that model,
we are considering sparse observations and must decide when observations ought
next to occur. Worth further mention, a set of approaches consider decentralized
reinforcement learning; one recent example having agents communicate intent
appears in [4]. Those authors employ sampling to learn the transition model,
whereas our approach is model based.

The work of [5] optimizes communication policies, selecting observations to
share between agents in an online fashion. Also, decentralized planning via tree
search has been effectively used to improve multi-robot active perception [6].

Although it never considers multiple agents, a different method of limiting
sensor use that allows for dynamic observations is the use of mdps for self-
triggered control [7] wherein a subpolicy determines when sensor inputs will
be needed next. Their approach, however, relies on the reduction of the ac-
tion space to time-homogeneous macro-actions which constantly repeat a single
action. Recent work of [8] suggests this may be expanded to a limited set of
time-inhomogeneous macro-actions, but they are to be prescribed a priori.

3 Problem treatment

Our development will use two forms of composition: sequential and parallel. We
introduce the former to model sparse observations subject to costs. Then, in
Section 3.4, parallel composition leads to Definition 2 wherein multi-agency is
brought into the mix. Owing to the concurrent use of both species of composition,
the former employs subscript notation, the latter, superscripts.

3.1 Preliminaries
We assume the reader is familiar with a standard (centralized) Markov decision
process; a comprehensive reference is [9]. In the classic discrete time model,
at each stage, some observation discloses the state of the underlying Markov
process and the decision maker chooses an action and the process evolves. This
repeats with the decision maker minimizing some cost; we treat the usual infinite
horizon case with cumulative discounted costs.

4 Patrick Zhong, Federico Rossi, Dylan A. Shell

3.2 Scheduling and macro-action composition

Consider a decision maker who pays an additional cost to receive each observa-
tion. When that cost is substantial, the decision maker might choose to forgo
the information obtained and instead take some actions blindly. For instance,
the observation cost needs only to be paid half as often if actions are selected in
pairs. The balance to strike is between saving the observation cost versus losing
performance in employing coarser action selection (losing the ability to condition
the choice of the second action on the first’s outcome). Longer action sequences
might be preferable to pairs: an apt choice depends on circumstance—an agent
near a cliff likely wants few steps between observations, even if they’re costly. The
schedule of times between observations is dynamic in that it is state-dependent.

The following decision problem treats arbitrary length action sequences.
Definition 1. A dynamically-scheduled macro-action mdp (ds-ma-mdp) is a

6-tuple (S,A,
#‰

T ,
#‰

Cγ
ex, Cobs, γ) where

− S is the set of states;
− A is the set of elementary actions, from which

#‰
A := A ∪A2 ∪A3 ∪ · · · defines the

macro-action sequences, where Am is a sequence of m elements of A;
− #‰

T : S × #‰
A × S → [0, 1] gives the transition dynamics, or macro-action transi-

tion model, describing the stochastic state transitions of the system, assumed to be
Markovian in the states, where:

Pr(st+| #‰a |=s′ | st = s, #‰a t =
#‰a) =

#‰
T (s′, #‰a , s), t ∈ {0, 1, 2, . . . };

− #‰
Cγ

ex : S × #‰
A → R is the macro execution cost function given so that

#‰
Cγ

ex(s,
#‰a)

prescribes the cost incurred for taking macro-action #‰a ∈ #‰
A in state s;

− Cobs ∈ R is the cost incurred for making an observation;
− γ ∈ (0, 1) is the discounting factor.

The intuition is that though the elementary actions A are provided, the de-
cision maker selects sequences of elements of A, i.e., open-loop macro-actions in
#‰

A. For simplicity, we will treat state spaces where S is finite; also, as will be
described below, macro-action sequences will be computed up to some bounded
length. We use the operations, introduced in [10], of transition and cost com-

position to form
#‰

T and
#‰

Cγ
ex from an mdp with elementary actions A.

Construction 1 (Transition composition [10]). Given elementary actions A and
their associated transitions T : S × A× S → [0, 1], the macro-action transition

model is the function
#‰

T : S × #‰

A × S → [0, 1] defined as
#‰
T
(
s′, #‰a , s

)
=

#‰
T
(
s′, (a1, a2, . . . , a| #‰a |), s

)
=

∑
(s1,s2,...,s| #‰a |)∈S| #‰a |

where s0=s and s| #‰a |=s′

| #‰a |∏
i=1

T (si+1, ai, si).

Essentially, this repeatedly convolves the elementary transition dynamics, as
determined by #‰a . The same idea applies to the cost as well.

Construction 2 (Cost composition [10]). For discount γ ∈ (0, 1) and elemen-
tary cost function Cex : S × A → R, the corresponding macro execution cost is
#‰

Cγ
ex : S × #‰

A → R defined as
#‰
Cγ

ex (s,
#‰a) =

#‰
Cγ

ex

(
s, (a1, . . . , a| #‰a |)

)
=

| #‰a |∑
k=1

γ(k−1)
∑

(s1,...,s| #‰a |)∈S| #‰a |

where s1=s

Cex(sk, ak)

| #‰a |∏
i=1

T (si+1, ai, si).

Costs incurred later owing to sequences of actions are diminished via γ.

Planning for Actively Synchronized Multi-Robot Systems 5

3.3 Solutions to dynamically-scheduled macro-action MDPs

The optimal state-action value function satisfies this Bellman recurrence:

Q∗(s, #‰a) =
#‰
Cγ

ex(s,
#‰a) + Cobs +

#‰γ (s, #‰a)
∑
s′∈S

#‰
T (s′, #‰a , s) min

#‰a ′∈ #‰
A
Q∗(s′, #‰a ′), (1)

where #‰γ (s, #‰a) = γ| #‰a |. The optimal policy is obtained via

#‰π ∗(s) = argmin
#‰a∈ #‰

A

Q∗(s, #‰a). (2)

Observation cost Cobs shows up once per macro-action (at the beginning of
each macro-action), and the future expected value is discounted by the time until
the next observation; above #‰γ (#‰a) expresses this using the length of #‰a . When
Cobs ≤ 0, actions with | #‰a | > 1 offer no advantage over elementary ones.

Finally, the reader may argue that since
#‰

A is not finite, the (arg)min #‰a∈ #‰
A

above, technically, may not exist and ought to be an (arg) inf #‰a∈ #‰
A . This will not

concern us as, in computing solutions, we will bound the length of macro-actions
via a parameterm. Such limits may arise naturally from the system’s constraints:
the gliders in Example 1 will have a maximum depth they can tolerate.

3.4 Synchronized multi-robot systems

Multiple robot systems comprise the core of the paper: for a system of n robots,
with each i ∈ {1, . . . , n} having states Si and actions Ai, any specific sets S ⊆{
⟨s(1)|s(2)|· · ·|s(n)⟩ : s(i) ∈ Si

}
and A ⊆

{
⟨a(1)|a(2)|· · ·|a(n)⟩ : a(i) ∈ Ai

}
will be termed

joint states and joint actions, respectively. The key definition now follows.

Definition 2. An actively synchronized multi-robot mdp for a system of n
robots is a ds-ma-mdp (S,A,

#‰

T ,
#‰

Cγ
ex, Cobs, γ) defined over joint states and joint

actions, i.e., it has states ⟨s(1)|s(2)|· · ·|s(n)⟩ ∈ S and actions ⟨a(1)|a(2)|· · ·|a(n)⟩ ∈ A.

The transitions
#‰

T are for macro–joint actions built via Construction 1 on
single time-step joint actions, i.e., the elements comprising A. The transition
function for those elements will typically model interactions, but if the robots
have no couplings (e.g., they are fully independent/share no resources) it may
be formed by directly composing n individual actions. Observe that joint actions
may be a subset of the possibly combinatorially large space of available choices.

Exemplification via Example 1 If the pair of robots are denoted ℓ and r,

with former in state s
(ℓ)

and the latter in s
(r)

, then the system’s state is ⟨s(ℓ)|s(r)⟩;
joint actions will also, of course, involve two slots, the first for robot ℓ, the second

for robot r. Suppose that state is known to be ⟨s(ℓ)|s(r)⟩ because the pair generated
a joint observation at time tk, meaning that both gliders surfaced, collected GPS
data, and communicated their positions. Then, if they possess a policy #‰π ∗, the
gliders (each) look up a joint macro-action:

#‰π ∗(⟨s(ℓ)|s(r)⟩) = #‰a =
(
⟨a

(ℓ)

1 |a
(r)

1 ⟩, ⟨a
(ℓ)

2 |a
(r)

2 ⟩, . . . , ⟨a
(ℓ)

m|a
(r)

m⟩
)
,where m = | #‰a |.

For actions to execute individually, they cleave the action sequence in two:

glider ℓ performs actions (a
(ℓ)

1 , a
(ℓ)

2 , . . . , a
(ℓ)

m), while r does (a
(r)

1 , a
(r)

2 , . . . , a
(r)

m). Thence,
at time tk+m, they will surface again, and the process repeats.

6 Patrick Zhong, Federico Rossi, Dylan A. Shell

An implied schedule Continuing the example, the gliders execute their indi-
vidual actions without reference to the other robot for the times t ∈ (tk, tk+m).
Each glider first uses GPS to obtain its location (sensing a sort of “half” state),
followed by communication to ensure that the joint state will be known by all.
The next check-in/synchronization time depends on the pair’s configuration (i.e.,
the joint state). It is encoded in the policy itself through the macro-action’s
length—no separate communication policy or explicit schedule is required.

Centralized planning, but with decentralized execution Definition 2 does
not specify how joint states are obtained nor how macro–joint actions are trans-
formed into individual robot actions. For situations other than Example 1, decen-
tralized execution may not depend on any communication at all; in our physical
robots, local sensing provides the requisite information. Moreover, though solv-
ing (1) at planning time considers joint actions, each individual robot actually
only needs just enough to provide its slot of the macro–joint action sequence
from the joint state, assuming that the robots all use the same #‰π ∗.

The reasoning above applies mutatias mutandus to when n ≥ 3. Potential
concerns about mismatched joint states or delays will be examined in Section 5.5.

4 Demonstration case study

Next, we describe a formation-keeping problem that permitted investigation of
the theory presented above in operation on the hardware we have available.
Formation-keeping connects with and bears similarity to Example 1, sharing
commonalities such as the need for agents to mutually decide when to make the
next check-in; agents each also bear the responsibility of providing “half” of the
state information at those observation points. An interesting difference is that
they perform a (sometimes fallible) action to make such observations, which,
owing to mismatching measurements, occasionally turn out to be imperfect.

4.1 Formation-keeping whilst driving problem

A pair of mobile robots are tasked with moving, indefinitely, in some general di-
rection while keeping a predefined displacement between them. The robots navi-
gate independently, making observations of their relative poses only sporadically
during check-ins. We model the problem by treating the joint state to be a de-
scription of the pose of one robot relative to the other, having each of the robots’
actions comprise fine-grained adjustment over a coarse baseline movement in the
direction of motion. For this model, the state consists of two parameters: along-
track error and cross-track error. A robot’s along-track distance to its partner
is the separation along the axis of motion, and its cross-track distance is the
separation along the perpendicular axis. For the formation moving east, positive
along-track is east and positive cross-track is north. If the proper formation is
that of the two robots being side by side, along-track separation would be zero
with some desired cross-track separation when in formation. The cross-track and
along-track error therefore measure how far off the current separations are from
the desired formation separations.

Planning for Actively Synchronized Multi-Robot Systems 7

(a) Turtlebots in formation. (b) Turtlebot system architecture.

Fig. 2: Turtlebots at NASA’s Jet Propulsion Laboratory.

Unlike a näıve mdp formulation with x/y coordinates for each robot, there are
a number of advantages of this state description. Firstly, there is a reduction in
the number of dimensions. Also, the state space need only accommodate the
maximum separation of the robots, not the overall distance traveled (recall that
they have a maintenance goal rather than an achievement one). The measure-
ments do not require any global metrical reference frame, but merely measure
distance along- and cross-track errors. Finally, each robot carries out its portion
of the joint action independently of the other, but the joint actions have direct
interpretations in toto: the pair get closer, separate, or maintain distance along
each axis. Because some combinations of individual actions lead to nonsensical
or redundant joint actions, those are omitted from the set of joint actions.

4.2 Hardware implementation

We assembled two Turtlebot3 Burger robots [11] each with a single-board com-
puter, an IMU, and a ZED Mini camera used to detect Aruco markers [12] (see
Figure 2). The system has no global localization and each robot is only able
to determine the relative spacing in the formation by directly sensing the other
robot. The Turtlebots drive in arcs and cannot see each other when driving as
the Aruco markers and cameras are positioned on the front of each robot. To
obtain a check-in when the state is needed, the Turtlebots perform an expensive
panning maneuver to seek each other out: the robots rotate toward and sweep
the area where they believe their partner would be. With known marker size,
camera parameters, and robot heading, each robot can compute the location and
orientation of the opposing Aruco marker and therefore derive both the cross-
and along-track distances to its partner. After checking in, the robots return
to their initial heading and drive according to the policy—reducing cross-track
separation requires the robots to drive in arcs towards each other, while reducing
along-track separation requires the lagging robot to drive at a higher velocity
than the lead. Both robots are equipped with identical policies, from which they
extract and execute their respective individual macro-actions.

8 Patrick Zhong, Federico Rossi, Dylan A. Shell

1

2

3

300

250

200

150

100

50

Fig. 3: The policy for the formation-keeping problem with m = 3, color-coded with
length of each policy macro-action on the left and the state values on the right.

For our setup, the check-in mechanism aided in the practical realization of
the system. Disabling camera and Aruco processing except during observations
yields far smoother motion as more CPU is given to our PID controller. While
the IMU provides a fairly accurate heading, it drifts over time; it is used only
during the check-in, and re-calibrated when the robot is stationary while the
camera is releasing its resources. Thus, as our robots cannot drive well while
scanning for markers, and cannot re-calibrate the gyroscope while moving—the
check-in serves simultaneously for observation and for calibration.

5 Results

In the context of the formation-keeping problem, the following discusses a spe-
cific generated policy as well as the effects of observation cost and transition
uncertainty on other policies.

5.1 Computing policies

The mdp was solved using linear programming (LP), as a faster equivalent to
value iteration. The majority of computation time was in transition composition,
as well as building LP constraints. We usem to denote the bound of macro-action
length. With m = 3, the mdp took 21 s to build, the constraints took 27 s, and
solving the LP took 6.6 s, for a total of 57 s. Solving the LP was thus only 11%
of the runtime.

Figure 3 displays the main policy we will examine in the following discussion
of our experiments; it was computed using m = 3. Colors indicate for each
state the length of the macro-action dictated by the policy, allowing for visually
identifying the number of steps until the subsequent check-in at a glance.

Figure 4 shows the policy for the larger bound of m = 4, where the mdp,
constraints, and LP took 6min, 8.8min, and 4.3min, respectively, for a total of
20.7min (of which solving was 20%). The length-4 strides (orange) are only ever
used around the boundary of the world, and indeed the execution of the m = 3
policy never travelled to any of the regions which would have a length-4 stride in
the m = 4 policy—excepting the start state, which had the robots intentionally
far apart to stress the experiment. As a result, there was insufficient benefit in
raising m to 4 to justify its extra computation time, so we remained with m = 3.

Planning for Actively Synchronized Multi-Robot Systems 9

1

2

3

4

Fig. 4: Policy with m = 4, overlaid with
states visited during them = 3 execution
(red dots). The bottom-right highlighted
state was the initial starting position.

Fig. 5: Value differences to runner-up ac-
tions of different lengths are shown for
the m = 3 policy, and notable artifacts
are circled.

5.2 Hardware execution
Figure 6 shows two check-ins of the robots during execution. The onboard camera
footage shows the Aruco marker of the other robot being recognized as the two
robots look at each other during the check-in. In the first check-in, there is
positive along-track error (upper robot is too far forward) and negative cross-
track error (upper robot is too close), which translates to the red state in the
policy diagram. The policy dictates for the robots to drive apart (upper goes
further up, lower goes further down) and for the lower robot to drive at a higher
velocity. This results in the new positions at the next check-in, one which is
almost in formation. The robots believe they are in formation, as evidenced
by the red state in the policy being in center, a result of the rounding error
from discretizing the continuous world into grid cells. The action from that in-
formation state is then for both robots to stay the course and move in sync.

Fig. 6: Snapshots of two check-ins, with an overhead view, current policy state, and
camera footage from upper robot. Video at https://youtu.be/Mv4Kgc9-1XY. (An in-
consistency in the transition dynamics leads to a visual difference in the policy shown
vs Figure 3—still, both policies agree for every state visited, all actions executed.)

5.3 Properties of the policies
An aspect readily apparent in the policy is the dependence on distance—the
farther the robots deviate from the formation, the longer the actions to take.

https://youtu.be/Mv4Kgc9-1XY

10 Patrick Zhong, Federico Rossi, Dylan A. Shell

Intuitively, an agent far from the target state should move as far as it can,
since the optimal action will not change even if its trajectory slips marginally,
whereas when closer it is more prone to overshooting into a different policy zone.
For instance, an agent starting in a corner needs to move diagonally—shorter
steps cause it to pass through states themselves requiring the same diagonal
motion, so longer actions forgo the cost of check-ins which, in this case, add
little extra value. Also, at the center, the policy is to execute long actions again,
taking advantage of being in formation to perform a long stride.

Note how not all policy macro-actions are to go straight, or diagonal. Some
macro-actions are curved, being made up of different actions—for example, going
diagonal then straight—and therefore are time-inhomogeneous (cf. [7,8]).

The non-radial nature and the vertical gray states (indicated via ellipses in
Figure 5) can be explained as artifacts from the transition dynamics. In Figure 5
the difference in value between the optimal policy action and the next-best action
of a different length is illustrated. When the difference is low (red), the policy is
essentially indifferent to the length and selects it nearly arbitrarily, which leads
to the jagged artifacts on the color map.

5.4 Check-in cost and transition uncertainty

Further interesting relationships appear when one examines how differing pa-
rameters impact the policy, varying from low to high check-in costs and perfect
to imperfect transitions, as visualized in Figure 7.

With no check-in cost in the top row, the agents observe each other at every
step (the artifacts here are also from numerically close values). With absolutely
perfect transitions in the left column, the agents have no need for frequent check-
ins and opt for as few as possible. As one proceeds from the left to the right with
higher entropy transitions, the yellow of longer actions is replaced by the grey
and blue of shorter actions as more frequent check-ins are needed to correct for
those imperfect actions. Conversely, going downwards with costlier observations,
actions lengthen as the agents take more risk to mitigate the cost of check-ins.

5.5 Non-idealities

The model we have presented makes two key assumptions about the state obser-
vation process. Firstly, that the agents receive perfect observations of the state,
an assumption central to ensuring coordination between the agents. Secondly,
that all agents take the same, deterministic duration to perform their portion
of an action and observe the system state. These assumptions can be violated
in practice. Different agents may reach different conclusions as to the state and,
hence, execute mismatched actions. Different agents may vary in the time to per-
form an action followed by a joint observation; it may depend on the state and
action themselves (e.g., farther agents may require extra time to communicate).

In this section, we show how, under mild assumptions, the impact of the first
effect can be quantified; and the second explicitly accounted for in policy design.

Planning for Actively Synchronized Multi-Robot Systems 11

C
he

ck
-in

 C
os

t

Transition Error

Fig. 7: Policies for various check-in costs and transition uncertainties. The element at
position (4, 4) with check-in cost 1.5 and transition error 0.75 corresponds to Figure 3.

Inconsistent state observations The assumption that, at check-in, all agents
have access to a perfect observation of the joint system state can be violated
in real systems with noisy sensors and unreliable communication. Agents then
risk obtaining different macro–joint actions from the policy and executing mis-
matched individual actions, including ones with differing durations, which can
misalign the agents’ future check-in times.

Two additional assumptions can address this. First, that each agent has a
“holding” action which waits for others to conclude their own actions, so all
agents can measure the system state at the same time. If the system dynamics
present no drift, a no-op action (with no cost or effect on the system) is suitable.
Second, we assume that agents have a synchronization mechanism that indi-
cates when all agents have concluded their actions followed by an observation.
In practice, this is not overly restrictive: if agents communicate to assess the sys-
tem state, an acknowledgement mechanism suffices; and, if sensor observations
are used to measure the shared state, agents can use in-band signaling (e.g.,

12 Patrick Zhong, Federico Rossi, Dylan A. Shell

a colorful LED visible to other agent’s cameras). Importantly, the mechanism
never requires an agent to communicate outside of its check-in times.

Under these assumptions, the effect of inconsistent observations on state
value can be characterized, provided an observation model for the agents. Specif-
ically, suppose a model Pr(s̃1, . . . , s̃i, . . . , s̃n|s) characterizes the likelihood that
agent i observes system state s̃i while the system is in state s. Note that the
subscript i refers to agent i’s observation of the overall system state—the con-
catenation of agents’ individual states.

Upon observing state s̃i, each agent i will select the macro–joint action given

by the policy #‰π ∗(s̃i) and execute its portion:
(
a
(i)

1(s̃i), . . . , a
(i)

m(s̃i)
)
, where we

make explicit the dependency of actions on the measured state s̃i. The resulting
macro–joint action executed in state s is then

#̃‰a (s) =
(
⟨a

(1)

1 (s̃1)|· · ·|a
(i)

1(s̃i)|· · ·|a
(n)

1 (s̃n)⟩, . . . , ⟨a
(1)

m(s̃1)|· · ·|a
(i)

m(s̃i)|· · ·|a
(n)

m(s̃n)⟩
)

with probability Pr(s̃1, . . . , s̃i, . . . , s̃n|s). Individual agents’ actions may differ
in length; in that case, agents who end early perform the holding action until
everyone is ready to check in.

The resulting state values can be computed through policy evaluation. Fig-
ure 8 shows state values changing as uncertainty of the observation model in-
creases. Each robot has likelihood o of observing one of the eight neighbors of
the system state s; the robots’ observations are independent, and the likelihood
that both robots observe the correct state is thus (1− 8o)2.

Fig. 8: Decrease in state value with increasing uncertainty in the observation model.

As observation uncertainty increases, state values decrease significantly, espe-
cially in the central region of the state where the policy is less spatially uniform.
To further investigate this phenomenon, we computed a policy that is locally
optimal for the o = 5% case (i.e., no single change to an action can improve
the policy) through brute-force search, and compared the value of that policy
with the value of the optimal policy #‰π ∗ across multiple levels of uncertainty.
The result is shown in Figure 9. The difference between the state value of the
two policies is relatively small, generally under 5%, even in presence of large ob-
servation noise; this suggests that the reduction in state value shown in Figure 8
is due to the intrinsic complexity of the problem, and that the performance of
the optimal policy #‰π ∗ is remarkably robust to observation noise.

Imperfect observation time Equation (1) assumes that the next observation
s′ is available to all agents simultaneously. In practice, measuring the joint state
takes a finite amount of time that can depend on the system state and can differ
for each agent. The state-dependent delay does not affect action costs; however,
it does affect the cost-to-go through the discount factor #‰γ (s, #‰a) in Equation (1).

Planning for Actively Synchronized Multi-Robot Systems 13

Fig. 9: Difference between the state value of the optimal policy and the state value
achieved by a policy optimized for the o = 5% case.

This delay can be explicitly accounted for in planning. Assume that the time
required for all agents to observe state s follows the distribution Pr(tobs(s) = τ).
Then the discount in (1) can be rewritten as #‰γ (s, #‰a) = Eτ∼(| #‰a |+Pr(tobs(s))) (γ

τ),
and the resulting Bellman recursion solved for a policy that accounts for delays.

Four cases of check-in delay are presented in Figure 10 for visual comparison
to the no-delay case (leftmost). Observe that action length generally decreases
in regions with larger expected delays. In the example, state values are generally
negative; accordingly, as the discount increases, the expected cost-to-go becomes
less negative, making additional observations comparatively more attractive.

No delay
One step delay is

 10% likely in all states
One step delay is

 25% likely in all states
15% likelihood of one-step delay
 in two top and bottom rows only

Delay increases linearly with
distance from origin

1

2

3

Fig. 10: Optimal policy and policy length with different expected check-in delays

Imperfect action execution time Finally, agents may take different durations
to execute their part of a macro–joint action. In general, Constructions 1 and
2 are no longer directly applicable, since one agent’s ith action may act on the
system at the same time as another agent’s jth action. When the system is
sufficiently decoupled, Construction 1 still applies, and Construction 2’s γk−1

factor can be replaced by a term to model the expected discount. Though we
omit the details, we remark that both examples considered in this paper (the
gliders and Turtlebots) have a suitable treatment in this fashion.

6 Conclusion

This paper proposes an mdp formulation for multi-agent sequential decision-
making problems where agents must decide not only what actions to perform,
but also when to jointly observe the system state. This is, thus, a jointly en-
dogenous observation process and, since observations are modeled as bearing
costs, optimal solutions often end up employing observations rather sparingly.
We find that, at least for small-scale problems, the approach is computationally
tractable and demonstrate its practicality on hardware for a stylized formation-
keeping scenario. Having conducted an appraisal of the properties of the policies
that are produced, we see that they appear effective even in the presence of noisy
and delayed state observations.

14 Patrick Zhong, Federico Rossi, Dylan A. Shell

A number of directions for future research are of interest. First, the action
set A is a subset of all possible macro–joint actions, so one might explore how
to efficiently prune this set to reduce the computational requirements of the
problem, extending our prior work [10] that addressed fixed check-in times. Sec-
ond, we plan to propose techniques to make the policy more robust to imperfect
state observations by penalizing highly inconsistent actions in neighboring (and
therefore easily-confused) states. Thirdly, we plan to extend the formulation to
capture selected partial state observations that can arise in multi-agent systems
(e.g., improved knowledge of the agent’s own state, or Boolean-valued observa-
tions reporting whether the system state lies inside a given set), while retaining
computational tractability. Finally, it would be interesting to explore decentral-
ized planning as well.

References

1. C. Amato, G. Konidaris, L. P. Kaelbling, and J. P. How, “Modeling and Planning
with Macro-Actions in Decentralized POMDPs,” Journal of Artificial Intelligence
Research, vol. 64, pp. 817–859, 2019.

2. K. Zhang, Z. Yang, and T. Başar, Multi-Agent Reinforcement Learning: A Selective
Overview of Theories and Algorithms. Springer, 2021, pp. 321–384.

3. D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein, “The Complexity of
Decentralized Control of Markov Decision Processes,” Mathematics of Operations
Research, vol. 27, no. 4, pp. 819–840, 2002.

4. T. Yang, Y. Cao, and G. Sartoretti, “Intent-based Deep Reinforcement Learning
for Multi-agent Informative Path Planning,” in International Symposium on Multi-
Robot and Multi-Agent Systems, Dec. 2023, pp. 71–77.

5. R. J. Marcotte, X. Wang, D. Mehta, and E. Olson, “Optimizing multi-robot com-
munication under bandwidth constraints,” Autonomous Robots, vol. 44, no. 1, pp.
43–55, 2020.

6. G. Best, O. M. Cliff, T. Patten, R. R. Mettu, and R. Fitch, “Dec-MCTS: Decen-
tralized planning for multi-robot active perception,” The International Journal of
Robotics Research, vol. 38, no. 2-3, pp. 316–337, 2019.

7. Y. Huang and Q. Zhu, “Self-Triggered Markov Decision Processes,” in IEEE Con-
ference on Decision and Control (CDC), 2021, pp. 4507–4514.

8. C. Reisinger and J. Tam, “Markov decision processes with observation costs: frame-
work and computation with a penalty scheme,” 2023, arXiv:2201.07908.

9. M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, 2014.

10. F. Rossi and D. A. Shell, “Planning under periodic observations: bounds and
bounding-based solutions,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Oct. 2022.

11. ROBOTIS, “Turtlebot3 Specifications,” https://emanual.robotis.com/docs/en/
platform/turtlebot3/features/.

12. OpenCV, “Detection of ArUco Markers,” https://docs.opencv.org/4.x/d5/dae/
tutorial aruco detection.html.

https://emanual.robotis.com/docs/en/platform/turtlebot3/features/
https://emanual.robotis.com/docs/en/platform/turtlebot3/features/
https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html

	 Planning for Actively Synchronized Multi-Robot Systems

