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Abstract We consider the problem of changing smoothly between formations of
spatially deployed multi-robot systems. The algorithm presented in this paper ad-
dresses scenarios in which gradual and seamless formation transitions are needed,
a problem which we term formation morphing. We show that this can be achieved
by routing agents on a Euclidean graph that corresponds to paths computed on —
and projected from— an underlying three-dimensional matching graph. The three-
dimensional matching graph is advantageous in that it simultaneously represents a
logical assignment problem (for which an optimal solution must be sought) and met-
ric information that comprises the spatial aspects of the Euclidean graph. Together,
these features allow one to find concurrent disjoint routing paths for multiple source
multiple goal (MSMG) routing problems, for which we prove one may find rout-
ing solutions to optimize different criteria. These disjoint MSMG paths efficiently
steer the agents from the source positions to the goal positions, the process of which
enables the seamless transition from an old formation to a new one.

1 Introduction
Part of multi-robot formation control involves manoeuvring a spatially dispersed
system from one formation to another. Formation control has received a great deal
of attention and extensive investigation in the past decades (see reviews of Mur-
ray; Chen and Wang [2007; 2005]). Most previous studies consider formation con-
trol of the whole system, but, in many situations, only parts of the system need
to be changed to reach a new formation. For example, sometimes only patches of
agents in certain corners need move to other locations, or boundary agents need to
fill inner holes. If the majority the system keeps its structure unchanged, while a mi-
nority migrate to other places, then an incremental variation of the problem is worth
addressing. We call formation control in such scenarios formation morphing since
the formation is changed as if it is gradually “deformed” in places, while the major
pattern is unaltered. Fig. 1 shows an example of seamless formation morphing.

Recently we have shown that by exploring the matching graph version of the
Hungarian method [Kuhn, 1955] and interpreting it in three dimensional space, the
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(a) (b) (c) (d) (e)
Fig. 1 Evolution of formation morphing. Source nodes are colored in green (top triangles) and
gradually disappear. Goal nodes are colored in orange (right triangles) and gradually grow.

assignment problem can also be used to deal with the standard routing problems [Liu
and Shell, 2012]. In this paper we focus on more complicated conditions involving
multiple paths generated from the matching graph, and develop an assignment-based
formation control method for multi-robot systems for these cases. Specifically, for-
mation morphing is achieved by routing certain agents from their source/initial po-
sitions to the defined goal positions along some trajectories, such that all agents
involved in the trajectories simultaneously shift to and thus replace their successive
neighbors. This is a process which gradually morphs the formation into a new shape.
The routing trajectories are a set of interference-free paths on the Euclidean graph
in which the nodes are the agents and edges are the traversal links; the paths are
projected from the Hungarian augmenting paths in the 3D bipartite graph which we
construct. One important contribution of this work is that the formation morphing is
carried out in ways which optimize useful criteria, e.g., the overall travel cost is min-
imized, the total interruptions are minimized (the number of the robots re-deployed
is fewest), and the number of disjoint paths that are allowed is maximized. This is
because the routing is incorporated in, and projected from, the matching graph from
which globally optimal solutions of assignment problems are sought and found.

More specifically, the contributions of this work include:

• The design of a formation control strategy through routing paths projected from
a 3D matching graph, which combines the logical description of the matching
graph and the spatial embedding of the Euclidean graph.

• An optimal means for producing routing solutions of interest in applications; for
example, the global minimal travel distance and shortest hopping distance are
analyzed.

• Simultaneous generation of disjoint and conflict-free MSMG paths. Conditions
for producing disjoint paths, and the maximal number of such paths are analyzed.

2 Related Work
Formation control is an active topic in the multi-robot research area and many
approaches for controlling the formations of various types have emerged dur-
ing the past decades. To sample from as many distinct taxonomical branches
as possible, we acknowledge control theoretic schemes [Fax and Murray, 2004;
Hsieh et al., 2008], strategies with combinatorial optimizations [Michael et al.,
2008], approaches dealing with geometry and potential fields [Consolini et al., 2007;
Song and Kumar, 2002], as well as behavior-based methods [Balch and Arkin,
1997] and methods employing biological inspired mechanisms [Reynolds, 1987;
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Tanner et al., 2007]. We are particularly interested in the formations of structured
and well-aligned patterns, in which agents keep similar distances from each other
(this somewhat mimics certain animal behaviors, e.g., schools of fish, cattle herds,
inserts swarms, etc.). Works dealing with the formations (patterns) that are sim-
ilar to this work include [Alonso-Mora et al., 2011; Kurabayashi et al., 2009;
Ravichandran et al., 2007], although their methods differ significantly.

One may also regard formation control as the assignment of robots to goal po-
sitions that define the final pattern. Smooth shifting of formation shapes addressed
by this paper relates directly to the reassignment of robots to tasks (work specifi-
cally addressing reallocation includes that of Karmani et al. [2007] and Shen and
Salemi [2002]), and to controllers which enforce some metric (or shape) constraints
(notable recent examples of formation control include that of Michael et al. [2008],
Liu et al. [2008], and Ren and Sorensen [2008]). A clear, recent example of real-
location and formation work together is that of Agmon et al. [2010]. The authors
designed a polynomial time graph-based method to extract a subset of the robots
from a coordinated group so that this subset can perform a new task while minimiz-
ing the cost of interacting with the remaining group.

This paper offers a different perspective: spatial formation transitions of a multi-
robot team are achieved by routing agents on the 2D Euclidean graph but doing this
by regarding it as a projection from the 3D representation of a corresponding match-
ing graph. The approach has been described in detailed in our recent work [Liu
and Shell, 2012] where we focused on the analysis of single path properties. In
this work we emphasize multi-path conditions which are more complicated and re-
veal the merits of thinking about formation transitions in this way. The underlying
method is the same incremental matching approach, viz. execution of stages of the
Hungarian Method which produce paths with desired global optimization properties
by incorporating both (metric) traversal information and reallocation (logical) costs,
simultaneously.

3 Synthesized Matching Graph and Assignment Problem
This work is based on two forms of graphs: the Euclidean graph and the bipartite
graph (or bigraph for short).

The Euclidean graph is a standard graph G = (V,E) with a metric embedding
so that the vertices in V describe locations and edges in E express distances be-
tween the vertex pairs. We let each vertex of G denote an agent, and let w(i, j) =
−d(i, j) represent the weight of edge e(i, j) ∈ E, where d(i, j) is the travel dis-
tance between agent pair (i, j). The negated travel costs transform the problem
from minimization to maximization. This transformation does not change the op-
timization objective but makes the problem consistent with the assignment utility
maximization described below. In addition, traversability constraints, limited sens-
ing/communication ranges, and so one, imply that the graph G is likely to be sparse.

The Bigraph is the main data structure used in the Hungarian algorithm [Kuhn,
1955]. In the Hungarian algorithm (see Algorithm 1), is one of the most well-known
optimal assignment algorithms and can efficiently solve an n×n assignment prob-
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Algorithm 1 The Hungarian Algorithm
Require:

An n×n assignment matrix represented as the complete weighted bigraph G̃=(X ,Y, Ẽ), where
|X |= |Y |= n.

Ensure:
A perfect matching M.

1: Generate initial labellings l(·), and an initial matching M in Ge.
2: If M perfect, terminate algorithm. Otherwise, randomly pick an exposed vertex u ∈ X . Set

S = {u}, T =∅.
3: If N(S) = T , update labels:

δ = min∀x∈S,y∈Y\T {l(x)+ l(y)− w̃(x,y)}

l′(v) =

 l(v)−δ if v ∈ S,
l(v)+δ if v ∈ T,
l(v) otherwise.

4: If N(S) 6= T , pick y ∈ N(S)\T .

(a) If y exposed, then u y is an augmenting path,
then augment matching M and go to step 2.

(b) If y matched, say to z, extend the tree: S = S
⋃
{z}, T = T

⋃
{y}, and go to step 3.

Notes & Definitions:

• w̃(x,y) is the weight of edge ẽ(x,y).
• Equality graph Ge = {ẽ(x,y) : l(x)+ l(y) = w̃(x,y)}.
• Neighbor of vertex u ∈ X : N(u) = {v : ẽ(u,v) ∈ Ge}.

lem in O(n3) time. In the algorithm, the bigraph G̃ = (X ,Y, Ẽ) is another represen-
tation of utility matrix U = (ui j)n×n, where X and Y respectively denote the set
of agents and tasks, and the set Ẽ = {ẽ(i, j)} are edges weighted by the utilities
(w̃(i, j) = ui j =−d(i, j)) between associated agent-task pairs (i, j), i, j = 1, · · · ,n.
Since the bigraph represents matching relationships , sometimes it is also called the
matching graph. The assignment problem is a matching problem where the goal is
to find a set of maximally weighted and mutually excluded edges that constitute a
perfect matching M such that each agent in X is uniquely assigned to a task in Y .

The Hungarian algorithm grows a matching by searching for a path, called an
augmenting path, which consists of an alternating sequence of matched and un-
matched edges but with free end nodes. This means the quantity of unmatched
edges is an odd number and is exactly one more than number of the matched edges.
The algorithm augments the set of matched edges by simultaneously flipping the
matched and unmatched edges in the augmenting path. (Formal definitions of these
operations on matchings are omitted, refer to Lovász and Plummer [1986].) In Al-
gorithm 1, steps 2 to 4 describe the procedure of seeking and flipping an augmenting
path. We call a single iteration of this procedure a stage (see Fig. 2). Note that each
stage finds exactly one augmenting path which increases the size of the matching
by exactly one. Thus, the algorithm requires at most n stages to obtain all n matched
edges with mutually excluded end nodes, thereby forming the optimal assignment
solution.
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(a) (b)
Fig. 2 (a) Two matched edges found after running two stages of the algorithm; (b) A perfect
matching consisting of three matched edges is found after one additional stage (by augmenting
path a3→ t2→ a1→ t1).

In its conventional use of finding a set of matchings, the bigraph G̃ = (X ,Y, Ẽ)
is only interpreted as having meaning in a logical sense; any geometric information
used to form the utilities is typically ignored. This differs from the embedded Eu-
clidean graph G = (V,E) which encodes the spatial description directly. But being
graphs, both forms have common characteristics, for instance, both the Euclidean
graph and the bigraph can be represented with matrices: G can be represented with
a symmetric adjacency matrix with w(i, j) as entries, and G̃ can be represented with
a non-symmetric utility matrix with w̃(i, j) as entries. This suggests that perhaps
the bigraph may have the potential to express spatial information adequately if the
utility matrix is symmetric.

All off-diagonal entries of the two matrices have the following relationship:

w̃(i, j) = w̃( j, i) = w(i, j) = w( j, i),

∀i 6= j,1≤ i, j ≤ n.
(1)

This means that if we ignore the diagonal entries, the assignment utility matrix is
the form of an adjacency matrix, which is the basic idea in bringing the two forms
of graph together in the construction of a unified one.

This synthesized graph may be imagined as if an identical copy of the Euclidean
graph G had been lifted and placed over G. Via this “extrusion” a three dimensional
mesh is formed with two identical layers plus all edges that connect them. Here the
two layers correspond to the two partitions of a bigraph, i.e., the bigraph vertex sets
satisfy X =Y =V . Each edge e(i, j) ∈G is replaced with a pair of edges ẽ(i, j) ∈ G̃
and ẽ( j, i) ∈ G̃. (Note: different from edges in G, in G̃ edges ẽ(i, j) 6= ẽ( j, i) since
i, j are nodes from different vertex sets—either X or Y .) An example is illustrated
in Fig. 3(b). A more detailed description of this transformation is provided in our
preceding work Liu and Shell [2012]. In the remainder of the paper we assume that
the vertices X in the top layer represent the agent set and vertices Y in the bottom
layer denote the task set. Since nodes of either layer are copies from the Euclidean
graph, this synthesized graph thus also conveys information about the spatial loca-
tions (top nodes describe the agent locations, and bottom nodes describe the task
locations). If an agent node is matched to a task node, the agent needs to move from
its current location to the newly assigned task location, and when a pair of agent and
task nodes are vertically aligned, one can simply imagine that the agent has reached
its deployed location and completed the position shift, so need not relocate.
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Because this synthesized graph is a matching graph, we call it the 3D bigraph
(3D matching graph) and continue to denote it with symbol G̃. Thus, we ob-
tain a mapping (projection) Ω : G→ G̃. With known G = (V,E), the projection
G̃ = Ω(G) = (X ,Y, Ẽ). To get G = Ω−1(G̃), an inverse operation is carried out,
analogously.

(a) (b)
Fig. 3 Mapping from Euclidean graph to bigraph. (a) An Euclidean graph of networked robots
with only nearest neighbors connected. This example illustrates the simple case of morphing one
agent: vertices 6 and 6′ denote the initial and goal nodes/positions, respectively; (b) The corre-
sponding sparse bigraph visualized in 3D. Bold red edges on top layer do not exist but just show
the projection relationship with graph on the left.

4 Morphing the Formation
Formation morphing is done by seamlessly transferring agents from the source po-
sitions to the predefined goal positions as illustrated in Fig. 1. It can be imagined
as cutting a batch of nodes from the source regions and pasting them into the goal
regions. Naturally this implies that the two regions must be determined before the
morphing operation is begun. Assume that agents in the source positions form a
set A, and nodes in the goal positions form set B. Note that a goal location has no
agent in it but will be occupied by an agent after the morphing process is finished.
For each agent node in A, if it is connected with a unique goal node in B by a routing
path, and if we let all agent nodes on this path shift to their successors’ locations in
a chain, then it looks as if this agent in A is sent to B, and all other nodes in V \A are
still occupied by unique agents. This is also the essence of new agent-task insertions
to the existing assignment described in our preceding work [Liu and Shell, 2012].
Different from that, formation morphing requires multiple interference-free paths
to simultaneously steer multiple agents from the source positions to unique goal
positions, which is the multiple sources multiple goals (MSMG) routing problem.

In this paper, we provide a solid analysis for the generated MSMG paths, as well
as the details of applying our method to control formation transitions. We start the
analysis by assuming that each node of A and B is directly traversable (with at least
one edge connecting) to some nodes in V \A. The MSMG routing paths are obtained
by projecting the matched edges of augmenting paths in 3D bigraph to either planar
layer. In order to get these augmenting paths connecting A and B from the Hungarian
algorithm, these rules need be followed to construct the 3D bigraph: the top layer is
split into two subsets of nodes— A and X \A, and the bottom layer is also separated
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into two subsets— B and Y \B. Edges are added between the two layers follow-
ing the 3D bigraph construction procedure described in Section 3. Nodes of X \A
and Y \B are vertically aligned and initialized as matched to represent the station-
ary intermediate nodes, whereas all other edges are initialized as unmatched. There
are only |A| nodes unmatched/un-assigned (assuming |A| ≤ |B|), and each stage of
Hungarian algorithm costs O(|V |2) time complexity, therefore only O(|A||V |2) is
required to compute all MSMG paths.

4.1 Interference-free Property of MSMG Paths
Let P : A  B denote the set of paths that connect nodes in A and nodes in B.
Routing paths P and Q are disjoint paths if no node or edge is shared between them.
A shared node means that the agent at the intersection of different paths is required
to simultaneously replace multiple other agents on corresponding paths, which is
impossible.

(a) (b)
Fig. 4 Neither node nor edge will be shared among multiple paths produced from a matching
graph. (a) Assumption of a shared node 0 at the crossing of path 1→ 0→ 2 and path 3→ 0→ 4.
The bottom graph is the 3D bigraph showing the violation of mutual exclusion constraint; (b)
Assumption of a shared edge e(0,1) belonging to both path 3→ 0→ 1→ 6 and path 4→ 0→
1→ 5.

Theorem 1. The Hungarian algorithm run on bigraph G̃ = Ω(G) produces only
disjoint paths on graph G.

Proof. We prove this theorem via contradiction: if the generated paths are not dis-
joint then there must exist at least two paths with a shared node that crosses be-
tween them. An example is illustrated in Fig. 4(a). Since P is also comprised of ver-
tices and edges, it can be denoted by P = (V p,E p), alternatively. Assume m paths
Pi = (V p

i ,E
p
i ) ⊆ G (m > 1 and i = 1,2, · · · ,m) are generated from the Hungarian

algorithm, and there is shared (crossing) node vs ∈
⋃
∀i Pi having more than one

incoming routing edge and more than one outgoing routing edge. More than two
routing nodes must be connected to vs:

|{u | e(vs,u) ∈ Pi,∀i = 1,2, · · · ,m}|> 2. (2)

This means that in bigraph G̃ = Ω(G) either the corresponding agent node (in top
layer of Fig. 4(a)) or the task node (in bottom layer) or both have more than one
matched edge, which contradicts the mutual exclusion constraint and violates the



8 Lantao Liu and Dylan A. Shell

feasibility of the assignment solution.

The shared edge case is analogous. ut

4.2 Optimality Analysis of MSMG Paths
Thus far we have not described how the diagonal entries in the utility matrix are de-
termined during the construction of a 3D bigraph. The diagonal values are actually
the weights of the vertical edges from agents in set V \A, see Fig. 3(b) for an ex-
ample. Producing utility matrices with different diagonal weights, and feeding them
to the Hungarian algorithm will produce distinct MSMG paths. Here we show two
conditions that yield optimizations of particular interest.

Theorem 2. The set of MSMG routing paths P : A B projected onto the Euclidean
graph from the matching computed with the Hungarian algorithm will minimize
the global hopping distance1 D(P) when the weights w̃(i, i) (∀i ∈ V \A) (diagonal
utilities) are sufficiently large.

Proof. Let ζ be the largest absolute value of the utility matrix, i.e.,
ζ = max{−min(U),max(U)}, (3)

and let π = |V |ζ + ε , where ε is a small positive value. Weights of the edges ẽ(i, i)
can be made sufficiently large by letting w̃(i, i) = π for all nodes in V \A. Now
assume there exists another path Q : A B with a shorter hopping distance D(Q)<
D(P). Since all nodes not on the paths themselves maintain their matching, the
weight sums fs(·) for the two matching solutions are

fs(P) = ∑
∀(i, j)e(i, j)∈P

w̃(i, j)+(|V |−D(P))π, (4)

and
fs(Q) = ∑

∀(i, j)e(i, j)∈Q
w̃(i, j)+(|V |−D(Q))π, (5)

respectively. Since
fs(P)− fs(Q) = ∑

∀(i, j)e(i, j)∈P
w̃(i, j)− ∑

∀(i, j)e(i, j)∈Q
w̃(i, j)+(D(Q)−D(P))π

≤ ∑
∀(i, j)e(i, j)∈P

w̃(i, j)− ∑
∀(i, j)e(i, j)∈Q

w̃(i, j)−π

≤ ∑
∀(i, j)e(i, j)∈P

w̃(i, j)−π < 0,

(6)

contradicting the optimality of the matching from the Hungarian algorithm. ut

Theorem 3. When w(i, i) = 0 (∀i∈V \A), the set of MSMG routing paths P : A B
computed by projecting the Hungarian algorithm’s perfect matching to the Eu-
clidean graph have the globally shortest path length.

1 Hopping distance is also called Geodesic distance, it is the quantity of edges in the path and
therefore measures the number of nodes involved and interrupted in the deployment.
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Proof. When w̃(i, i) = 0, ∀i ∈V \A, the weight sum of the matching solution for the
assignment problem is

fs(P) = ∑
∀(i, j)e(i, j)∈P

w̃(i, j)+ ∑
∀v/∈P

w̃(v,v)

= ∑
∀(i, j)e(i, j)∈P

w̃(i, j)+0 = ∑
∀(i, j)e(i, j)∈P

w(i, j),
(7)

which is essentially the total length of all MSMG routing paths. ut

These two path properties are important since the globally shortest paths minimizes
the total travel distances for a morphing operation, whereas the globally shortest
hopping distance represents the fewest interruptions to the system (an interruption
usually bears a cost).

4.3 Concurrent Paths in Narrow Bridges
In investigating paths formed in complex environments, it is important to quantify
the maximum number of concurrent paths that can be formed. Narrow spaces may
pose a challenge because they can impose a limit on the degree of concurrency that is
possible; understanding these limits allows one to decide when sequential treatment
(e.g., for subsets of A and B) might be called for.

Definition 1. Let G = (V,E) be a connected graph. A subset C⊆V is called a vertex
cut if G\C (the remaining graph after removing all vertices in C and their incident
edges) is disconnected. A minimal vertex cut is a vertex cut with the least cardinality.

Definition 2. The local connectivity κ(u,v) (or κ(A,B)) is the size of a smallest
vertex cut separating non-adjacent vertices u and v (or vertex sets A⊆V and B⊆V ).

Theorem 4. (Menger’s Theorem) Let G = (V,E) be a graph and A,B ⊆ V , then
κ(A,B) is equal to the maximum quantity of disjoint A-B-paths (i.e., the paths that
connect vertices of A and B) in G.

Proof. Three proofs appear in Diestel [2005].

(a) (b) (c) (d)
Fig. 5 Conditions on concurrent paths passing through a narrow bridge in the graph. (a) Nodes x
and y on a path (solid arrowed edges) are from the same minimal vertex cut circled in an ellipse;
(b) Two paths are generated after having found an augmenting path α → x→ y→ β ; (c)-(d) Ver-
tices of a path are from intersecting and independent minimal vertex cuts, respectively.

Theorem 4 provides the upper bound for the quantity of possible disjoint rout-
ing paths. However, we wish to know how close to this bound the disjoint paths
produced by the Hungarian algorithm on the corresponding matching graphs are.
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Theorem 5. For connected graph G = (V,E) with A,B ⊆ V and min{|A|, |B|} ≥
κ(A,B), the number of disjoint paths generated from Hungarian algorithm is equal
to κ(A,B), i.e., Hungarian algorithm running on G̃ = Ω(G) outputs a set of disjoint
A-B-paths, such that each path consists of exactly one cut vertex belonging to a
minimal set of cut vertices.

Proof. Assume a maximal set of disjoint paths Sp = {Pi}, i = 1, · · · ,m is output,
and assume a minimal vertex cut of G is C. If |Sp| < |C|, there must be some path
Pl (l ∈ [1,m]) that contains more than one cut vertex from C. Assume these vertices
form a set V

′
l ⊆V with |V ′l |= K, then there must be K−1 edges E

′
l ⊆ E (which can

also be path segments) connecting these vertices. For an arbitrary edge e(x,y) ∈ E
′
l

where x,y ∈V
′
l , x,y must be incident with other edges that are not on routing paths

(a property following from the mutual exclusion constraint and the definition of a
minimal cut), assume they are e(α,x), e(y,β ) respectively (illustrated in Fig. 5(a)).
Then path e(α,x), e(x,y), e(y,β ) forms an augmenting path and flipping of matched
and unmatched edges cancels edge e(x,y) to effectively bridge two new paths (ex-
ample shown in Fig. 5(b)). Similarly, other edges in E

′
l can also be revised and

cancelled, and each such revision will add exactly one new path. Other complex
conditions involving multiple intersecting or independent sets of minimal vertex
cuts (see. Fig. 5(c) and 5(d)) are treated analogously. There must be κ(A,B) disjoint
paths generated, each of which consists of exactly one vertex from a minimal vertex
cut. ut

4.4 Morphing with Multiple Shifts
In complex scenarios, we cannot directly generate all MSMG paths in one go. This
includes the condition of κ(A,B) < min{|A|, |B|}, in which at most κ(A,B) paths
can be generated at one time. Another condition occurs when some nodes in A are
not directly traversable to nodes in V \A (no edges directly connect them), these
nodes must first morph (move) to some locations near enough to bridge to nodes
of V \A. In these cases, paths can only be produced in multiple batches and agents
may need to carry out several shifts to complete the morphing task.

Generally, those peripheral agents need to be “transferred” first since otherwise
inner holes may exist, which also deteriorates the traversability. (Peripheral nodes
can be detected in a decentralized way as described in Liu et al. [2011].) If local
connectivity does not allow all peripheral nodes to morph at one time (via conditions
given above), then the remaining peripheral nodes are queued and will be processed
with high priority in next iteration to first get routing paths. An update of nodes’
positions exposes new peripheral agents which can be processed in the following
iterations. All future position shifts of an agent are ordered since waypoints require
the agent complete movement one at a time. This is exactly the process of formation
morphing.
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5 Results
We simulated the algorithm with tens to hundreds of robots in order to validate
the presented method. The simulator is written in C++ and it runs in a GNU/Linux
environment. We assume that all robots are homogeneous and have identical sens-
ing and communication ranges, within which each robot is capable of recognizing
its neighbors as well as their distances and bearings. Spatial constraints and sens-
ing/communication ranges may limit each agent’s traversablility to only its nearest
neighbors. In this work, a traversal link (edge) is added if the distance between a pair
of agents is less than a given threshold. As a result, differing thresholds on traversal
link length form Euclidean graphs of different sparsity, as illustrated in Fig. 6. To
permit easy visualization, robots are simplified as dots, and the formation of the sys-
tem is aligned in arrays to better reveal the concurrent paths and to show the shifting
motions during the morphing. Also, the robots are assumed to autonomously avoid
obstacles locally to avoid potential collisions (e.g., making a minimal detour around
a obstacle if need be). The algorithm applies to any formation structures so long as
the underlying Euclidean graph is connected.

(a) (b) (c)
Fig. 6 (a) A formation of robots; (b)–(c) Euclidean graphs with traversal edges of different lengths.

Fig. 7 shows the evolution of an instance of formation morphing. In Fig. 7(b),
agents form a triangle pattern, and the goal is to transform into the same size trian-
gle rotated by 180◦. Nodes in source positions are identified with green solid dots
(forming set A), and the nodes in goal positions are orange circles (forming set B).
In this example all nodes in A can traverse directly to nodes in V \A.

Fig. 7(b)—7(d) and Fig. 7(e)—7(h) show two morphing processes (the difference
lies in different traversal edge lengths, the former have larger thresholds than the
latter). Optimization of global hopping distance and travel distances yield the same
routing solutions in this example since the formation structure is well-aligned and
the traversal link distance threshold is uniform. Since all agents involved carry out
the relocation simultaneously, the formation transitions are achieved efficiently.

Fig. 8 illustrates the multiple shifts discussed in Section 4.4. Fig. 8(a) shows the
initial and goal formations, and the task is to morph the top and bottom extruded
agents to the left and right sides. Unlike the previous example, the traversal edge
lengths are short so that the outer layer of green (source) nodes are not directly con-
nected to the inner blue (intermediate) nodes. Two processes with differing thresh-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7 (a) Initial and goal formations; (b)—(h) Processes of formation morphing.

olds are provided in Fig. 8(a)—8(d) and Fig. 8(e)—8(h), respectively. In particular,
Figs. 8(d) and 8(g) show the second round of morphing paths.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8 (a) Initial and goal formations; (b)–(h) Processes of formation morphing.

Next, we examine the conditions for morphing paths across regions that limit the
amount of concurrency. Fig. 9(a) shows a group of agents passing through a small
gap. The maximal number of paths that can cross from one side to the other is two;
each path passes through exactly one cut vertex in the Euclidean graph. Another
example is Fig. 9(b)—9(d) where a square is morphed to a triangle while crossing
a waist (one can imagine the waist part is located in between two attenuating walls
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as in Fig. 9(a), and the agents need to adjust their formations while navigating the
confined environment).

(a) (b) (c) (d)
Fig. 9 (a) Morphing paths across a small gap; (b)–(d) Formation morphing through a narrow
bridge.

6 Discussion and Conclusion
If one compares MSMG paths generated all at once with multi-batch paths, the for-
mer have shorter global hopping/travel distances; naturally the single-batch MSMG
paths fail to consider the constraints imposed by limited local connectivity or iso-
lated nodes.In other words, these special conditions either exceed the maximal paths
capacity or violate the computation rule of the Hungarian algorithm, as discussed in
Section 4.4. Nevertheless, optimality of the multi-batch paths up to the constraints
has not been proven. We examined these conditions and ran experiments with ∼50
agents, and the results show that our solutions are very close to the global optima.
(Global optima are obtained by enumerating all possible cases, and on average the
difference between the two solutions over the global optimum ≤∼ 10% ).

Another element worthy of mention is the decentralization of this algorithm. We
proposed our method by assuming that a central controller has the knowledge of
all agents’ position information and is responsible for computing the solutions and
broadcasting the results to its teammates. In distributed multi-robot systems, com-
munication ranges are likely to be limited, which requires information to be prop-
agated using existing multi-hop methods. Additionally, not all agents need to be
involved and communicated with. Morphing can occur in a local area and 3D bi-
graph can be constructed with only subset of nodes if the number of source nodes
and goal nodes are small and their locations are close to each other (their morphing
paths will involve small number/region of nodes in V \A).

To conclude, this paper proposes a new formation morphing strategy by simul-
taneously routing agents along a set of MSMG paths. Routing paths are projected
from augmenting paths in a synthesized 3D bipartite graph, which combines the log-
ical description of the matching graph and the spatial embedding of the Euclidean
graph. Since the paths are computed from the optimal assignment algorithm, use-
ful optimized properties on the paths are revealed, including the characteristic of
disjointedness, the global optimality of hopping/travel distances for all same-batch
paths, and the maximal number of paths given connectivity constraints. We provided
different formation morphing scenarios in simulation to illustrate and validate the
various distinct conditions identified in the theoretical analysis.
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