
Oblivious Sensor Fusion via Secure Multi-Party Combinatorial Filter
Evaluation

William E. Curran, Cesar A. Rojas, Leonardo Bobadilla, and Dylan A. Shell

Abstract— Given sensor units distributed throughout an envi-
ronment, we consider the problem of consolidating readings into
a single coherent view when sensors wish to limit knowledge
of their specific readings. Standard fusion methods make no
guarantees about what curious participants may learn. For ap-
plications where privacy guarantees are required, we introduce
a fusion approach that limits what can be inferred. First, it
forms an aggregate stream, oblivious to the underlying sensor
data, and then evaluates that stream on a combinatorial filter.
This is achieved via secure multi-party computation techniques
built on cryptographic primitives, which we extend and apply
to the problem of fusing discrete sensor signals. We prove
that the extensions preserve security under the model of semi-
honest adversaries. Also, for a simple target tracking case study,
we examine a proof-of-concept implementation: analyzing the
(empirical) running times for components in the architecture
and suggesting directions for future improvement.

I. INTRODUCTION

Many practical applications (e.g., situational awareness,
and activity modeling problems) involve answering queries
from a stream of sensor readings. The present paper ex-
amines how multiple physically distributed sensors can use
computational and communication mechanisms to consoli-
date their sensed data to form a fused estimate. Unlike prior
work, we are interested in circumstances where the elements
comprising the system need not fall under the aegis of a
single authority. Though participating as honest parties, they
may be inquisitive (e.g., providers competing in a market
where access to data streams is purchased). Or they may
have been compromised so as to stash and/or divulge data
(e.g., when adversaries are capable of instrumenting but not
modifying devices). The objective, then, is to fuse data from
multiple devices, while also limiting what those devices
may learn over-and-above that which is known from their
individual views.

Our treatment focuses on a class of finite-state transducers
called combinatorial filters [23] that act as discrete state
estimators to convert a stream of inputs into a stream of
outputs: the former being sensor readings, the latter estimates
of properties of interest encoded abstractly. Figure 1 [left]
provides a (simple) concrete example: two agents move
freely about an environment, each tracing a continuous path
and occasionally crossing one of the three-beam sensors
(labeled ‘a’, ‘b’, and ‘c’). As the agents move, they interact

William E. Curran and Dylan A. Shell are with the Department of Com-
puter Science & Engineering at Texas A&M University, College Station, TX,
USA. wec72@tamu.edu, dshell@tamu.edu; Cesar A. Rojas and
Leonardo Bobadilla are with the Knight Foundation School of Computing
and Information Science at Florida International University, Miami, FL,
USA. croja022@fiu.edu, bobadilla@cs.fiu.edu

This work is supported in part by the National Science Foundation awards
IIS-2034123, IIS-2024733, IIS-2034097, and by the U.S. Dept. of Homeland
Security award 2017-ST-062000002.

a

b

c

a

b

c

{12, 21}

{02, 20}

{01, 10}

{00}, {11}, {22}

Fig. 1. A simple scenario (from [23]): we track the state of two agents
moving in a room that contains a single central obstacle. A small combina-
torial filter fuses information obtained from three break-beam sensors (‘a’,
‘b’, and ‘c’) to determine whether the agents are together or not. [left] A
screenshot of our python-based simulator showing the environment—the
red dots are the agents, the cyan line segments are the beams. [right] A
combinatorial filter with 4 states that, from any given initial configuration,
track whether the agents are together (yellow) or apart (green).

with the sensors which generate a sequence of symbols that is
processed by tracing over the correspondingly labeled edges.
The 4-state filter in Figure 1 [right] concisely answers the
query are the two agents together or not?

In an implementation, the beam sensors might be realized
as three different devices: each an embedded computer (with
limited computational capabilities), connected via a lossless
communication network. In addition to the sensors, some
separate device (or party) holds the graph structure that
describes the filter. Finally, there is the party with a legitimate
interest in the current output of the filter, which we dub
the querier. In the example, this is the color: yellow or
green, encoding together or apart, respectively. The method
we present ensures that the querier learns only the colors,
neither the input symbols nor the filter structure. The device
possessing the filter learns neither the input symbols nor the
output stream. And, individually, the devices governing the
sensors learn nothing other than their own sensed readings.

Using secure Multi-Party Computation (MPC) techniques,
we process a stream of events through a staged approach:
first, pooling data from the various sensors and then evaluat-
ing the given combinatorial filter, incrementally. The security
of this scheme is established via proofs in the semi-honest
model, a common treatment for cooperative though curious
devices, constrained to obey the prescribed protocol. This
model allows claims to be made about information that the
protocol leaks, as distinct from implicitly disclosed via the
input-output relationships [11].

Doing so requires that some technical challenges be ad-
dressed. First, while MPC commonly operates on data in
a batch fashion, a fundamental part of real-time filtering is
the treatment of intrinsically asynchronous exogenous events.
But, even if the provenance of particular sensor readings can
be obscured, triggering evaluation when an event occurs will
leak information (as there is a correlation with activity). Sec-
ond, existing techniques for oblivious automata evaluation

cannot be applied directly. Not only is some generalization
needed for additional outputs (multiple color outputs must
be produced at each point during the evaluation), but these
mean that a mutatis mutandis modification of the original
security proof is inadequate. Third, despite steady progress,
current MPC methods remain computationally intensive: an
approach should only be deemed practicable if its perfor-
mance is assessed directly.

The paper’s specific contributions can be summarized as:
(1) Design of an architecture and multi-stage protocol in
which sensor units buffer readings locally, then pool data via
peers that also jointly evaluate the filter. The peers only have
access to split versions of the aggregated pool and process it
at a fixed frequency, so the stream discloses nothing about the
amount of activity in the environment. Using this encoding,
when events are known a priori to occur infrequently (for
instance, when the velocity of the agents in Figure 1 [left] is
bounded) this can help reduce communication. On the basis
of our implementation, we explore treatments for the dense
and (known) bounded-sparse regime, showing that they have
different computational requirements and behavior.
(2) As part of the approach, we give a method for obvious
evaluation of a Moore machine that generalizes techniques
within the literature. Unlike automata evaluation that yields
a binary output at the end of the evaluation only, the Moore
machine produces a stream of (potentially many) colors. This
changes the steps taken during evaluation and also alters
the proof that the process is secure. More information is
disclosed during Moore machine evaluation, so the consumer
of this data would appear to have much more information
about the input stream — the proof, thus, takes a different
form because the straightforward adaptation would no longer
give a polynomial-time simulation.
(3) The final section also describes our proof-of-concept
implementation and examines its performance, providing an
empirical view of the compromise between communication
and computation costs. The pooling approach involves a
parameter, L, of pool window size, and we conduct a
empirical assessment of its effect.

II. RELATED WORK

This paper addresses a discrete estimation problem in an
unconventional computational setting, drawing on multiple
MPC techniques and related concepts. Technical connections
are made in the sections that follow, once the basic definitions
and problem formalization have been introduced.

A. Filters, Estimators, and Trackers
Combinatorial filters, a term introduced in [23] and related

to discrete event systems [6], are estimators which process
a stream of symbols to produce output encoding structural
or stateful properties of interest. These filters are ideal for
processing simple sensor inputs [5] and have been the subject
of study under the broader banner of minimalism [21]. We
know of no work that does multi-sensor/decentralized fusion
for such filters, unlike traditional probabilistic filters [7].

For probabilistic filters, [16] consider multiple participants
contributing input data. They are concerned with privacy,
employing the differential privacy model [8], which lim-
its information about individual contributions. The MPC

approach, being built with cryptographic primitives, offers
stronger guarantees.

For the discrete setting, several pieces of work consider
notions of opacity [14], obfuscation [24], and discreet-
ness [20]. Some work has also examined privacy-preserving
tracking problems [26].

B. Secure Multi-Party Computation

Secure MPC deals with situations where multiple parties,
each possessing some input data, wish to compute some
function of the union of the inputs, but while having their
input remain private [11]. Each party only learns the output
of the computation, even when inimical participants collude
into trying to learn more about the inputs of the others.

An early problem examined by Andrew Yao [25] is the
‘Millionaire’s problem’, where two individuals determine
who has greater wealth (evaluating a ‘≤’), without revealing
their own bank balances. Yao’s solution involved a process
termed ‘oblivious transfer’ (OT), which involves a sending
party transmitting a set of items as a message while remain-
ing unaware of which were received by the receiver (typically
only a strict subset). OTs form an important building block
for Secure MPC protocols and, in assessing the performance
of our implementation, we will report the number involved.

Recently, researchers have begun to apply MPC to prob-
lems in robotics, control, and estimation [17], [1], [27].

C. The GMW protocol

In the semi-honest setting, several general protocols to
compute deterministic functions exist [11]. We make use of
the Goldreich–Micali–Wigderson (GMW) Protocol [12] in
which two parties with, respectively, private inputs x and
y wish to evaluate a public function f(x, y) via an agreed-
upon circuit C [11]. The core idea behind this protocol is that
each party supplies additive shares for circuit inputs, and they
evaluate C on shared values [11], [15]. In principle, at least
for a given length input, the entire Moore Machine Eval-
uation could be implemented via generic GMW. However,
doing so will reduce the compactness of representation we
employ and, as mentioned by [10, cited by [19]], the present
approach is expected to be significantly more efficient. Also,
processing a stream of inputs (of which the final total length
may not be known ahead of time) makes it non-trivial to
construct an appropriate circuit for the entire computation.

III. PRELIMINARIES

A. Basic Notation

By x
R← {0, 1}n, denote the generation of a random

binary string of length n using a cryptographically secure
random number generator. Let G : {0, 1}n → {0, 1}m be
a pseudorandom number generator with n-bit seed and m-
bit output. And have u||v represent the concatenation of bit
strings u and v. We write u⊕v for the bitwise XOR operation
on binary strings u and v. Finally, in cases where we wish
to explicitly represent an empty input or empty output, we
follow the convention of using the symbol ‘⊥’.

The term ‘party’ is conventional in the cryptographic
literature to describe a computational actor that possesses its
own view of the world, information potentially unknown to

others, and possibly its own objectives [11]. Our setting will
consider multiple devices, each with access to only partial
information, which we treat as private: there are n sensors
that fuse their streams and two additional devices which per-
form subsequent processing, but in a split fashion. Interaction
between these devices is primarily pairwise, so that two-
party functionalities are our natural focus. Abstractly, a two-
party functionality is a function f : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗ × {0, 1}∗, in which f = (f1, f2). The inputs to
the functionality f are pairs x, y ∈ {0, 1}n and the output
is f = (f1(x, y), f2(x, y)). The first party, with input x,
wants to obtain f1(x, y) and the second party, with y, desires
f2(x, y). In the case of the functionality just described,
thus, x and y respectively represent private inputs. Protocols,
denoted π, are used to calculate functionalities.

B. Security Model
Throughout, we restrict our attention to the semi-honest

model of adversaries [11]. In such settings, each party is ob-
ligated to follow the prescribed protocol but may attempt to
learn as much as possible during the computation. To ensure
a protocol implements some functionality under the semi-
honest model securely, proof via the simulation paradigm
is used [18]. Section V-B includes the construction of a
simulator to establish the security of a protocol we propose.

C. Combinatorial Filters
Following [21], we consider a structure that processes

sequences of events (typically interpreted as observations or
actions or both). We are interested in representing sets of
such sequences and do this via a graph where each reachable
vertex corresponds to an equivalence class of sequences. The
vertices are termed information states or I-states for short.

Definition 1: An I-state graph G = (V,E, l : E → Y, v0)
on event set Y is an edge labeled, directed graph with an
initial vertex. Here V is a finite set of vertices (the I-states),
E is a set of ordered pairs of vertices (directed edges), the
function l labels each edge with an event from Y , and v0
represents the starting I-state.

Throughout, we consider only deterministic I-state graphs,
namely those where no vertices have multiple outgoing edges
labeled by the same event. Properties of interest that can be
computed on I-states will be encoded as colors.

Definition 2: A combinatorial filter F, is a deterministic
I-state graph supplemented with an assignment of colors to
its vertices, F = (G, c : V → N), where G is an I-state
graph and c assigns a natural number to each vertex.

The output of filter F = (G, c) on input y1y2 . . . ym is
the sequence of colors c(v0)c(v1) . . . c(vm), where v0 is the
starting I-state of G, and each l

(
(vi−1, vi)

)
= yi for i ∈

{1 . . .m}. We will also write the filter as if it were a function,
FJy1y2 . . . ymK, and the output is a string of colors.

IV. PROBLEM FORMULATION

Sensors are each connected locally to a processor, forming
a single logical unit that we dub an event detector. We have n
such event detectors, D1,D2, . . . ,Dn, each of which senses
or otherwise observes events in the world. After detecting
the occurrence of an event, they yield an event symbol.

Multiple event detectors may produce the same symbol, so
we consider m ≤ n event symbols that (together with ε
representing no event being observed) form our overall event
space, denoted Y = {y1, y2, y3, . . . , ym, ε}. For the example
in Figure 1, we have 3 event detectors D1, D2, and D3 each
associated to a beam sensor. Here the overall event space is
Y = {a, b, c, ε}. Each event detector Dj will have a local
event space Y j = {yi, ε}, where yi ∈ Y represents an event
gathered by Dj . We shall assume each event is covered by
at least one event detector, i.e., Y =

⋃n
j=1 Y

j .
For event detector Dj , the local event history, denoted

h̃j = ((t0, x0), (t1, x1), . . . , (tL−1, xL−1)), is a sequence
representing the information collected at L distinct times,
ti < ti+1, and where each xi ∈ Y j for i ∈ {0 . . . L − 1}.
In what follows, we will assume that times are numbers
requiring τ bits of storage. Also, length L will be a parameter
used in the methods we present. Note, that since ε ∈ Y j ,
one may always pad shorter histories to attain length L. The
global event history, which we denote ỹ, is the union of all
events, as a sequence ordered by time.

We employ two phases: the first involves pooling data
from detectors to construct a subsequence of the global
event history; the second that processes the subsequence,
evaluating the filter. Both phases must keep data private.

A. Securely Pooling Event Sequences

We consolidate local event histories into a single
chronologically-ordered stream by batching subsequences
and operating on windows of length L. Evaluation of the
combinatorial filter over time proceeds batch-by-batch.

To maintain the privacy of each detector’s data, we employ
a secret sharing approach: every Dj splits its event stream
into two shares, and sends these to two new parties. These
two additional parties, designated O and Q, bear the burden
of subsequent computation and are assumed to be more
capable than our embedded event detectors. Parties such as
O and Q are commonly called privacy peers (see, e.g., [15]).

These requirements are formalized as follows:
Functionality 1: Event Sequence Pooling
INPUTS:
• Each Dj inputs h̃j , its local event history of length L.
• O inputs ⊥.
• Q inputs ⊥.

OUTPUTS:
• Each Dj outputs ⊥.
• O outputs its share of the global event history ỹO .
• Q outputs its share of the global event history ỹQ.

B. Oblivious Combinatorial Filter Evaluation

Once the event detector’s streams have been pooled, the
stream of symbols needs to be traced over a filter’s labeled
edges to generate the associated sequence of colors. Since
the symbols are split into pairs of shares, this tracing must
be done in some joint fashion. We build on the ideas in [28],
[19] to propose our second desired functionality.

In this case, there are two parties: the querier who has part
of the sequence of symbols and wishes to know the output
color stream. The filter owner, who knows the filter, and has
part of the sequence of symbols. We have one of the privacy

D1

L = 4

{(t0, a),(t1,⊥),(t2, a),(t3,⊥)}

a a

D2

{(t0,⊥),(t1,⊥),(t2,⊥), (t3, b)}

Dn

{(t0,⊥),(t1, z),(t2,⊥),(t3,⊥)}

...

Q

O

...

L = 4

b

L = 4

z

FBatch
OT JCGMW GMW

Fig. 2. The overall architecture for MPC-based sensor fusion and combinatorial filter evaluation, shown via a schematic that emphasizes flow and sharing
of information. On the far left, event detectors D1,D2, . . . ,Dn, queue readings for histories of length L. These are then transmitted as split shares to Q
and O. (Visually purple decomposes into red and blue components.) The values are jointly sorted via a sorting network with a comparator circuit using
GMW. The resulting time-ordered sequence, still split, is then jointly evaluated as a Moore machine. While O knows the filter structure, Q (and Q alone)
learns the sequence of output colors (yellow and green), but nothing more. The grey rectangles represent parties (n + 2 in total). Parameter L describes
size of local event histories which are pooled for each round. The box FBatch

OTJC refers to batch oblivious transfer with joint choice [28].

peers (Q) be the querier, while the other (O) is the filter
owner. The functionality is formalized next:
Functionality 2: Combinatorial Filter Evaluation
INPUTS:
• Q inputs ỹQ, its share of the event sequence.
• O input ỹO , its share of the event sequence and combinatorial

filter F.
OUTPUTS:
• Q outputs FJỹK.
• O outputs ⊥.

Next, we examine how to realize these two functionalities.

V. METHODS

Figure 2 provides an encompassing diagram showing the
n + 2 parties involved: event detectors D1,D2, . . . ,Dn and
querier Q and filter owner O. The first functionality is
depicted in the portion of the diagram from the left, through
splitting of local histories, to the subsequent sorting step
(shown via twinned sketches of sorting networks and GMW
comparators). The second functionality proceeds to the right:
the red and blue lines come together to make a joint choice
oblivious transfer, employing cryptographic keys which are
used also in tracing through an encoding of the filter as a
garbled adjacency matrix. We detail each next.

A. Secure Event Sequence Pooling

To implement Functionality 1, we collect shares of each
event history h̃i into shares of ỹ.

The protocol operates in rounds run at a frequency ap-
propriate for each event detector to have a local history
with L symbols. Every round, each Di splits its history h̃i
into additive secret shares using a secure random number
generator (RNG) and the XOR operation. Then Di sends
these two shares (in binary), denoted bO

h̃i
and bQ

h̃i
, to the

respective privacy peers. In Figure 2, the h̃i are illustrated
by sensors’ individual purple sequences, while the transfer of

bO
h̃i

and bQ
h̃i

are illustrated by the red and blue arrows towards
O and Q. Keeping these shares separate, O and Q jointly
sort the aggregate history using sorting networks. Finally, O
and Q obtain shares of a sorted stream of symbols ỹ.

Sorting is implemented using the GMW Protocol, selected
primarily because it allows convenient interfacing of the
outputs of Protocol 1 with Protocol 2. This is because the
protocol operates on additive secret shares, allowing parties
to retrieve shares of the output without obtaining the plain-
text. The GMW Protocol is efficient [22], and it can also be
extended to a multi-party setting. Currently, Functionality 2
expects the global history to be shared between O and Q, so
a multi-party approach would require Functionality 2 to be
extended, which is beyond the scope of the present paper.
Protocol 1: Shared Sequence Assemblage
INPUTS:
• Di inputs secret shares of their histories bQ

h̃i
and bO

h̃i
.

• Q and O previously agree on a sorting network S and a
compare-exchange circuit C.

OUTPUTS:
• Di output ⊥.
• Q and O share the time-ordered event sequence ỹ element-

wise between bQỹ and bOỹ .

For each component, further elaboration follows.
1) Padding inputs: Padding event detectors’ inputs with

ε symbols, as previously mentioned, ensures |h̃i| = L,
i ∈ {1 . . . n}. This is important so that information —such as
the frequency at which Di detects events– is not revealed.

2) Creating Secret Shares from Event Detectors: The jth

element of an event history h̃i[j] is a tuple (tj , sj), where tj
is a time and sj ∈ Y . Any such tuple can be represented as
an `-bit binary string, for ` = τ+dlog |Y |e. Each detector Di
for i ∈ {1 . . . n} splits its history h̃i into shares by generating
random values r ←R {0, 1}` for each element in its history.
Then bO

h̃i
is the resulting sequence of `-bit random values.

Let each value bQ
h̃i

[j] = bO
h̃i

[j]⊕ bh̃i
[j], j ∈ {1 . . . L}. Some

(,)

(,)

(,)

(,)

(,)

(,)

(,)

(,)

(,)

(,)

(,)

(,)

(,)

(,)(,)

(,)

Fig. 3. Oblivious evaluation of DFAs vs. Moore machines. [left] Mohassel’s
oblivious DFA evaluation. [right] Our Moore machine variant.

(arbitrary) predefined ordering of detectors is known by both
O and Q, which collect the sequences to maintain pre-sorted
subsequences, as is formalized next.

3) Sorting: Q and O will have concatenated all received
histories into a shared unordered global history, and they
will proceed to sort the global history in increasing order
over time. Jónsson, Kreitz, and Uddin [15] address sorting in
the MPC context using sorting networks, and we apply their
approach directly with only minor modifications. A sorting
network is a structure that specifies an ordering of swaps
to sort in place any sequence of pre-defined length. The
networks are oblivious to the data of any input sequence.
Jónsson et al. [15] use Batcher’s odd-even merge sorting
network [2] to specify swaps, and perform swaps via an MPC
sub-protocol, compare-exchange, utilizing MPC primitives.
Because sub-sequences of our global history are already
sorted, an odd-even merge network suffices. Also, as we are
already employing additive secret shares, and they are very
effective in practice [22], we use them throughout. Hence,
we opt to have O and Q evaluate the compare-exchange
circuit jointly via GMW. Finally, O and Q will strip the
global history of its time keys, resulting in bỹ , an ordered
event sequence, only shared amongst themselves.

It remains to show that this protocol is correct and secure.
Theorem 1: Protocol 1 is correct and secure.

Proof (sketch): Both correctness and security come from
Jónsson et al. [15], since the GMW Protocol is an MPC
primitive. The other modifications introduced are entirely
peripheral to security.

B. Oblivious Combinatorial Filter Evaluation

Next, we build on prior results for Oblivious DFA evalua-
tion [19], [28]. We extend that work to support oblivious
Moore machine evaluation under the semi-honest model.
First, to make the connection, we must translate an arbi-
trary combinatorial filter to a binary alphabet Moore ma-
chine. By a binary Moore machine we mean an M =
(Q, {0, 1},∆, q0, C, c) composed of a finite set of states Q,
the symbols 1 and 0, a transition function ∆ : {0, 1}×Σ→
Q, an initial state q0, a finite set of colors C, and a coloring
function c : Q→ C.

As we create a binary Moore machine M from a filter F,
states and corresponding colorings for M are given directly

from the filter. For each state qi ∈ Q ∩ V , add states
and transitions to create a complete binary tree of depth
dlog |Y |e, with leaves transitioning to another original state,
specified by the edges E. Create a new color grue, and assert
that new states qj ∈ Q \ V map to this color c : qj → grue.
Note that in our construction, ε will result in a self-loop. The
Moore machine M constructed in this way from a filter F has
the property that for all FJỹK = ζ0ζ1 . . . ζ|ỹ| and MJbỹK =
η0η1 . . . η|bỹ|, where bỹ is the binary representation of ỹ with
dlog |Y |e-bits per symbol, then ζ0 = η0, ζ1 = ηdlog |Y |e, . . . ,
ζk = ηk·dlog |Y |e . . . , ζ|ỹ| = η|ỹ|·dlog |Y |e = η|bỹ|.

Mohassel et al. [19] introduce the DFA Matrix (see Fig-
ure 3 [left]) as a building block to oblivious DFA evaluation.
A binary DFA Matrix M represents states si = (j, k) as
pairs of transitions si →0 sj and si →1 sk, where si ∈ Q.
Evaluating a binary DFA Matrix on a bit sequence b involves
choosing the b[i]th element of the current state pair at each
row, then advancing to the next row. In the final row of
the matrix, a string is either ‘accepted’ or ‘rejected’ by the
DFA matrix. A DFA Matrix of size n × |Q| is needed to
process sequences of length n on a DFA with states Q. In
our case, we wish to have Q obtain the colors along the
evaluation path in an incremental fashion. We can encode a
binary Moore machine matrix in the same way as a DFA
Matrix by simply adding a color label to each state pair
to form a triple, si = (j, k, c(i)), and by outputting colors
at each state rather than producing only an ‘accept’/‘reject’
output in the last row (see Figure 3 [right]). In this case,
we require the Moore machine matrix to be of the size
(|bỹ| + 1) × |Q| because the machine outputs one color
at each state, unlike the DFA Matrix formulation, which
may output one of two different results at the special final
case. Following the definition of a Moore machine, there
is a corresponding output of size |bỹ| + 1, since a color is
output before processing any input. Our formulation does not
include a special output row because the matrix is designed
to extend in response to new inputs.

Mohassel et al. go on to permute a DFA Matrix into
a permuted matrix PM by shuffling the states randomly
but keeping the correctness of the transitions. Thereafter, a
garbled matrix is produced so that, for any particular input
string, only an authorized evaluator can reveal the states
along the evaluation path, while the rest of the matrix is
computationally indistinguishable from random. The method
for constructing a garbled binary Moore machine matrix that
can be evaluated on the joint input of O and Q is largely
based upon [28], and has the following steps:

First, start with binary Moore machine matrix M of
triples, and create a permuted matrix PM . Second, create
a matrix RM of size (|bỹ| + 2) × |Q| of random values
RM [i, j]

R← {0, 1}κ, where κ is the security parameter.
Then, for each row i, create a pair of garbled keys ki0, k

i
1
R←

{0, 1}κ+log |Q|−1. Then, manipulate the last bit of the garbled
keys with the point-and-permute [4] bit σi

R← {0, 1}, which
will assist evaluator in choosing the right tuple element to
decrypt, ki0 ← (ki0||σi), ki1 ← (ki1||(1− σi)).

We will use RM to obscure all matrix elements from each
other, and employ garbled keys to obscure the two transitions

in each triple from one another. The garbled matrix entries
will be updated as follows:

GM [i, j]0 ← (PM [i, j]0||RM [i+ 1, PM [i, j]0]0)⊕ ki0
GM [i, j]1 ← (PM [i, j]1||RM [i+ 1, PM [i, j]1]1)⊕ ki1
GM [i, j]2 ← c(PM [i, j]2)

When examining state j in row i, PM [i, j] gives the
transitions away from the state, and the color of this state.
Matrix RM will be used to decrypt the elements that
PM [i, j] points to. Garbled keys are used to mask the values
of this pair of items.

For each triple in each row, swap the first two items if σi =
1. Now generate ciphers pi,j0 , pi,j1 ← G1(RM [i, j]) to mask
transitions and pi,j2 ← G2(RM [i, j]) to mask colors, then
mask the elements of each triple: GM [i, j]0 ← GM [i, j]0⊕
pi,j0 , GM [i, j]1 ← GM [i, j]1 ⊕ pi,j1 , GM [i, j]2 ←
GM [i, j]2 ⊕ pi,j2 .

Once the construction of the garbled matrix is complete, O
sends Q the initial state index q0, the pseudorandom genera-
tors G1 and G2 and the initial random value r = RM [1, q0].
Q proceeds by retrieving stream ciphers p1,q00 , p1,q01 ←
G1(r), p1,q02 ← G2(r). Q also needs garbled keys kiỹ for
each bit in the shared input string ỹ, accomplished by batch
oblivious transfer with joint choice (FBatch

OTJC). This MPC
protocol, secure under the semi-honest model [28], entails
O transferring its input string of joint choice kỹ to Q via
both parties’ shares of the choice, bOỹ and bQỹ .

Given garbled keys,Q can evaluate the matrix row-by-row.
At each row i, decrypt output color ← GM [i, qi]2⊕pi,qi2 to
obtain the initial color. Also, for each row i and state j, Q
decrypts GM [i, j]c ← pi,jc ⊕ ki ⊕GM [i, j]c, where c is the
last (point) bit of ki. Q can repeat this procedure, finding
the next stream ciphers pi,j0 , pi,j1 , pi,j2 with every new state
visited, and outputting the color GM [i, j]2 ⊕ pi,j2 . This is
formalized via Protocol 2.
Protocol 2: Obliv. Moore Machine Evaluation w/ Joint Input
COMMON INPUTS:
• Security parameter κ, length of input |ỹ|, the size of the event

space |Y |, the number of states |Q|, the number of colors
|C|, the pseudorandom number generators G1 : {0, 1}κ →
{0, 1}κ+dlog |Q|e, where G2 : {0, 1}κ → {0, 1}dlog |C|e.

PRIVATE INPUTS:
• O inputs its share of the event sequence, bOỹ , and a Moore

machine matrix M .
• Q inputs its share of the event sequence, bQỹ .

OUTPUTS:
• O outputs ⊥.
• Q outputs the color stream MJỹK.

Now, turn to the correctness and security of the protocol.
For a protocol to follow the semi-honest model, it must

produce the correct output, and guarantee that nothing can
be learned during execution other than what can be obtained
from inputs and outputs. The simulation proof technique [18]
prescribes an analysis of the inputs and outputs of a party
by constructing a polynomial-time simulator of its real view,
and asserting that all intermediate data obtained can be faked
by the simulator, such that no polynomial-time distinguisher
could tell the difference between simulated and real data. For
more complete details on the role of the simulation paradigm
in Theorem 2, please refer to simulator construction for semi-
honest adversaries [18].

For Garbled Moore machine evaluation on joint input to be
correct, the output of the ungarbled and garbled Moore Ma-
chines must match, given the same input: MJyK = GMJyK.

Lemma 1: Protocol 2 evaluates the Moore Machine cor-
rectly: given input string obliviously shared as bQỹ and bOỹ ,
the protocol outputs MJbQỹ ⊕ bOỹ K.

Proof: To evaluate the garbled matrix, Q must keep
track of several values: the current row, the state index, and
the random seed, represented by i, qi and ri, respectively.
Initially, Q gets q0 and r0 from O, then sets r1 ← r0,
q1 ← q0 and i ← 1. Then, for each row i ∈ {1 . . . |ỹ|},
Q performs the following procedure. First, use G1 and G2

to generate three stream ciphers: pi,qi0 ← G1(ri); pi,qi1 ←
G1(ri); pi,qi2 ← G2(ri).

The color output at the current state is obtained:
output color ← GM [i, qi]2 ⊕ pi,qi2 . (1)

Next, Q obtains the garbled key kic, corresponding to the
shared input ỹi. The point-and-permute approach was taken
to construct each garbled key, such that the last bit c of kic
is the index of the correct state transition. Below, α is just
ỹi, the ith bit of the input being processed.
GM [i, qi]c ← (PM [i, qi]α||RM [i+ 1, PM [i, qi]α])⊕ pi,qic ⊕ kic.

During construction of a matrix item in column j,
GM [i, j]0 and GM [i, j]1 are not swapped if σi = 0.
Consider that Q comes prepared to GM [i, j] with a gar-
bled key ki0 = ({0, 1}κ+dlog |Q|e−1||0). The elements were
not swapped, so GM [i, j]0 is indeed encrypted with ki0.
Likewise, a ki1 = ({0, 1}κ+dlog |Q|e−1||1) would match with
GM [i, j]1. If σi = 1 during construction of a GM [i, j], the
elements of GM [i, j] are swapped. Observe that GM [i, j]0
is still the item which is encrypted with ki0, and GM [i, j]1
is encrypted with ki1.

Given the fact that c pointsQ to the correct transition item,
Q obtains the next index, qi+1 ← PM [i, qi]c, and the seed,
ri+1 ← RM [i+ 1, PM [i, qi]α], via the XOR operation:
GM [i, qi]c ⊕ pi,qic ⊕ kic = (PM [i, qi]c‖RM [i+ 1, PM [i, qi]α])

Finally, for row |ỹ|+ 1, party O obtains the color (1) and
has no further input to process.

We emphasize an important difference between our proof
of security and the proof by Zhao et al. [28] for oblivious
DFA evaluation. They take a random approach: the simulator
generates a random garbled matrix and evaluates it. If the
output is the same as the output in the real execution,
then the simulator can provide this garbled matrix, which
is indistinguishable from that of real execution. Otherwise,
try again with another garbled matrix, until one is found with
the correct output. As a DFA matrix only outputs a single
terminal bit, the above algorithm is probabilistic polynomial-
time. In our case, since we need a |C|-ary output at each
row, their technique would become probabilistically O(Cn).
Accordingly, we use a more direct approach to simulate in
polynomial-time, an approach akin to that of [19].

Lemma 2: Protocol 2 is private against semi-honest ad-
versaries.

Proof: Under the semi-honest model of secure two-
party computation, only one party may be corrupted by an
adversary. We consider each case, one at a time:

Corrupted O: We must construct the party’s real view
via a simulator that is granted O’s input and output, but

no information from other parties. The only work that this
simulator must do is to fabricate messages that cannot be
distinguished from those O receives. All messages received
during Protocol 2 are only those needed to evaluate FBatchOTJC .
Therefore, we rely on the privacy of FBatchOTJC to achieve
privacy in the case of Corrupted O. The specification and
security proof of FBatchOTJC can be found in [28].

Corrupted Q: The simulator SQ is given the inputs
common to both parties, plus Q’s inputs (ỹQ) and outputs
(MJỹK). The simulator will provide a view indistinguishable
from Q’s real view using only the inputs and outputs
available to it:

{SQ(κ, |Y |, |Q|, G1, G2, |ỹ|, ỹQ,MJỹK)} c≡
{viewπQ(κ, |Y |, |Q|, G1, G2, |ỹ|, ỹQ,MJỹK)}.

Braces are used to show that the views are thought of
as distributions over all possible executions of the protocol
π = Protocol 2.

The view of the real execution can be written

viewπQ(κ, |Y |, |Q|, G1, G2, |ỹ|, ỹQ,MJỹK) = (GM,K, q0, r0),

where, as before, r0 ← RM [1, q0].
So, SQ must construct some plausible GM ′, K ′, q′0 and

r′0. The simulator uses a modification of the procedure
described in [19, sect. 4.3]. We omit details owing to limited
space but, in essence, it places uniformly random values
in GM ′, everywhere except along the evaluation path of a
single consistent execution.

Like Mohassel et al. [19], we show the indistinguishability
of the real and simulated views with an inductive argument.
Suppose D0 = {(GM,K, q0, r0)} is the distribution of the
real view of Q during execution. To craft subsequent Di+1,
i ∈ {1 . . . |ỹ| − 1}, start with Di and modify the garbled
matrix row GM [i + 1] by replacing each element, except
that which lies on the transit path, with a uniformly random
value. In the end, Dn = {(GM ′,K ′, q′0, r′0)} will be the
view that SQ produces using the algorithm above. The goal
is to show that the two distributions are computationally
indistinguishable, i.e., D0

c≡ D|ỹ|.
To show that Di

c≡ Di+1, first observe that the output at
row i+ 1, specifically the output color from the Moore ma-
chine after processing ỹ[1...i], is unchanged, and transitions
pointing from GM [i] to GM [i+ 1] along the transition path
are identical across Di and Di+1. It only remains to show
that the elements replaced in Di+1 are indistinguishable from
the real garbled matrix entries in Di.

In Di, elements of GM [i+ 1] are encrypted with stream
ciphers, which are generated with pseudorandom number
generators. Since the seeds we provide to the pseudorandom
generators are assumed to be uniformly random in the
protocol specification, the stream ciphers are indistinguish-
able from uniformly random. When the stream ciphers are
indistinguishable from uniformly random, the XOR opera-
tion makes elements of GM [i + 1] indistinguishable from
uniformly random.

In Di+1, the elements of GM [i+1] are chosen at random,
uniformly. Any two values which are individually computa-
tionally indistinguishable from uniformly random will also

1 2 4 8 16 32 64 128
L

0

1

2

3

4

5

O
Ts

1e5

1.0 2.4
4.3

6.8

9.1

12.9

18.9

24.1
Runtime OTs vs. Time Window

1 2 4 8 16 32 64 128
L

12

14

16

18

lo
g(

O
Ts

)

OTs (Sparse vs. Padded)

symbol bits (moore)
symbol bits (sort)
time bits (sort)

Fig. 4. [left] A breakdown of pre-computed 1-bit random OTs consumed
during run time, as the local history length L is increased, and 2τ = L.
[right] The total number of OTs where we constrain the sparcity of events
to at most L per 2τ = 128 time units. The red line allows for comparison
to when we take single element windows and forgo sorting.

be computationally indistinguishable from each other, so the
row GM [i+ 1] is indistinguishable across Di and Di+1.

Transitivity gives D0
c≡ D|ỹ|, thus {SQ}

c≡ {viewπQ}.
Note that in our implementation, we evaluate a Moore
Machine in an iterative fashion. This proof of security can be
extended to the entire execution by imagining concatenating
all iterative rounds into one round. Messages inbound to O
are simply the communication involved in FBatchOTJC . Messages
inbound to Q are the concatenated garbled keys, the concate-
nated garbled matrix, and the initial state and pad. Finally, the
inputs and outputs are the same, so using the above proof in
subsequent iterations is admissible, as it is just like increasing
the length of input for one execution of the protocol.

Theorem 2: Under the MPC simulation proof paradigm,
Lemma 1 and Lemma 2 yield that Protocol 2 is correct and
secure in the semi-honest model.

VI. EXPERIMENTAL RESULTS

We now present the proof of concept for the proposed
protocols as a simple multi-process python program where
Q and O run as two processes on the same machine.

A. Implementation Details
We begin with a simulator shown in Figure 1 [left] that

produces the crossing logs for individual event detectors in
the environment. The logs are processed and transformed into
shares by an individual process acting as an event detector
and transmitted to Q and O. The primary work is a third
multi-process program where Q and O sort shares of the
event history as per Protocol 1, then evaluate a combinatorial
filter on the resulting event sequence, via Protocol 2. We
use an additional Python script to pre-compute oblivious
transfers as an optimization technique. The code is instru-
mented to record running times and the number of OTs under
different scenarios; a summary appears in Figure 4.

B. Results
We set security parameter k = 28. Run times were

obtained by running our program on the following hardware:
Macbook Pro 13-inch, 2017. 2.3GHz Dual-Core Intel Core
i5. 8GB 2133 MHz LPDDR3 RAM. Figure 4 [left] gives a
breakdown of the consumption of OTs for different aspects of
the protocol. Sorting requires OTs for the time (for τ width
times) and for the symbols (2 bits for all examples). The
parameter L and τ increase to right, with 2τ = L. Each bar

involves multiple rounds in order to consume the same total
number of symbols. Notice, consequently, that the OTs for
the Moore machine evaluation are constant, as this is a factor
of the total sequence length. As L increases, the cost to sort
the inputs increases super-linearly. The conclusion from this
appears to be that sorting is ineffective. Indeed, in scenarios
where communication between detectors and privacy peers is
an abundant resource, or the frequency of detection is high,
a simpler construction of Functionality 1 may be warranted.
A simpler variant would have a time window L = 1, and the
sorting aspect of Functionality 1 becomes degenerate.

But the story is a bit more involved: using the preceding
data, we are also able to calculate the cost for use of the
protocol when the relative density of symbols in the history
varies. By pooling data from relatively large time windows
but with small L (i.e., 2τ � L) we model filtering of sparse
inputs. Figure 4 [right] shows that before a certain point (L ≈
42), when the input symbols are sparse enough, it is useful
to sort them and only evaluate the fraction that is known to
be non-ε (e.g., owing to some a priori model of sparsity).
Once L exceeds 42, it is better to spend fewer resources
on pooling, and simply evaluate the Moore machine on the
inputs on L = 1 slices. (For comparison, the red line in
Figure 4 [right] is the same treatment as Figure 4 [left].)

VII. CONCLUSION

We present an approach to aggregate and filter data from
several sensors with privacy guarantees. We introduced and
implemented protocol constructions based on the integration
of known primitives (like OT and the GMW protocol)
and techniques (like sorting, privacy peers, and split secret
shares) in Secure Multi-Party Computation. We extend prior
work on joint DFA evaluation to the case of Moore machines,
proving that security is preserved under the semi-honest
adversary model. We implemented our MPC-based sensor
fusion and evaluated it in a simple study case. There are
several exciting avenues for future work.

The implementation of Protocol 1 makes use of a low-
depth comparison circuit [9] to minimize rounds of oblivious
transfers between Q and O, but we do not take advantage
of many of the optimizations to the GMW Protocol that
are available, including extending oblivious transfers [13],
parallelizing oblivious transfers in batch, using multiplica-
tion triples [3] and performing load balancing [22]. Moore
machine evaluation can be further improved by implementing
suggestions found in [28]. This paper has described a first
treatment of the combinatorial filtering problem in a private
setting that we are aware of; no claims have been made about
the absolute efficiency of the approach, but it has been shown
by our rudimentary implementation to be practically feasible
for small-scale instances. Future work should look at further
instances of oblivious sensor fusion.

REFERENCES

[1] A. B. Alexandru and G. J. Pappas. Secure multi-party computation for
cloud-based control. In Privacy in Dynamical Systems, pages 179–207.
Springer, 2020.

[2] K. E. Batcher. Sorting networks and their applications. In Proceedings
of the April 30–May 2, 1968, Spring Joint Computer Conference,
AFIPS ’68 (Spring), page 307–314, New York, NY, USA, 1968.

[3] D. Beaver. Efficient multiparty protocols using circuit randomization.
In J. Feigenbaum, editor, Advances in Cryptology — CRYPTO ’91,
pages 420–432, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

[4] D. Beaver, S. Micali, and P. Rogaway. The round complexity of
secure protocols. In Proceedings of the Twenty-Second Annual ACM
Symposium on Theory of Computing, STOC ’90, page 503–513, New
York, NY, USA, 1990. Association for Computing Machinery.

[5] L. Bobadilla, O. Sanchez, J. Czarnowski, and S. M. LaValle. Minimal-
ist multiple target tracking using directional sensor beams. In Proc.
IEEE Int. Conf. on Intell. Robots and Systems (IROS), 2011.

[6] C. G. Cassandras and S. Lafortune. Introduction to discrete event
systems. Springer Science & Business Media, 2nd edition, 2009.

[7] H. Durrant-Whyte and T. C. Henderson. Multisensor data fusion. In
B. Siciliano and O. Khatib, editors, Springer Handbook of Robotics,
pages 867–896. Springer, 2016.

[8] C. Dwork and A. Roth. The algorithmic foundations of differential
privacy. Found. Trends Theor. Comput. Sci., 9(3–4):211–407, 2014.

[9] J. Garay, B. Schoenmakers, and J. Villegas. Practical and secure
solutions for integer comparison. In Public Key Cryptography (PKC),
pages 330–342, 2007.

[10] R. Gennaro, C. Hazay, and J. Sorensen. Text search protocols with
simulation based security. In Public Key Cryptography (PKC), pages
332––350, 2010.

[11] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Appli-
cations. Cambridge University Press, USA, 2004.

[12] O. Goldreich, S. Micali, and A. Wigderson. How to play ANY mental
game. In Proc. of the Symposium on Theory of Computing (STOC),
pages 218–229, 1987.

[13] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious
transfers efficiently. In D. Boneh, editor, Advances in Cryptology -
CRYPTO 2003, pages 145–161. Springer, 2003.

[14] R. Jacob, J.-J. Lesage, and J.-M. Faure. Overview of discrete event
systems opacity: Models, validation, and quantification. Annual
Reviews in Control, 41:135–146, 2016.

[15] K. Jónsson, G. Kreitz, and M. Uddin. Secure multi-party sorting and
applications. IACR Cryptology ePrint Archive, 2011:122, 01 2011.

[16] J. Le Ny and G. J. Pappas. Differentially private filtering. IEEE
Transactions on Automatic Control, 59(2):341–354, 2014.

[17] L. Li, A. Bayuelo, L. Bobadilla, T. Alam, and D. A. Shell. Coordinated
multi-robot planning while preserving individual privacy. In Proc.
IEEE Int. Conf. on Robotics & Automation (ICRA), pages 2188–2194,
2019.

[18] Y. Lindell. How to Simulate It — A Tutorial on the Simulation
Proof Technique. In Y. Lindell, editor, Tutorials on the Foundations
of Cryptography, pages 277–346. Springer, Apr. 2017.

[19] P. Mohassel, S. Niksefat, S. Sadeghian, and B. Sadeghiyan. An effi-
cient protocol for oblivious dfa evaluation and applications. In Cryp-
tographers’ Track at the RSA Conference, pages 398–415. Springer,
2012.

[20] J. M. O’Kane and D. A. Shell. Automatic design of discreet discrete
filters. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 353–360, 2015.

[21] J. M. O’Kane and D. A. Shell. Concise planning and filtering:
hardness and algorithms. IEEE Transactions on Automation Science
and Engineering, 14(4):1666–1681, 2017.

[22] T. Schneider and M. Zohner. GMW vs. Yao? efficient secure two-
party computation with low depth circuits. In A.-R. Sadeghi, editor,
Financial Cryptography and Data Security, pages 275–292, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[23] B. Tovar, F. Cohen, L. Bobadilla, J. Czarnowski, and S. M. Lavalle.
Combinatorial filters: Sensor beams, obstacles, and possible paths.
ACM Transactions on Sensor Networks (TOSN), 10(3):47, 2014.

[24] Y.-C. Wu, V. Raman, B. C. Rawlings, S. Lafortune, and S. A. Seshia.
Synthesis of obfuscation policies to ensure privacy and utility. Journal
of Automated Reasoning, 60(1):107–131, 2018.

[25] A. C.-C. Yao. How to generate and exchange secrets. In Proceedings
of the 27th Annual Symposium on Foundations of Computer Science,
pages 162–167, 1986.

[26] Y. Zhang and D. A. Shell. Complete characterization of a class of
privacy-preserving tracking problems. The International Journal of
Robotics Research, 38(2-3):299–315, 2019.

[27] Z. Zhang, J. Wu, D. Yau, P. Cheng, and J. Chen. Secure kalman filter
state estimation by partially homomorphic encryption. In Proceedings
of the 9th ACM/IEEE International Conference on Cyber-Physical
Systems, pages 345–346. IEEE Press, 2018.

[28] C. Zhao, S. Zhao, B. Zhang, S. Jing, Z. Chen, and M. Zhao. Oblivious
DFA evaluation on joint input and its applications. Information
Sciences, 528:168–180, 2020.

	Introduction
	Related Work
	Filters, Estimators, and Trackers
	Secure Multi-Party Computation
	The GMW protocol

	Preliminaries
	Basic Notation
	Security Model
	Combinatorial Filters

	Problem Formulation
	Securely Pooling Event Sequences
	Oblivious Combinatorial Filter Evaluation

	Methods
	Secure Event Sequence Pooling
	Padding inputs
	Creating Secret Shares from Event Detectors
	Sorting

	Oblivious Combinatorial Filter Evaluation

	Experimental Results
	Implementation Details
	Results

	Conclusion
	References

