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Abstract 

 
Physical D-forms are obtained by joining the boundaries of two flat shapes with the same perimeter. To ensure both 

possess identical perimeters, one usually joins two pieces with identical shape (e.g., two congruent ellipses. Yet, using 

two different shapes increases the design possibilities significantly. In this paper, we present a simple mathematical 

approach to obtain two isoperimetric shapes for the physical construction of more general D-form surfaces. Using 

this approach, we have developed plug-ins for Adobe® Illustrator and Inkscape, which we tested in two freshman-

level architecture studios. All of the freshman students were able to construct interesting physical D-form surfaces 

and then, using these physical form surfaces as casts, were able to build interesting concrete sculptures.  

 

 
Figure 1: Examples of concrete D-forms that are obtained using our methods. Freshman Design Studio, 

(Fall 2015), Texas A&M. 
 

 
Introduction and Motivation 

 

Developable surfaces [1] are particularly interesting for architectural design [2] as they have the property 

that they can be constructed from planar materials, like sheet metal, without extensional deformation. By 

physically constructing developable surfaces, it is possible to find novel forms [3, 4, 5]. A very interesting 

method to build developable surfaces, called D-forms, was invented in early 2000s by the London designer 

Tony Wills [6]. This relatively new method was first formally introduced to the art and math research 

community by John Sharp in 2005 [7, 8]. D-form surfaces are created by joining the edges of two flat 

surfaces that possess perimeters of identical length [6, 7]. Importantly, Willis and Sharp demonstrated that 

most flat surfaces can produce a large variety of 3D shapes: altering the initial point along which the two 
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edges are joined changes the shape and volume of the resulting solid. Since then, there has been a growing 

interest using versions of this method to create complicated surfaces [9, 10]. 

 
The simple elegance of D-forms, especially in creating a wide variety of aesthetically appealing shapes, 

makes them ideal for use in introduction-level architecture studios. But creating two different shapes whilst 

ensuring that they have the same perimeter is not straightforward in general. No prescription, thus far 

established, enables one to obtain two different shapes with the same perimeter easily and flexibly — unless 

they are geometric shapes whose perimeters are given by well-known analytical formulas. Smooth 

geometric shapes for which such formulas exist are, unfortunately, fairly rare.  Even for ellipses, no exact 

analytical formula exists to compute their perimeters [11].  For this reason most people create D-forms with 

two identical flat shapes. This paper presents a mathematical approach to obtain isoperimetric shapes 

starting from two boundary curves with different lengths.  

 
Based on this approach, we have developed a software application called D-former to aid users in the 

creation of shapes with perimeters suitable for the created of D-forms. We implemented D-former as a 

plugin for Inkscape, an open source vector graphics software, and Adobe® Illustrator®, a commercial 

vector graphics software suite. We have also provided a feature to add “connectors” that is particularly 

useful to users interested in physical construction of the form, for example, by assembling pieces produced 

by a laser-cutter. 
 

 
Mathematical Foundations 

 
This section presents our new mathematical framework that provides an explanation for the aesthetic appeal 

of D-form surfaces and shows that we can always obtain desired perimeters by uniformly scaling the 

original curve. 

 

The Visual Aesthetic of D-forms: We recently noticed that D-forms are really the result of a continuous 

version of angular defect.  Suppose that the two curves bounding the surfaces to be joined are denoted 

C0(t) and C1(t). In D-forms we observe that the angle defect is distributed along the curve. Let the angular 

change in any of the connection positions of the two be denoted by 𝜃0 (t) and  𝜃1(𝑡)  — In Discrete 

Differential Geometry angular change is also called turning angles or Discrete Gauss map (see [14]) —then 

the change in angle defect at that point is defined, based on these two angles, as   

 

𝜇(𝑡)  = 2𝜋 − 𝜃0(𝑡) − 𝜃1(t).             (1) 

 

We note that this is related to winding number and 2D Gaussian curvature. From Differential Geometry we 

know that for single simple closed curves, parameterized by a parameter t between 0 and 1, the following 

equation always holds [14].  

 

 ∫(𝜋 − 𝜃0(𝑡))𝑑𝑡

1

0

=  2𝜋.                   (2) 

 

This equation is really the 2D version of the Gauss-Bonnet theorem for closed simple curves. If we take the 

integral of Equation 1, we obtain a result that is consistent with 3D Gauss-Bonnet theorem [12] as follows:  
 

∫(2𝜋 −  𝜃0(𝑡) − 𝜃1(𝑡)) 𝑑𝑡

1

0

=  4𝜋.          (3) 
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Note that here  4𝜋  is exactly the Euler Characteristic of a genus zero surface (which is 2) times 2𝜋, as 

predicted by the Gauss-Bonnet theorem. In other words, in a D-form, Gaussian curvature is zero everywhere 

except along the 3D curve that is created by joining the two (originally planar) curves. By changing the 

starting point, we simply change the distribution of Gaussian curvature on the 3D curve. Since along a 

smooth curve the value of the Gaussian Curvature changes smoothly, the resulting D-form’s surface 

provides a smooth curvature change in 3D. Most likely the visual appeal of D-form surfaces comes from 

this property. As noted, we may alter the distribution of local curvature simply by changing the first 

connection point. 

 

Uniform Scaling: The key idea behind our approach for equalizing perimeters is that uniform scaling of 

any shape changes its perimeter by exactly the scale amount. Although it is difficult to supply an exact 

formula for the perimeter of a shape, it is always possible to estimate its perimeter by using a reasonably 

dense piecewise linear approximation of the boundary of the shapes, itself a closed curve. 

 

Let a closed curve 𝑝 =  𝐶(𝑡)  be defined by a parametric function, such as a Catmul-Rom or B-Spline 

polynomial [13], with a periodic parameter t, where 𝐶(𝑡) is a function from [0, 1] to ℝ2 with 𝑝 = (𝑥, 𝑦). 

Regardless of the underlying parametric function, curves are drawn in a vector drawing software packages 

as piecewise linear curve passing through a set of n points such as (𝑝0, 𝑝1, 𝑝𝑖, 𝑝𝑖+1, 𝑝𝑛−1). From this 

approximation, the perimeter of an approximated shape can be computed as follows:  

𝐴 = ∑ |𝑝𝑖+1 − 𝑝𝑖|

𝑛−1

𝑖=0

 

where |. | is an L2 norm and + in the subscript  is a summation modulo n.  Now, we apply a uniform scaling 

operation via a scaling parameter s around a given pivot point 𝑝𝑐, so that every point is transformed by the 

following equation as 

 

𝑝́ = 𝑠 (𝑝 − 𝑝𝑐) + 𝑝𝑐 
 

where 𝑝́ is the transformed position. Note that the distance between two points is independent of the choice 

of pivot point as follows,  

𝑝́𝑖+1 − 𝑝́𝑖 = 𝑠 (𝑝𝑖+1 − 𝑝𝑐) + 𝑝𝑐 − (𝑠 (𝑝𝑖 − 𝑝𝑐) + 𝑝𝑐) = 𝑠(𝑝𝑖+1 − 𝑝𝑖) 
 

In other words, if s is positive real, then  |𝑝́𝑖+1 − 𝑝́𝑖| = 𝑠 |𝑝𝑖+1 − 𝑝𝑖|. This means that the new perimeter is 

the scaled version of old perimeter as follows:  

 

𝐴́ = ∑ |𝑝́𝑖+1 − 𝑝́𝑖|

𝑛−1

𝑖=0

=  ∑ 𝑠|𝑝𝑖+1 − 𝑝𝑖| = 𝑠 ∑ |𝑝𝑖+1 − 𝑝𝑖|

𝑛−1

𝑖=0

𝑛−1

𝑖=0

= 𝑠𝐴 

 

Thus, if we know current perimeter of a given shape, we can always obtain a new shape with the desired 

perimeter by uniformly scaling.  

 

Methodology: Using uniform scaling, creation of two curves with equal perimeters that can be stitched 

together easily requires the following steps:  

1. Draw two closed curves using a parametric function such as B-Spline or Catmull-Rom [13].  

2. Normalize the shape perimeters by scaling both curves to a given perimeter value. 

3. Add connectors and holes to join curves easily once they are printed or cut. 

4. Using a laser cutter, obtain the two curves with their connectors.  
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5. Construct D-form surfaces using these curves.  

6. Create concrete D-Forms using D-Form surfaces as casts (See Figure 1).  

This whole process could be implemented with stand-alone software, but with the disadvantage that 

providing powerful user-interface tools is involved, not to mention requiring a user to become familiar with 

the software. Therefore, instead of implementing a new drawing program from scratch, we extended two 

existing products which already have sophisticated user interfaces.  

 

 
 

Implementation 
 

We build D-formers as a plug-in on top of two existing and widely used 2D vector drawing software 

programs: Adobe Illustrator and Inkscape. Figure 2 shows the block diagram of our D-former plug-in. The 

blocks in blue are the scripts that are part of our solution. These scripts are: Normalize-Perimeters, Add-

Stitching, Add-Leaves, and Add-Notches. The Normalize-Perimeter script ensures that the D-form 

conditions are met. The other three “Add” scripts provide support for users in the later physical construction 

of D-form surfaces. Purple blocks represent internal components, or functions, that the scripts rely on to 

accomplish their individual task. The bidirectional arrows are used to indicate a dependency (the flow of 

input and output). The arrow between the top and the middle layer show that scripts will need input from 

the software and will eventually modify the desired document in the two applications. 
 

 

 

 
Figure 2: Block Diagram of our D-Former Plug-Ins. 

 

Figure 3 shows screenshots from the program that demonstrates the effect of Normalize-Perimeter operation 

on two random shapes.  
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Original Input Shapes                    Isoperimetric Shapes Produced Original Input Shapes Isoperimetric Shapes 

Produced 

Figure 3: Examples showing how isoperimetric shapes are obtained. 

 

Add operations insert equally spaced holes, notches, and leaves. Figure 4 shows the difference between 

these three forms of connector.  

 

   

   

Holes (Stitching) Notches Leaves 

Figure 4: The difference between stitching, notches and leaves. 
 

 

Figure 5 shows two laser cut pieces with notches. 

These plug-ins are now used in freshman design 

studio to obtain complicated D-forms such as the 

ones shown in Figure 1. Though it was not 

difficult to physically construct D-forms out of 

relatively simple planar shapes, it was 

challenging for freshman students to create 

complicated D-forms without calculating 

perimeter lengths. Without the D-formers plug-

in, nearly all of them were unable to calculate or 

even estimate the perimeter of an irregular shape 

made from curved lines. With this plug-in, 

detecting the perimeter relationships of pieces 

with unusual and sophisticated boundaries became quite easy for students.  

 
Figure 5: Two laser cut planar shapes with notches. 
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In the freshman studio, 

building a D-form that 

embodied the principles of 

developable surfaces began 

with plane geometry and 

progressed to the three-

dimensional. Depending on 

the complexity and similarity 

of the two planar shapes, a 

variety of results were 

achieved. By moving from 

the simple to the more 

complex, and making a range of volumes from a single pair of flat shapes, the D-former plugin assisted 

students in designing new forms, in a wide variety of scales, and within a multiplicity of contexts. For 

many, it was difficult to believe that complex forms, with their various beautiful and pronounced curves 

and twists, were generated from only two pieces of planar material (see Figure 6). 

 

Working on D-forms provided beginner 

design students with the opportunity to 

tinker and cross disciplinary boundaries 

during their first year of undergraduate 

study. This helped them engage with new 

modalities of research and practice, 

spanning fields of mathematics, 

engineering, computer science, art, and 

embracing design as an overarching 

umbrella. D-form explorations, as the first 

studio assignment, brought the power of 

geometry to the attention of these 

freshman students. Here, besides 

disseminating new knowledge about 

geometry, constructability, and 

materiality, D-forms helped students tap 

into and use their prior mathematical 

knowledge as they designed and made 

their D-forms. The knowledge of geometry 

and the dexterity the students possessed at the beginning of the semester grew steadily throughout the rest 

of the semester, informing their other assignments positively. 

Casting Process 
 
To best realize D-form designs of the students, sculptures were cast in concrete. By speculating on the 

gravitational and hydrostatic forces of concrete objects in a liquid state, the last phase of this assignment 

honed students’ ability to look closely at casting techniques (Figures 1 and 6). They were asked to design 

bases for their concrete pieces that retained a sense of the weight and mass inherent in the material. 

Students were invited to create the most aesthetically pleasing D-form sculptures possible; their designs 

were developed from a combination of concepts drawn from mathematics and various formal approaches. 

In these sculptures, the relationships among craftsmanship, originality, creativity, and spatial characteristics 

were also important considerations (See Figure 7).  

 
Figure 6: A concrete D-form sculpture made out of an organic shape and a circle 

(Designed by Brittney Martinez).  Freshman Design Studio (2015), Texas A&M. 

 

  

  
Figure 7: Examples of D-form surfaces used for casting. 
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For many, it was difficult to believe that 

all of the sculptures, with their various 

beautiful and pronounced curves and 

twists, were generated from only two 

pieces of planar material. By dealing 

with a heavy concrete mix that 

gradually changed from liquid to solid 

and utilizing formworks made from 

plastic sheets with very limited strength, 

elasticity, and stretch-ability, almost all 

of the sculptures evolved into rock-hard 

D-forms with no major wrinkles on 

their surfaces or other forms of defect 

such as shrinkage cracks or blistering 

(See Figure 8).  
 

Conclusion and Future Work 
 
We hope in the future to construct one 
or two D-forms on a larger scale with 
the help of the software we have 
developed. We are now exploring 
improvements to the software, so that a 

user can design D-forms and directly visualize the final form in the software before engaging in physical 
construction.  Figure 9 shows our current implementation of a visualizer for D-forms: given two input 
shapes, it uses an optimization formulation to determine the final geometry. After it is designed, the desired 
D-form can be unfolded within the software so that it can then be laser cut.  
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Figure 9: A visualization of mesh relaxation rendering of a D-Form made from two ellipses, one rotated 

through 54° and stitched to the other. The five inset images show stages of the iterative Levenberg-

Marquardt solver minimizing a least-squares optimization problem that penalizes gaps between stitches 

and non-planarity in the pieces. 
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