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Abstract

We examine the problem of moving multiple objects to goal locations by a coordinated team of mobile robots.
Each robot is equipped with an unactuated, compliant chain attached as an appendage that we call its tail. Each
of our robots tow objects by wrapping their tail around an item, securing it by hooking the end of the tail back
onto itself, and then dragging. In addition to towing individually, any two robots wishing to operate within a
tightly-knit sub-team are able to link the ends of their respective tails. These conjoined pairs can skim a region of
space, clustering multiple objects together to transport several at once.

Using operators that model both forms of towing, we formulate the planning problem for collecting multiple
objects and transporting them to goal locations. We propose a general framework using logical formulas to
express complex tasks. This planning problem is NP-hard and so we settle for either an exhaustive enumeration
or a sub-optimal plan. The combinatorics of the action choices make the former prohibitive with as few as eight
robots and objects, so we explore heuristics that give satisfactory solutions in reasonable time. We analyze the
performance of the proposed algorithm to give an understanding of where it expands fewer search nodes than
exact search. The results include data from physical robots executing plans produced by our planner with both
individuals and coupled pairs towing objects.

‘those friends thou hast, and their adoption tried
grapple them unto thy soul with hoops of steel. . . ’

— Shakespeare’s Hamlet

1 Introduction
Manipulation problems that involve transferring multiple objects to given goal locations arise in diverse applica-
tions. Familiar examples include collecting toys strewn across the floor, removing debris from a pond surface, or,
more ordinarily, handling materials in a warehouse. When one can move multiple objects simultaneously, these
problems have inherent parallelism which is ripe for exploitation. This paper studies robots equipped with an un-
actuated flexible structure attached as a tail and examines how these robots can solve multi-object collection tasks
as a team.

People use strings, cords, ropes, and chains in myriad of ways every day—they are used to bind and secure,
they are used to connect and pull, grip and whip. Flexible linear structures are extremely versatile. At present,
robots use strings and ropes only rarely since flexible structures remain difficult to model. Yet the advantages for
manipulation are apparent: when wrapped to encircle a payload, ropes and strings can restrain objects through the
interplay of tension and friction, and, best of all, little need be known about the geometry of the objects being
manipulated once the cord is constricted.

The preceding observations have motivated research on distributed robotic manipulation [Rus et al., 1995, Kube
and Bonabeau, 2000, Fink et al., 2007, 2008, Wilson et al., 2014], and also manipulation with ropes, going back
to the (often overlooked) paper of Yamashita et al. [1998] and also that of Donald et al. [2000]. The extensive
body of research dealing with tethers and robots connected by ropes to their environment [Sinden, 2000, Hert and
Lumelsky, 1994, Igarashi and Stilman, 2010, Kim et al., 2014, Teshnizi and Shell, 2016, McGarey et al., 2016],
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knotting [Saha and Isto, 2006, Augugliaro et al., 2015, Wang and Balkcom, 2016] and wrapping [Hill et al., 2015]
are also related, and so is work on robotic tails [Chang-Siu et al., 2011, Briggs et al., 2012, Rone and Ben-Tzvi,
2014, Libby et al., 2016]. Recent contributions to this area, such as those of Cheng et al. [2008], Fink et al.
[2011], Bhattacharya et al. [2015, 2011], have demonstrated multiple robots using ropes to move objects. The
existing multi-robot work has either a rope affixing robots to the objects they manipulate (exemplified by Cheng
et al. [2008]), or has a pair of robots connected by a rope for skimming on the surface [Bhattacharya et al., 2015]
or descending a cliff [Huntsberger et al., 2003] coordinately. In all the prior work, the rope is attached by the
experimenter beforehand and remains permanently attached throughout.

The present paper first extends a robot capable of manipulating single objects with its passive tail [Kim and
Shell, 2017] to coordinated manipulation problems for multi-robot systems. We assume that all our mobile robots
have an inelastic tail. The ends of their tails can be linked and unlinked each other. Then, this paper examines
the setting where the robots begin unattached and are able to attach or detach autonomously. The robots must
determine whether it is most effective to work as individuals, or to pair off to form a sub-team with another robot,
or some mixture, possibly switching from one form to the other. In this way, we unify both of the preceding
approaches. Further, we examine a class of general goal predicates, allowing for much richer task specifications

(a) Two robots with flexible tails construct a plan to transport four objects: The first step is for the robots to move o1
and o4 to the goal. Acting individually and independently, these actions are carried out concurrently. The second step
involves the pair of robots linking tails and, together, bringing o2 and o3 to the goal.

(b) To perform the first step, each robot tows an item on its own, hooking its tail around the object and releasing it
at the goal. In the second step, the robots execute a primitive that physically couples the pair, they then surround and
drag o2 and o3 to the goal cooperatively.

Figure 1: Consider the problem of moving four objects to the chequered region, with at least two being pink. To minimize
cumulative distance, the robots balance working as a tightly-knit pair versus operating separately. Pairs have the advantage of
greater towing capacity, while individuals may fetch distant objects concurrently.
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than related manipulation work.
Figure 1 provides an illustrative instance of the type of manipulation problem we tackle. The top image

(Figure 1(a)) shows the initial state of the environment and a plan that the robots can execute to solve the problem.
In this case, execution involves two steps. The robots begin by manipulating objects individually by securing
their tails around the objects (Figure 1(b), right). Once the objects have been delivered to the goal region and
released, the robots connect their tails and cooperate in dragging multiple objects to the goal (Figure 1(b), left).
More generally, when working as a conjoined pair, the robots will have greater towing capacity; on the other hand,
two robots operating separately have the advantage of being able to simultaneously collect far-flung objects.

Picking what we believe to be an appropriate level of abstraction, we formulate the planning problem for
Multi-Object Collection via Cooperative Towing (MOCCT) as a discrete optimal path planning problem, whose
solution is a sequence of paths for all robots that minimizes the total manipulation cost. First, we show that the
even small MOCCT problem instances result in huge search spaces—searching the space of all possible motion
combinations for multiple robots and objects is prohibitive. Consequently, in this paper we are compelled to
introduce heuristic simplifications. Our experimental results suggest that, despite needing only a tiny fraction of
the computational time, our heuristic algorithm yields reasonable solutions. Secondly, we identify an example
where small perturbations to the initial positioning of objects produces drastic changes to the optimal plan, so that
the strategy employed must undergo qualitative modifications to retain optimality. We examine the performance
of our approach on this example. Thirdly, we show that it is possible for the proposed algorithm to deal with
scenarios far more general than those that our particular robots in physical experiments have indicated. We show
how to include mixed classes of objects, complex goal specifications and constraints.

This paper contributes the following:
• We study a coordinated towing system where: (1) all robots can be separated or conjoined, (2) these operations

are chosen automatically by the algorithm, and (3) may change during execution, i.e. are dynamic—sometimes
the robots work as individuals, sometimes they operate within tightly-knit sub-teams.

• We present the first physical demonstration of multiple robots solving manipulation problems in this way.

• We formalize the planning problem in a framework that uses generic predicates to describe object properties,
enabling specifications of complex coordination tasks. We believe this to be the first of such generality employed
in multi-robot manipulation settings.

• We propose a heuristic algorithm which simplifies the search space and show that the efficiency gains are sub-
stantial for the problem instances even of moderate size. Specifically, the opportunistic algorithm is able to save
between one and two orders of magnitude running-time over standard A? search (with 8 objects, 2 robots, and
single goal) with negligible loss in solution quality.

In the sections that follow, after discussing the relationship between our work and the broader literature (in
Section 2), we formulate the MOCCT problem in Section 3 and show that it is NP-hard in Section 4. Section 5
presents two algorithms to solve MOCCT problems, and Section 6 first describes the evaluation of the algorithms,
then physical robot experiments, and finally illustrates the generality of the formulation via some complex goal
specifications. Section 7 provides additional discussion, collecting several important practical considerations and
lessons learned from our experience with physical hardware, including some limitations and issues encountered.
The last sections conclude and highlight some future work.

2 Related Work
As the previous section has motivated the problem, this section focuses on relating our approach to the technical
literature. The problem we consider involves the dynamic formation of sub-teams of pairs which move objects
together, but when this facet of the problem is removed, the result can be formulated as a multi-vehicle routing
problem [Dantzig and Ramser, 1959, Lenstra and Kan, 1981]. Specifically when modeling bounded towing ca-
pacity, the movement of objects on the graph representation that we use fits, the capacitated multi-vehicle routing
variant studied by Ralphs et al. [2003] closely. In the robotics literature, the most directly relevant work in this
class is that of Mathew et al. [2015b] who transport objects with multiple heterogeneous robots. (Also, their re-
duction to the TSP (Travelling salesman problem) was a valuable guide for us in producing the NP-hardness result
in Section 4.)
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The present paper is perhaps best characterized as task planning for multiple robots, as distinct from the con-
cerns of multi-robot path planning (see, e.g., van den Berg et al. [2009], Luna and Bekris [2011], Wagner and
Choset [2015]); though, in recent years, this boundary has begun to be blurred by work such as Turpin et al. [2014],
Solovey and Halperin [2014], Vega-Brown and Roy [2016]. We note, particularly, that Solovey and Halperin
[2014] introduced the k-color planning problem recently, which deals with interchangeable tasks; our work allows
for object changeability as expressible by colors, but also more sophisticated specifications too. Recently, several
researchers [Hung et al., 2014, Nedunuri et al., 2014, Dantam et al., 2016] have explored Satisfiability Modulo
Theories (SMT)-solvers [De Moura and Bjørner, 2008, Bouton et al., 2009] for combining task and motion plan-
ning. SMT allows first-order logic formulas to be extended to give a powerful, expressive and high-level interface
for representing constraints in robotics problems [De Moura and Bjørner, 2011]. We use these sorts of formulas to
express constraints and general goals that describe complex object transportation problems.

In order for our robots to link their tails, they rendezvous with one another. Both docking and rendezvous
planning [Roh et al., 2008, Mathew et al., 2015a, Kim et al., 2012] have been previously studied for coordination
of multi-robot systems, though not for physically linking robots.

2.1 Loosely-coupled and tightly-coupled coordination
Discussions of multi-robot systems often use qualifiers like ‘loosely-coupled’ or ‘tightly-coupled’ to indicate the
frequency of information exchange. In the present work, when the robots operate as conjoined pairs, they are
literally physically coupled so that the motions of one robot directly constrains the other. The cases where robots
operate as separate individuals certainly involves less direct interaction. In this regard, this work represents an
instance where the planner is automatically making decisions about whether loose or tight coordination is best,
rather than having a single form of coordination predetermined beforehand.

3 Problem Description

3.1 Problem Setup and Notation
Let the setO = {o1, o2, . . . , on} represent n objects which can be transported by ourm robots: R = {r1, r2, . . . , rm}.
We will write post(oi) to denote the position of object i at time t, (and similarly for robots); t ∈ N0 is a temporal
index, which starts at zero. We will use the term world configuration at time t, to describe the positions of all
objects and robots at that instant. A set of goal locations, G = {g1, . . . , gk}, is given. By extending pos in the nat-
ural way, post(gi) = XG

i ,∀t gives gi’s (fixed) position. We also find it helpful to write the initial positions of the
objects as Xi with Xi = pos0(oi), and robots’ initial locations with XR

i = pos0(ri). Finally, we collect all these
initial positions into the set X = {X1, . . . , Xn, X

R
1 , . . . , X

R
m, X

G
1 , . . . , X

G
k }. To describe the mass of each object,

we will write the function mass(oi) to denote the mass for oi, then let the set D = {mass(o1), . . . ,mass(on)}.
Along with positions, each robot’s state represents that it is either operating alone or has its tail connected to

another robot. Let matcht(ri) = rj , with i = j if and only if ri is operating solo and with i 6= j if and only if ri
and rj are coupled together to form a conjoined pair. We partition R into Rts ∪ Rtp, where solo robots comprise
setRts, and the pairsRtp.

Further, assume two sets of logical predicates are given:

Lstatic contains predicates, like P : O → {True, False}, describing static properties of the objects; e.g., PINK(·),
CYLINDER(·), WOOD(·), BOOK(·), BALL(·), etc.

Lpos with properties defined as P′ : O×X → {True, False}, that include position information; e.g., LOCATEDAT(·, ·).

A set of desired final states is specified via a logical formula, F, written in terms of Lstatic and Lpos, which,
when satisfied in some world configuration, distinguishes it as a goal. Rather than belaboring the point by pro-
viding a complete Backus-Naur Form characterization of the formulas, it suffices to state that the standard logical
connectives (¬, ∧, ∨) can be used. Additionally, SMT also permits one to write relationships between the cardi-
nalities of sets (and natural numbers) with ≤, <, 6=, etc. Note that the goal locations {XG

1 , X
G
2 , . . . , X

G
k } enter

into specifications as part of the domain of predicates in Lpos.
Continuing informally, we provide semantics by mapping to the domain of discourse U . Let the set O ,

{obj1, obj2, . . . , objn} represent n objects. Let the set L , {loc1, loc2, . . . , locv} represent v named locations.
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We define interpretation I at time t, which maps constant symbols to elements, and predicate symbols to relations
on the domain of discourse as:

It=


obji ∈ O 7→ oi ∈ O,
loci ∈ L 7→ Xi ∈ X ,
LOCATEDAT 7→ {〈oi, Xk〉 | oi ∈ O, Xk ∈ X , post(oi) = Xk},
etc.

(1)

As robots and objects are moved, the interpretation undergoes dynamics to model these transitions as they
occur. The predicate and constant symbols provide a discrete representation of the spatial configurations, and
they evolve in discrete time. Next, we relate these elements to a graph representation on which search algorithms
operate.

3.2 The MOCCT Problem Formulation
We formulate the MOCCT problem as a task planning problem using high-level motion primitives [LaValle, 2006]
for the robots’ movements. The sequence of primitives comprises a motion plan having semantics defined in terms
of a configuration-space (c-space) motion (details are below).

Throughout this paper, manipulation proceeds, whether by a single robot or conjoined pairs, by encircling a
payload and then towing it to some position. Once multiple objects are brought together, the robots are incapable
of separating them again.
Modeling assumption: We impose the natural restriction that all the objects at each X ∈ X must be moved
together. It is useful to have notation for the set of all objects at some location, with the mnemonic for a bundle,
we write btX = {oi : O | post(oi) = X}, where X ∈ X ; the X for btX is the bundle’s site. One consequence of
the preceding modeling assumption is that we do not consider plans of sequences longer than the total number of
objects; we denote this maximum T̄ . Another consequence is that we can talk meaningfully about multiple objects
at X ∈ X , because we treat them as indivisible thereafter so their centroid suffices to characterize the state that is
important to the robots.

The search space is now completely specified. Search proceeds over world configurations, with each element
of the search space being a set of bundles, their associated sites, and the robots’ state. We define planning operators
which transition one world configuration to another. It is probably easiest to understand the world configurations
and the valid transitions between them by visual means. Figure 2 illustrates the scenario of Figure 1(a). Bundles
of objects appear in braces at each location. If, at time t, elements from site Xi are moved to Xj , the result
of the operation will be bt+1

Xj
= btXi

∪ btXj
. The figure abstracts away several details, but these are clarified by

looking at the planning operators in terms of the motion primitives the robots use to mediate their operation in the
environment. In the following four primitives, we use r to denote a set of robots, either a singleton r = {rk},
rk ∈ Rts, or a pair r = {rk, r`}, r ⊆ Rtp.

1. TRANSIT(r, Xi): This primitive returns a path ∆1 for moving robot(s) in r to Xi without colliding with ob-
stacles and objects. It changes the robot(s) locations to Xi, initializing their orientation so they are ready to
execute TRANSFER(·).

2. TRANSFER(r, Xi, Xj): This primitive returns a path ∆2 for collision-free motion of robot(s) in r so that all
ok ∈ btXi

arrive at Xj . This changes the locations of both robot(s) and object(s) to Xj .

3. DOCK(r, Xi): For r = {rk, r`}, r ⊆ Rts, this primitive returns a path ∆3 which, when executed, links rk and
r` at Xi ∈ X . This changes the configuration of robots, and places both rk, r` in Rtp, matcht(rk) = r` and
matcht(r`) = rk.

4. SPLIT(r): This primitive returns a path ∆4 for two robots r = {rk, r`}, r ⊆ Rtp, to split their previously
joined tails at their current location. The operator is the inverse of DOCK. When executed, unlinks rk and
r` at Xi ∈ X . This changes the configuration of robots, and places both rk, rl in Rts, matcht(rk) = rk and
matcht(r`) = r`.

If the requirements on r are not met in 3. and 4., the SPLIT or DOCK primitive cannot be used in that context. The
primitives are sequenced in triples to give high-level operators which transform world configurations. We write
πt(r, Xi, Xj), for a sequence that moves the objects atXi toXj : either πt(r, Xi, Xj) = [∆4,∆1,∆2] for |r| = 1,
or otherwise πt(r, Xi, Xj) = [∆3,∆1,∆2] for a pair of robots, i.e. |r| = 2, if such collision-free paths exist
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(a) The initial configuration at t = 0. (b) A goal configuration at t = T .

(c) First step: two solo robots transfer o1 and o4 to the goal concur-
rently.

(d) Second step: a pair transfer o2 and o3 to the goal working to-
gether.

Figure 2: A directed graph representation for the example in Figure 1(a). A green circle indicates a vertex VXi and a curly
bracket shows a set of objects btXi

. Here (a) represents an initial configuration while (b) is a goal configuration; (c) shows the
first step in Figure 1(a), while (d) shows the second step in Figure 1(b). Heuristics mean some edges (dotted) are unlikely to be
explored.

and can be found by our motion planner. In the preceding, the ∆x’s give paths for the subset of robots involved,
namely, r. When πt(·, ·)’s have been constructed for all m robots in R, which we write as Πt(·, ·), the result is a
path in the joint c-space for the team.

Let J be a deterministic cost function estimating, say, the time to execute a path. Then, to define a collective
cost J , we lift J to Πt:

J (Πt) = COMBINE
πt(r,Xi,Xj)∈Πt

{
J(∆4) + J(∆1) + J(∆2) if |r| = 1,
J(∆3) + J(∆1) + J(∆2) if |r| = 2,

(2)

where COMBINE is a function that describes the way concurrent operations are aggregated for the optimization
objective being considered. We use COMBINE in two ways:
• COMBINE = max for robots that stay idle until others complete their tasks.

• COMBINE =
∑

for computing a cumulative total navigation distance for all robots as the cost function.
A few additional elements must be introduced into the model. Firstly, let Li be the tail length, a physical

parameter, for each robot i. Secondly, we define two predicates to deal with towing constraints as follows:{
C1 : R× 2O → {True, False},
C2 : R×R× 2O → {True, False}, (3)

where C1(ri,Op = {o1, . . . , ok}) is true if hooking actions by a robot ri can move all objects in Op and
C2(ri, rj ,Op = {o1, . . . , ok}) is true if dragging primitives by pairs ri and rj can move all objects in Op.
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The following makes explicit assumptions which have been tacit up to this point:

(i) All our mobile robots have an inelastic tail.

(ii) Robots can link and unlink the ends of their tails, but only to form a pair.

(iii) The tail cannot pass through any of the objects when the tail contacts the objects.

(iv) The robots’ and the objects’ states are observable, while the tail configurations are not.

In the work hereafter, we are not interested in infeasible plans and so consider systems where there is at least
one robot (or one pair of robots) that can manipulate objects, ultimately leading to a state satisfying F.
General Problem Definition: A Multi-Object Collection via Cooperative Towing (MOCCT) Planning Problem: Given
O,R,G,X ,D, J,Lstatic,Lpos, and F, COMBINE, with C1 and C2 for all robots, compute a sequence of paths
(Π̄0, . . . , Π̄T ) which minimizes the total delivery cost, where the capacity constraints are never violated and the
goal predicate F, is satisfied in the configuration at time T . Formally:

[Π̄0, . . . , Π̄T ] = arg min
[Π0,...,ΠT ]

T∑
t=0

J (Πt), (4)

subject to

|=IT F, (5)
T ≤ T̄ , (6){

C1(rk, b
t
Xi

) = True, r = {rk}
C2(rk, rp, b

t
Xi

) = True, r = {rk, rp}

}
,∀t ∈ {0, . . . , T},∀πt(r, Xi, Xj) ∈ Πt. (7)

The discrete formulation leads to a single-objective combinatorial optimization problem, where the search
space contains the feasible, cooperative paths for all robots.

4 NP-hardness of the MOCCT Problem
We show that, quite separately from the satisfiability of F, the preceding combinatorial optimization problem is
NP-hard. To do so we define a Trivially Satisfiable Multi-Object Collection via Cooperative Towing problem (TS-
MOCCT), which is simplified in that all objects are to be moved to a single goal. Thus, the logical formula for
TS-MOCCT has the special trivial structure FTS := ∀i, LOCATEDAT(oi, X

G
1 ).

To show the hardness of the TS-MOCCT problem, we will show that (i) an instance of the Vehicle Routing
Problem (VRP), known to be NP-hard [Lenstra and Kan, 1981], can be reduced to an instance of TS-MOCCT, and
(ii) an optimal TS-MOCCT solution can be used to generate an optimal VRP solution.

We describe the VRP [Dantzig and Ramser, 1959, Lenstra and Kan, 1981] briefly: an amount of some com-
modity di is to be delivered to each customer o′i ∈ O where i ∈ {1, . . . , n′} from a central depot g′0 using m′

independent delivery vehicles R = {r′1, . . . , r′m′}. Let pi be the position of customer o′i. The central depot g′0
is at p0. Delivery is to be accomplished with the minimum total cost. J ′(pi, pj) denotes the transit cost from
pi to pj . The goal of VRP is to find a partition of n′ customers into m′ cycles {s1, . . . , sm′} whose only inter-
section is the depot node (starting and ending at the central depot). Overall, VRP = 〈O′ = {o′1, . . . , o′n′},R′ =
{v1, . . . , vm′},G′ = {g′0},X ′ = {p0, p1, . . . , pn′},D′ = {d1, . . . , dn′},J ′〉

Lemma 1 The TS-MOCCT problem is NP-hard.

Proof : We give a polynomial-time transformation of VRP = 〈O′,R′,G′,X ′,D′,J ′〉 into the TS-MOCCT prob-
lem = 〈O,R,G,X ,D, C1, C2, J, Combine〉We map VRP inputs to an instance of the MOCCT problem as follows:

1. n = n′, then O = O′ and D = D′.

2. We set C2 = true and C1 = false for all robots.
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3. We consider only pairs of robots, which was already enforced by picking C1 = false. We let m = 2m′, so
R = {r1, · · · , r2m′}.

4. We have a single goal, then G = {g′0} for the TS-MOCCT problem.

5. We have the set of positions X = {X1, . . . , Xn′ , XR
1 , . . . , X

R
m, X

G
1 }, where Xi = pi for i ∈ {1, . . . , n′}.

The robots’ initial locations XR
i map to p0 for all i. The goal location XG

1 maps to p0.

6. The cost function from Xi to Xj for a pair of robots is J(∆3) + J(∆1) + J(∆2), which results in the
collective cost, J (Xi, Xj), mapping to J ′(pi, pj).

7. We set COMBINE =
∑

for computing a total navigation distance for all robots.

This transformation defines all inputs of the VRP problem in terms of the TS-MOCCT problem.
Next, we show that an optimal TS-MOCCT solution corresponds to the optimal VRP solution. We consider the

optimal TS-MOCCT solution {Π̄0, . . . , Π̄T } form′ pairs of robots. The optimal solution has that each pair of robots
can start and end at the goal location. No optimal solution involves any pair of robots returning to the goal during
travel (except the very start and end). Recall that the TS-MOCCT problem imposes the constraint (as a modeling
assumption) that all the objects at X must be moved together. Thus, the TS-MOCCT solution consists of m′ cycles
(potentially empty) for each pair of robots with no repeated nodes except the goal location XG

1 . We rewrite the
solution in terms of the m′ cycles:

[Π̄0, . . . , Π̄T ] = [Π̄1(X0, Xi)
0, . . . , Π̄1(Xj , X0)T ], . . . ,

[Π̄m′(X0, Xk)0, . . . , Π̄m′(Xp, X0)T ]
(8)

Since we have exactly m′ pairs, we can see that the cost functions are equivalent when we rewrite the summa-
tion over cycles.

m′∑
k=1

∑
Xi,Xj∈Π̄k

J (Π̄k(Xi, Xj))=

m′∑
k=1

∑
(pi,pj)∈sk

J ′
k(pi, pj). (9)

Thus, an optimal solution of the TS-MOCCT problem must also be an optimal solution of the VRP.

Theorem 1 The MOCCT problem is NP-hard

Proof : From Lemma 1, we proved the TS-MOCCT problem is NP-hard. The MOCCT problem is the general-
ized version of the TS-MOCCT, which can have more goal locations with complex goal conditions,TS-MOCCT ⊆
MOCCT. Thus the MOCCT problem is NP-hard.

5 Algorithms for the MOCCT problem
The space of all possible motion combinations for multiple robots and objects grows exponentially and so ex-
haustive search is prohibitive even for small instances. Consequently, we are compelled to introduce heuristic
simplifications. In this section, we describe two algorithms we used for the MOCCT problem:

(1) We seek to produce solutions of reasonable quality in limited time via A? search. The planner minimizes
time to complete the task by searching over the full solution space, but is guided by heuristics.

(2) We propose a more efficient algorithm which prunes some of the choices available to the algorithm in (1),
but which risks potentially overlooking plans with minimum cost.
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5.1 The Basic Heuristic Search Algorithm
The algorithms operate on a tree structure describing the objects and robots configuration: each node has the
robots’ current states (positions in X and matcht(·)), and the objects’ current states (positions in X ). Figure 3
shows how the search tree is constructed by using the example of Figure 1. The initial configurationN0 (shown in
Figure 2(a)) is the root node in Figure 3. Then, we expand a tree node based on all possible choices satisfying the
constraints (e.g., tail length and capacities).

An example helps to understand the expansion of tree nodes: take the two sequential steps of Figure 1. The first
step shows that r1 transfers o1 at X1 to the goal, XG

1 , while r2 transfers o4 at X4 to the goal, XG
1 . This transitions

from N0 to N1 in Figure 3, where the transition cost is max(J (r1, X1, X
G
1 ),J (r2, X4, X

G
1 )). The second step

shows a pair of robots (r1, r2) transferring bX2
and bX3

to the goal, that is, a transition fromN1 toN4 in Figure 3,
with cost max(J

(
(r1, r2), X2, X

G
1

)
,J
(
(r1, r2), X3, X

G
1

)
).

We see that there exist multiple goal configurations satisfying F (in this problem instance we require four
objects at the goal location, with at least two objects that are pink). For example, N0, N2, N3, and N4 are
transitions that reach another goal configuration in Figure 3.

Assuming the towing capacity (maximum mass) is not exceeded, a pair of robots operating together is capable
of moving more than one set of objects at multiple locations to Xj . In executing the second step from Figure 2(d),
the pair move o2 fromX2 and o3 fromX3 toXG

1 in one action. The search tree must include these kinds of actions
because they represent part of the real cost savings that one obtains from pairs. Thus, to add extra edges departing
Xi of this sort, we look for nearby Xj’s, sorting these in ascending order by Euclidean distance. Let B̂Xi be the
set of objects nearby Xi. Here “nearby” includes only those no more than the length of the tail away.

Figure 4 gives an example of how these nearby objects introduce new choices. Assume the pair pick a route
to transfer object(s) at X1 to the goal XG

1 . There are four subsets of B̂X1
in Figure 4. For example, the ‘subset 1’

line shows one sibling, indicating B̂X1
= [o1, o5], in ascending order. Similarly, the ‘subset 2’ line shows three

siblings, indicating B̂X1 = [o1, o5, o4]. The ‘subset 3’ line shows four siblings, indicating B̂X1 = [o1, o5, o4, o3].
Lastly, the ‘subset 4’ line shows five siblings, B̂X1 = [o1, o5, o4, o3, o2]. We define a cost for this action, which we
take to be the perimeter of the convex hull of B̂Xi

. In Figure 4, the cost of the ‘subset 4’ is the total distance of the
outer positions X1, X2, and X3. The transfer cost for o4 and o5 is zero because they are inside of the convex hull,
so are transported effectively for free. Similarly, the cost of the ‘subset 3’ is the total distance among X1, X4, and
X3, and no cost is incurred for o5.

The basis of Algorithm 1 is A? search, extended to include an implicit search for these additional nearby
objects. The first phase, in line 4, computes the set of nearby objects, B̂Xi

, for allXi ∈ X , satisfying the tail length

.

.

Set of goal configurations

.

.

Initial configuration

.

.

Figure 3: Construction of a plan by searching a tree from the left (t = 0) to the right (t = T ). Particular sets for each O, R,
and G comprise the nodes.
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constraints and the capacity constraints of robots. Then, it starts to enumerate the possible sets (lines 12–20). Given
m robots, it constructs the possible combinations of either role (independent or as half a pair). Then, it finds all
combinations of choices for r, called Â ∈ A, which a kind of satisfy the capacity constraints in Equation (7). In
line 14 of Algorithm 1, the set is increased by including nearby objects (following the sequential ordering of B̂Xi

)
until the maximum capacity C2 is exceeded, and F is impossible to achieve. For example, in Figure 4, we pick the
basis set {o1} first, and then increase the range by accumulating an element of B̂Xi to have the red area [o1, o5], the
blue area [o1, o5, o4], then the green one [o1, o5, o4, o3], and finally the purple set [o1, o5, o4, o3, o2]. In line 15 of
Algorithm 1, we have to match a set of robots with a set of choices. We use the Hungarian method [Kuhn, 1955] to
find the optimal matching. In line 16, the maximum (not sum of) distances of r at the current step is used because
all the robots are working in parallel, and we add the heuristic estimate: the total distance between Xi and goals,∑
i∈[1,n] minj∈[1,k](post(oi), XG

j ).

5.2 The Opportunistic Neighborhood Search (ONS) Algorithm
To reduce the search cost, we reduce the number of outgoing choices induced by the set operation on nearby
objects described in the previous section. We do this by being greedy in a manner we feel represents a kind of
opportunism. This algorithm is a modification of the basic algorithm, in which we do not search over all possible
subsets of objects in line 14, we instead pick the maximum sized set of objects satisfying constraints. This is
efficient if we have objects that are located within the boundary of the tail length.

6 Experiments
The basic heuristic search (called Basic) and the opportunistic neighborhood search (called Opportunistic) algo-
rithms produce solutions for moderate numbers of objects and robots in a reasonable time. Opportunistic produce
solutions for even larger number of objects and robots, though precise difference in costs depend on the constraints
(e.g., a longer tail with larger capacities). All algorithms were executed on an Intel Core i7 3.2GHz, and imple-
mented in Matlab with a SMT-solver [Bouton et al., 2009]. For comparison purposes, we also implemented an
uninformed breadth first search, which we call Exact.

We have three goal predicates to validate our approach:
1. F1: transferring all PINK and CYLINDER objects to XG

1 .

F1 := ∀i, PINK(oi) ∧ CYLINDER(oi) ∧ LOCATEDAT(oi, X
G
1 ). (10)

Subset 1:   
Subset 2:
Subset 3:
Subset 4:

Figure 4: Five objects induce several choices. There are multiple feasible subsets of B̂X1 : The ‘subset 1’ line shows
[o1, o5]. The ‘subset 2’ line shows [o1, o5, o4]. The ‘subset 3’ line shows [o1, o5, o4, o3]. Finally, the ‘subset 4’ line shows
[o1, o5, o4, o3, o2].
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Algorithm 1 Basic Search
1: INPUT: O,R,G,X ,J ,R,D,F
2: OUTPUT: (Π̄0, . . . , Π̄T )
3: Q = N0 = [pos0(O) ∪ pos0(R) ∪ pos0(G)] and ClosedSet = ∅
4: Compute B̂Xi , ∀i
5: while Q 6= ∅ do
6: Ncurr = POP (Q)
7: if F = true then
8: return (Π̄0, . . . , Π̄T ) from N0 to Ncurr
9: break

10: end if
11: ClosedSet.add(curr)
12: for each of possible robot settings r ofR do
13: for each possible motions Â of A do
14: for each possible BXi

of B̂Xi
do

15: J = Assignment(r,Â ∪BXi )
16: Nnear.cost =max(J ) + h(Nnear, XG

k )
17: Q = Q ∪ Nnear.
18: end for
19: end for
20: end for
21: end while

2. F2: transferring four objects to XG
1 , where two objects are at least pink and NUM(X) returns the number of

objects at X .

F2 := ∀i,∀j, i 6= j, PINK(oi) ∧ PINK(oj) ∧ LOCATEDAT(oi, X
G
1 )

∧ LOCATEDAT(oj , X
G
1 ) ∧ NUM(XG

1 ) = 4.
(11)

3. F3: transferring objects to XG
1 , XG

2 , or XG
3 , such that 0 < NUM(XG

2 ) < NUM(XG
1 ) and NUM(XG

3 ) =
NUM(XG

1 ) + NUM(XG
2 ).

P1 := 0 < NUM(XG
2 ) < NUM(XG

1 ),

P2 := NUM(XG
3 ) = NUM(XG

2 ) + NUM(XG
1 ),

F3 := P1 ∧ P2.

(12)

We use F1 for Section 6.1 and Section 6.2. Goals F2 and F3 are used to examine how the planner performs on
more complex tasks, which is presented in Section 6.3.

6.1 Evaluation of algorithm running-time and performance
First, we show how the combinatorial aspects of the MOCCT problem means it has an enormous state-space even
with few objects. The plot in Figure 5(a) shows this pictorially. For example, even 6 objects with fixed parameters
(a tail length L = 100 cm, m = 2, C1 = 1, C2 = 3, and mass(oi) = 1 for all i) has over one million states.

Second, we evaluate the efficiency and performance of the two algorithms by randomly generating environ-
ments and measuring plan cost and computational time. The evaluation was conducted with the following fixed
parameters: two tail robots, C1 = 1, C2 = 3, mass(oi) = 1 for all i, and L = 100 cm. All environments were
3 m× 3 m open space regions, with a single goal. To test the algorithms, we increased n from 4 to 8, maintaining
a fixed (m = 2) number of robots. We generated 10 random instances for each number of objects.

As visible in Figure 5(b), Basic finds an optimal solution in a reasonable time on small instances (n ≤ 6); even
a small problem has a huge search space (approximately a hundred thousand states when n = 8). In our tests,
Opportunistic reduces a search space as reflected in its running-time, while the quality of solutions it finds remains
high (see Figure 5(c)).
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Figure 5: State-space sizes, running times, and solution costs of the MOCCT problem.

In light of these data, plans sought for planning problems in the remainder of the paper will use the ONS
algorithm.

6.2 Physical robot experiments
Next, we demonstrate that the proposed cooperative manipulation approach works in practice.

6.2.1 System setup

We used two RC cars, controllable at velocities of approximately 0.4 m/s. An embedded computer on the car
controls the robot and communicates with a separate computer integrated with an overhead tracking system which
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(a) t = 0 (s) (b) Hooking: t = 5 (s) (c) Hooking: t = 9 (s)

(d) t = 0 (e) Unhooking: t = 3 (s) (f) Unhooking: t = 12 (s)

Figure 6: The robot winds its tail around the object with a clockwise direction through (a), (b) and (c). To release the hooked
object, the robot drives in the opposite direction, seen in (d), (e) and, (f).

localizes the objects and the robots. Our software uses the ROS framework. All experiments are conducted in our
test arena of size 5 m× 5 m.

6.2.2 Robot motion model and actions

We assume a simple car model for the robot. We generate the robot trajectories via Dubins curves that allow the
shortest path in simple obstacle environments as in Giordano and Vendittelli [2009]. A Dubins curve consists of
circular curves and linear motions, thus all elements of primitives in this paper are reduce to these atomic actions.

For a single robot, we use a hooking action in the TRANSIT(·) primitive, which sets up the robot’s orientation
to work on the TRANSFER(·) primitive. To produce this hooking action, we put a ∼ 3 cm diameter half sphere at
the end of the tail. Near each semi-sphere there is also a magnet. First, the robot winds around the object, crossing
near the end of its tail (Figure 6(b)). Then, the half sphere works like a buckle (Figure 6(c)). Thereafter, the robot
moves the hooked object via the TRANSFER(·) primitive. To release hooked objects, the robot turns around to the
object reversing the direction of the winding motions (Figure 6(d) to Figure 6(f)).

For a pair of robots, we developed a DOCK(·) primitive. Firstly, given a subtask (move objects from Xi to

(a) t = 0 (s) (b) Docking t = 8 (s) (c) Docking t= 12 (s)

Figure 7: Initializing docking in (a). One robot stays at the given X . The second robot crosses the tail of the first. Since each
tail, made of chain, has a magnet at the end, the two tails join naturally so long as the robot follows the contour of the convex
hull via (b) to (c).
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Figure 8: We have seven pink cylindrical objects to be towed to the center of the room with two robots.

Xj), one robot stays near Xi, initializing the robot’s orientation for the TRANSFER(·) primitive (Figure 7(a)), then
the second robot crosses the tail of the first (Figure 7(b)). Finally, the tails become connected (because each tail’s
magnet attaches to the other) as the robot follows the contour of the convex hull consisting of the outer positions
Xi. See Figures 7(b) and 7(c). There after, we use the TRANSFER(·) primitive to move the gathered objects. To
split conjoined tails, we simply execute an extra motion: one robot stops while the other moves past until the length
of the tails is exceeded, breaking their connection.

6.2.3 Three planning settings

To examine the value of robots operating individually, or as pairs, or opting to change roles dynamically, we
conducted an experimental comparison with our physical robots. We considered three settings:

(1) The single-only setting has robots operating individually only.

(2) The pair-only setting has one pair of robots permanently connected together.

(3) In the both setting, the planner uses robots in either role and permits the making and breaking of pairs.

6.2.4 Physical robot experiments: comparison of planners

Figure 8 shows the basic setup: all trials with physical robots had n = 7 objects and two tail robots where C1 = 1,
C2 = 5, mass(oi) = 1 for all i, and L = 100 cm. The ONS algorithm was used to compute plans for all three
planning settings. The total planning time for the single-only plan was 349 seconds, visiting a total of 4404 states,
while the pair-only plan took 123 seconds with 1684 states and both took 24 seconds with 691 states.

Figures 9 and 10 permit visual comparison of the plans in the three settings: single-only, pair-only, and both
are shown in the first row, the second row, and the third row, respectively. For each row, from left to right, we see
the snapshots of the physical experiments over time.

The single-only plan uses two robots acting individually and concurrently. There are T = 4 transitions in
the solution, completing this task in 285 seconds. The snapshot at the time of the final object’s arrival appears in
Figure 10(a). The robots and object motions are visible: blue lines record the robots’ trajectories and the pink lines
are the objects’ motions. Since each robot needs space to release a hooked object, the final position of objects isn’t
compact, but is distributed near the goal boundary.

The pair-only plan uses the robots as a pair throughout. First, they move a single object at upper-left shown
in Figure 9(e). Next, they move a single object at lower-left shown in Figure 9(f). Finally, they move five objects
together in Figure 9(h). Figure 9(g) shows the moment when the gathered objects are released. There are the T = 3
transitions in the solution. This solution of the pair-only plan completes the task in 225 seconds. A snapshot at the
final time is in Figure 10(b).

The both plan involves the two robots first towing objects individually using a hook primitive, and then con-
necting their tails to drag multiple objects cooperatively. There are T = 2 transitions in the solution. Firstly,
two robots move objects at upper-left and lower-left shown in Figure 9(i), and then they release objects at the goal
(Figure 9(j)) individually (but simultaneously). Lastly, they use a docking primitive (Figure 9(k)), and drag five
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(a) The single-only plan, 97 (s):
two single tail robots release the
hooked objects individually.

(b) The single-only at 134 (s):
two single tail robots release the
next objects individually.

(c) The single-only at 238 (s):
two single tail robots release the
next object.

(d) The single-only at 280 (s):
one single tail robot releases the
hooked object alone at the goal.

(e) The pair-only plan at 70 (s):
one pair of robots moves one
object (upper-left) to the goal
together.

(f) The pair-only plan at 110 (s):
one pair of robots moves one ob-
ject (lower-left) to the goal to-
gether.

(g) The pair-only at 143 (s): this
shows the procedure of releasing
objects by a pair of robots.

(h) The pair-only at 216 (s): one
pair of robots move five objects to
the goal together.

(i) The both plan at 70 (s):
two single tail robots move two
objects individually.

(j) The both plan at 106 (s):
two single tail robots release two
objects individually using an
unhooking action.

(k) The both plan at 160 (s):
two single tail robots use a
docking primitive, and then
conjoined via the contact of each
tail.

(l) The both plan at 210 (s): a
conjoined two robots drags five
objects together simulatneously.

Figure 9: Comparison of executions of plans, with robots operating individually, as pairs, or both. (The frames here are visible
as full video appearing as supplementary material.)

objects to the goal together (Figure 9(l)). This solution of the both plan completes the task in 223 seconds. The
snapshot at the final time is in Figure 10(c).

A detailed analysis of all the results appears in Figure 11, which shows how the algorithm’s expected costs
relate to reality; the data suggest that the estimates suffice for providing a preference over paths. The blue bar is
the estimated cost (in units of distance traversed) obtained by the proposed algorithm, while the red bar is a real
cost (seconds elapsed) based on real test (mean and variance with ten trials). Obviously calibration could relate
these two cost metrics—but the data show that ordering between plans is already satisfactory. The data appear to
indicate that the pair-only and the both settings have overall performance that is very similar. In fact, the value of
the concurrent execution in the both is partly obscured in the graph because the both plan must pay the cost of the
docking procedure, whereas the pair-only plan need not execute the DOCK(·) primitive.

Additionally, the primitives that the pairs of robots use are simpler and more efficient to realize in practice
than the hooking and unhooking action. It would appear that the cost of these operations is only justified in fairly
extreme problem instances, with a mix of distant objects that can be fetched concurrently by robots acting solo,
and also objects efficiently transported by pairs.

6.3 Generality
To illustrate the broader applicability of the formulation, including richer goal specifications, we conducted further
evaluation of the ONS algorithm. Here, we examine goal specification F2 for a problem with two robots and six
objects (three yellows, three pinks) where C1 = 1, C2 = 5, mass(oi) = 1 for all i, and L = 70 cm. Modifying the
initial locations of the objects, we explored some related problem instances under these settings. The following
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(a) single-only completes the task at 285 (s).

(b) pair-only completes the task at 225 (s).

(c) both completes the task at 223 (s).

Figure 10: The view of plans in Figure 9, from the overhead tracking system. The accumulated trajectories for objects and
robots are displayed: the blue lines are the robots, while the pink lines are the objects. The printed frames in here are also in
full videos appears at the supplementary material.
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Figure 11: Planner’s predicted costs and the results of experiments with physical robots.

two initial configurations are similar but result in drastically different solution classes: (S1) The first initial setting
is shown in Figure 12(a) (visualized as a graph, akin to those used earlier to describe configurations). (S2) The
second initial setting is shown in Figure 12(b). The only difference from S1 is that the yellow o5 is closer to the
pink o1, and the pink o4 is a little further from the goal.

For S1, the first case, the plan took took 26.4 seconds and examined a total of 517 states. The initial state, in
Figure 12(a), transitions to Figures 2(c) and 2(d): two robots transfer o1 and o4 independently and then, acting as
a pair, they transfer o2 and o3 together.

Finding a plan for S2 took 12.5 seconds with 223 states. The graph describing the initial conditions for C2
appears in Figure 12(b), and the plan progresses as follows: a pair of robots transfers o1 and o5 (Figure 12(c)) to
the goal, and then they transfer o2 and o3 to the goal (Figure 12(d)). Both results have two transitions (T = 2)
in their solution. Here, a small change of the positions among objects makes for qualitatively different solutions
strategies. As might be expected, several parameters (such as the tail length and C2) can alter the types of solutions
found but detailed examples are omitted here.

We examined the larger, complex goal predicate F3. The problem instance has 4 robots and 10 objects, all
pink, where C1 = 1, C2 = 5, mass(oi) = 1 for all i, and L = 50 cm. Again the ONS algorithm was used. Our
planning time for F3 took 1353 seconds, exploring 4469 states. The initial configuration is shown graphically in
Figure 13(a), and the resulting plan appears in Figures 13(b) and 13(c). First, two single robots transfer o2 and
o5 to XG

1 independently, while one pair of robots transfer o3 and o9 to XG
3 together. Second, one pair of robots

transfers o6 to XG
2 , while another pair of robots transfers o7 to XG

3 . Then the final result satisfies F3. Here the
result shows two transitions (T = 2) in the solution.

7 Discussion
It is useful to provide some additional detail on some aspects of the approach, the experiments, and the steps
needed to mature the work so as to apply it outside of laboratory settings.

7.1 Obstacles and feasible paths
Because the preceding presentation has focused on task-planning aspects, little has been said so far about finding
collision-free paths that are executed by the robots and the treatment of obstacles. In the figures, graphs have
been used to give a visual representation of the world configurations in a way that helps give an intuition behind
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(a) Initial graph of Figure 1 . (b) Another initial graph.

(c) First step: from (b) to (c), one pair of robots transfers
o1 and o5 to the goal XG

1 .
(d) Second step: from (c) to (d), one pair of robots trans-
fers o2 and o3 to the goal XG

1 . This satisfies F2.

Figure 12: The simulation results are plotted using graph representation. There are three pink and three yellow objects, two
robots, and one goal; (a) is for the example in Figure 1(a). Another example is shown in (b), which modified the topological
relationship of (a). We show the results of the planner for the example (b) via (c) and (d). Finally, (d) satisfies F2.

the combinatorics of the search problem. Edges in those graphs express the possibility of some action which
representations a transition from one site Xi to another Xj . Before finding the task plan, the initial set of edges
and their weights are precomputed. Then, whilst planning, the examination of possible choices requires that we
perform some additional checks for the satisfaction of additional geometric constraints to ensure the resulting path
is feasible. Some of the particular primitives that the robots execute need a working boundary (e.g., to move
past and surround objects, space for docking, and splitting two robots). Our prior work [Kim and Shell, 2017] has
detailed explanations of the types of motion primitives we use. Basically, each primitive consists of an initialization
motion, a main motion, and a termination motion (with the first and third possibly being empty motions). Each is
a sequence of controls generated via a Dubins curve, which transitions from one to the next. The three phases each
impose constraints that are represented geometrically and which must all be satisfied if the primitive is to succeed.
The procedure needed is simple: if the robot’s working boundary intersects objects or other static obstacles in the
configuration space, then we remove the edge representing the action from Xi to Xj by r. It is worth noting that
objects located very close to static obstacles may effectively be immobile because the motions needed in first phase
of a primitive requires some space between objects and obstacles (e.g., sufficient room to move the tail to execute
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(a) There are three goals,XG
1 , XG

2 , XG
3 We

use four robots and ten objects. Initially, all
robots are located at XG

1 .

(b) First step: from (a) to (b), two single
robots transfer o2 and o5 to XG

1 individu-
ally, while one pair of robots transfers o3 and
o9 to XG

3 together.

(c) Second step: from (b) to (c), one pair of
robots transfers o6 to XG

2 , while another
pair of robots transfers o7 to XG

3 . This sat-
isfies F3.

Figure 13: The simulation results of a graph representation; (a) shows ten pink objects and three goals. We used 4 robots
located at XG

1 initially. We show the results of the planner for the example (a) via (b) and (c). Finally (c) satisfies F3.

a hooking action). A consequence is that the feasibility check may need to ensure that paths are collision-free, not
only for robots, but also for some portion of the length of the tail that can actually manipulate the object(s).

7.2 Limitations of physical robot experiments
One issue we encountered was that it was difficult to ensure that the robot maintained a fixed velocity. This is
because the dragging force varies depending on whether the objects are moving (static vs. sliding friction) or not,
and how many objects are moving together. Some alternative manipulation actions (e.g., the statics-based motion
primitives described in our previous work [Kim and Shell, 2017]) can help improve precision of the manipulation,
but, given that the focus of the work was cooperation and task planning, we did not expend a great deal of time on
tuning the manipulation actions.

A second issue we encountered in practice had to do with the inexactness of the estimates of object positions. In
general, the robot could wrap objects by giving a generous gap around the hull describing the (perceived) boundary
of the objects. But we found it is challenging to get the robot to release objects without touching them. However,
the intention is to move objects by towing only. Higher precision, thus, appears to be important for releasing
objects if one wishes to ensure direct robot–object contact never occurs.

7.3 Considerations for the design and modeling of a practical tail for manipulation
The planning problem, as formulated in Section 3.2, abstracts away most of the details of the tail itself. The length
of the tail and its relation to the size of the objects, along with towing force that the robot is able to exert, are
expressed simply as constraints expressed as predicates C1 and C2 in (3). The roboticist simultaneously faces the
question of how to design the physical tail, and how to model it effectively for planning purposes. More detailed
consideration is thus warranted. The present discussion seeks to provide a useful starting point.

As the robot attempts to move a stationary object, there are three forces at play: the force produced by the robot
Fr, the tail’s static friction Ft, and the object’s static friction Fo. Consider two coefficients of friction1: let µt be
the coefficient of friction between a tail and the workspace floor, and let µo be the coefficient of friction between
an object and the workspace floor. Let Li represent the tail length for a robot i and mt be the mass of the tail per
unit length. Then, the following condition must be satisfied if the robot is to move the object:

Fr ≥ Ft + Fo, (13)

where Ft = µt ·mt · Li · g and Fo = µo ·Mo · g.
1For sake of conciseness, we adopt the terminology and notation of Kim and Shell [2017].
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The predicate C1 also depends on an encircled object’s perimeter do. Both the hooking and releasing actions
need the extra length dr to surround and release the secured object owing to the extent of the robot (cf. Figure 6).
Then, to drag objects with a single robot, the following second condition for the tail length Li must be satisfied:

Li ≥ do + dr. (14)

The same reasoning holds for pairs of conjoined robots and the equations are analogous: predicate C2 depends
on (1) the force induced by two robots, (2) the perimeter of the clustered object boundaries, (3) the total length
of two conjoined tails. Then, (13) can be modified by using an effective Fr for two robots and Ft for two tails.
Also, (14) should now have do as the perimeter of the convex hull of the clustered objects, and dr can be extended
for two robots correspondingly. Note that (14) gives a lower bound on Li owing to the relationship between tail
length, mass, and forces produced robots. However, (13) gives an upper bound which depends on the object sizes
and tail length. In our experience, the tail should be substantially shorter than the bound in (13). If the robots
have tails of excessive length, the steps to initialize hooking, releasing, and docking actions become infeasible as
obstacles will hinder motion greatly. In such cases, edges connecting locations (such as that from Xi to Xj) are
removed by the planner, and the problem becomes infeasible.

Though we have not made any statement about tail stiffness thus far, it can be treated as a curvature constraint
(see Teshnizi and Shell [2016]). Let κ be the non-zero radius of the smallest circle into which it can be bent.
Curvature plays a role because (1) one robot must wrap objects for hooking; (2) a pair of robots, at most, come
back together when dragging. This requires tails to have length at least 2πκ, thus, the following third condition
must be satisfied:

Li ≥ 2πκ. (15)

Finally, one may model heterogeneous robot capabilities viaC1 andC2 as well. If one has robots with different
dragging forces, robots ri and rj , say, where ri’s dragging force is greater than rj’s. A straightforward approach
is to assume that robot ri reduces its the dragging force to tow objects in concert with rj , and the robot’s do not
exploit tail-object friction. With different κ values for the two robots, a sufficient condition is that we take two
κ values, where each is proportional to the length of its tail, respectively. Finally, we can compute the minimum
length of tails to make a circle with different κ values. Thus (15) becomes

Li ≥ 2π(ωiκi + ωjκj), (16)

where ωi is a tail length ratio for ri to the overall tail length and ωj is defined analogously (ωi + ωj = 1).

8 Conclusion
This paper considers the problem of moving multiple objects to given goal locations with a coordinated team of
mobile robots. Building on our prior work in which we developed a robot capable of manipulating objects with
a rope-like structure affixed as a tail [Kim and Shell, 2017], here we explore how multiple robots of this type
can cooperatively transport objects. To do this, robots can act as solo agents by wrapping their tail around items,
securing the end, and towing. Or, additionally, pairs of robots can join their tails and act as a single unit in sweeping
out an area. We pose and study the planning problem in which robots, during their execution, can dynamically
choose to make or break pairs autonomously.

This paper describes a planner which, ultimately, outputs paths that multiple robots execute in order to encircle,
move, and release objects so that they reach some final arrangement. The manipulation goal itself is specified
in terms of logical predicates, enabling rich tasks to be described. We proved the MOCCT problem to be NP-
hard even when it is cheap to determine whether a satisfying final arrangement exists. Next, we compared two
practical algorithms for the problem, illustrating the value of a heuristic which clusters objects opportunistically.
We describe the first physical demonstration of multiple robots solving a manipulation problem in this way.

8.1 Future work and outlook
Our research was originally motivated by aquatic applications: tethers and cables are particularly useful for ma-
nipulating objects floating on water. As well-illustrated in Figure 14, both single and pairs of human piloted boats
have been used for water surface clean up operations. The importance of clean freshwater for our survival suggests
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(a) Oil skimming vessels. (origin: Davidson [2010], CC BY-NC-
SA 2.0)

(b) Plastic pollution in the oceans. (origin:
Zak Noyle/AFrame [Noyle, 2014])

(c) Two boats, connected by a flexible cable, drag water hyacinth. (origin: Reuters [2015])

Figure 14: Tethered robots can skim oil, clean up garbage on the surface
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that it is worth examining how autonomous surface vehicles could best be deployed for these sorts of applications.
Moreover, given the vast physical extent of many bodies of water, we believe that surface vehicles —operating
sometimes individually and sometimes as coupled pairs, as the occasion demands— would be of value.

The present work abstracts away the low-level details of the primitive motions, and also purposefully avoids
detailed use of frictional and other physical models, because we intend for the techniques to carry over to vehicles
operating on the surface of water. The degree to which this is possible remains to be seen.
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