
Noname manuscript No.
(will be inserted by the editor)

Communication Constrained Task Allocation with
Optimized Local Task Swaps

Lantao Liu · Nathan Michael · Dylan A. Shell

Received: date / Accepted: date

Abstract Communication constraints dictated by hard-

ware often require a multi-robot system to make de-

cisions and take actions locally. Unfortunately, local

knowledge may impose limits that ultimately impede

global optimality in a decentralized optimization prob-

lem. This paper enhances a recent anytime optimal as-

signment method based on a task-swap mechanism, re-

designing the algorithm to address task allocation prob-

lems in a decentralized fashion. We propose a fully de-

centralized approach that allows local search processes

to execute concurrently while minimizing interactions

amongst the processes, needing neither global broad-

cast nor a multi-hop communication protocol. The for-

mulation is analyzed in a novel way using tools from

group theory and optimization duality theory to show

that the convergence of local searching processes is re-

lated to a shortest path routing problem on a graph sub-

ject to the network topology. Simulation results show

that this fully decentralized method converges quickly

while sacrificing little optimality.

Keywords Decentralized task allocation · Com-

munication constraint · Task swaps · Permutation

group

1 Introduction

Multi-robot task allocation or role assignment aims at

finding the best matching between a set of robots and a

Lantao Liu, Nathan Michael
The Robotics Institute, Carnegie Mellon University
E-mail: {lantao, nmichael}@cmu.edu

Dylan A. Shell
Dept. of Computer Science and Engineering, Texas A&M
University
E-mail: dshell@tamu.edu

set of tasks in order to optimize the team’s performance.

It is among the most popular optimization formulations

for coordination problems in multi-robot systems. Solu-

tions to general task allocation problems have also led

to specialized methods for applications of particular im-

portance in robotics research, e.g., by strategically set-

ting the tasks as goal locations, the methods efficiently

deploy robots as part of path planning [Turpin et al.,

2013, 2014] and formation control problems [Michael

et al., 2008, Liu and Shell, 2012a]. Ultimately, a funda-

mental understanding of distributed assignment prob-

lems may also benefit other decentralized systems (or

missions) such as automated transportation systems,

large-scale swarm systems, unmanned planetary explo-

ration, etc.

A multi-robot team may adapt to circumstances,
demonstrating fluid coordination by repeatedly allocat-

ing tasks to robots frequently. While the classic optimal

assignment (or weighted matching) algorithms seek to

reduce overall execution time and time complexity, the

multi-robot task allocation setting has several aspects

that demand special consideration. For example, any

central controller that is relied upon to compute and

broadcast the assignment solutions becomes a single

point of failure for the robot team. Instead, computa-

tion should be carried out in a distributed way so that

individual failures do not affect the whole system. In

addition to handling dynamics, emergencies, and un-

expected contingencies smoothly, the responsiveness of

the team depends on fast solution of the underlying

assignment problem relative to the environment dy-

namics. But many envisioned scenarios involve multi-

ple robots being dispatched in a large workspace where

each robot may only be able to communicate with com-

paratively few neighbors who are nearby. Unfortunately

long message relays may hinder the system’s respon-

Manuscript
Click here to download Manuscript: paper.tex
Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.editorialmanager.com/auro/download.aspx?id=171133&guid=1db876a2-c905-4fec-b14b-2bdfafcd8f37&scheme=1
http://www.editorialmanager.com/auro/viewRCResults.aspx?pdf=1&docID=2476&rev=1&fileID=171133&msid={32449FEF-34E0-43ED-9DF1-3F6B80503FCD}

2 Lantao Liu, Nathan Michael, Dylan A. Shell

siveness. Also, the optimality of an assignment solution

becomes moot if the system’s state evolves so rapidly

that the decision was made with outdated inputs. Natu-

rally both prohibitive communication delays and band-

width limits may preclude the use of a centralized task

allocation strategy.

The constraint of local communication may impact

the final task allocation solution. If each robot is per-

mitted to share information with only neighbors in its

vicinity and no multi-hop communications stratagem is

employed, the resultant assignment solution may nec-

essarily be suboptimal. This is because a decentralized

algorithm constrained by local communication cannot

guarantee that complete information will be aggregated

without relaying messages, whereas the search of op-

timal solution may require the complete information.

Even for the simplest task allocation scenario involv-

ing a one-to-one mapping of robots to tasks, it is still

unclear that under certain communication constraints,

what the best (potentially sub-optimal) assignment can

be obtained, and what the largest solution convergence

step can be reached.

This paper explores decentralized task allocation

methods where communication and computation are

carried out concurrently in a spatially localized fashion

so that the interaction between agents’ local search-

ing processes can be minimized.† The work extends

the recent task-swap based anytime optimal assignment

method [Liu and Shell, 2013], which has a decentralized

structure but may still entail multi-hop communication

(global information). In this paper, the same mecha-

nism is responsible for the atomic optimization step

(viz. the task-swap). But here we loosen the global com-

munication requirement in the search procedure that se-

lects which step is performed. Although the algorithm

we present may produce suboptimal solutions —an in-

herent limitation arising from the fact that local in-

formation may be intrinsically inadequate— this new

algorithm optimizes the search subject to the commu-

nication constraints and always produces the maximal

step toward the optimal solution. Since local communi-

cation may impose limits that hinder global optimality,

first we formulate a local optimality property and then

we analyze it with duality theory and graph relaxation

techniques. The decentralized nature of the method is

shown using group theoretic notions.

†The main algorithm was first presented at the 2014
Robotics: Science and Systems conference [Liu et al., 2014].

2 Related Work

Many approaches to multi-robot coordination rely on

task allocation to determine an efficient assignment of

tasks to robots [Zlot and Stentz, 2006, Parker, 2008]. In

a multi-robot system, robots need to not only take into

account the presence of other team members but also

to actively cooperate with them so as to achieve the

best performance of the whole system. Different assign-

ment models have arisen in order to formulate and ad-

dress differing task allocation scenarios (see Gerkey and

Matarić [2004] for a review). An important dimension

within the task allocation taxonomy is the cardinality

of the mapping between robots and tasks, viz., whether

the assignment relationship between robots and tasks

is one-to-one, one-to-many, many-to-one, or many-to-

many. In this work, we are interested in the problem

of exclusively assigning every robot with a unique task

(one-to-one mapping), which is the most fundamental

and probably most widely investigated instance.

This class one-to-one mapping assignment problem

is also termed the linear sum assignment problem [Burkard

et al., 2009], and many optimal assignment algorithms

have been developed in the last half century (see re-

views [Pentico, 2007]). The majority are primal-dual

methods (details of primal and dual formulations are

presented in sections that follow). Important examples

include the well-known Hungarian algorithm [Kuhn, 1955],

which solves the matching problem by manipulating a

matching bipartite graph. Several shortest augmenting

path algorithms (e.g., see Edmonds and Karp [1972],

Derigs [1985]) were inspired by the Hungarian algo-

rithm and also belong to primal-dual methods. Other

notable assignment algorithms also include the Auc-

tion algorithm [Bertsekas, 1979], pseudo-flow [Goldberg

and Kennedy, 1995] algorithms, etc. Most of these al-

gorithms are capable of solving the problem with O(n3)

time complexity when certain searching techniques and/or

auxiliary data structures are employed.

However, one drawback of the classic optimal assign-

ment algorithms is the difficulty of developing decen-

tralized variants of these algorithms. This disadvantage

becomes important for larger scale systems (involving

tens, hundreds, even thousands of robots). Specifically,

a centralized algorithm can result in large computa-

tion/communication imbalance since the central con-

troller is usually responsible for collecting, processing,

and disseminating information for the whole system. A

heavy workload may result in low efficiency for the cen-

tral controller, which yields low efficiency for the entire

system. Also, a centralized coordination framework has

poor robustness against failure owing to the dependence

on the single central controller. These drawbacks also

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Communication Constrained Task Allocation with Optimized Local Task Swaps 3

apply to semi-centralized architectures with a limited

fixed number of central controllers.

Several researchers have attempted to decentralize

existing classical optimal assignment algorithms in or-

der to apply them to distributed systems [Zavlanos et al.,

2008, Giordani et al., 2010]. The resulting computa-

tional procedures have tended to reflect the strongly

interconnected aspects implicit in the logical structure

of the optimization problem, rather than the situational

and spatial structure of the robot group. Many meth-

ods ignore the communication network topology, neces-

sitating complex multi-hop communication protocols

which involve the ability to route between arbitrary

agents in the network. A major challenge lies in the fact

that these algorithms tend to involve multiple phases or

stages and there is a dependence between stages where

one stage may rely on the outputs of those that pre-

cede it (similar but different from scheduling depen-

dencies [Korsah et al., 2013]). While this coupling facil-

itates efficiency (the computation halts within strongly

polynomial time/steps) it imposes strong synchrony re-

quirements which are inimical to decentralization. An

alternate framework, called distributed constraint opti-

mization (DCOP) [Hirayama and Yokoo, 1997, Modi

et al., 2006], considers a group of distributed agents

which manipulate a set of variables such that the cost

associated with a set of constraints over the variables

is minimized. DCOP is NP-complete [Chechetka and

Sycara, 2006], and many DCOP algorithms rely on pre-

constructed (global and static) tree structures, thereby

failing to be robust against failures [Modi et al., 2006,

Petcu and Faltings, 2005].

The multi-robot research community has also de-
veloped its own inherently decentralized approaches.

An important set of these methods employ market-

based [Dias et al., 2006, Tang and Parker, 2007] or

auction-based mechanisms [Gerkey and Matarić, 2002,

Lagoudakis et al., 2005] that emulate financial interac-

tions between humans. Also important are opportunis-

tic methods where pairs of robots within communica-

tion range adjust their workload by redistributing or

exchanging tasks [Golfarelli et al., 1997, Lemaire et al.,

2004]. Strategies using task switching [Sariel and Balch,

2006, Wawerla and Vaughan, 2009, Sung et al., 2013] or

task exchanges [Chaimowicz et al., 2002, Farinelli et al.,

2006] typically transfer tasks between pairs of robots

whenever the operation improves the team’s perfor-

mance. These intuitively appealing methods allow for a

form of localized, light-weight coordination of the flavor

advocated by Stone et al. [2010]. The task swap mech-

anism generalizes the idea of pairwise task switches to

larger cliques and has begun to be explored recently [Zheng

and Koenig, 2009]. In these algorithms each robot has

an assigned task at any moment so that the computa-

tion process can be interrupted at any time.

Prior to this work, Liu and Shell [2012b] proposed

an assignment method based on task-swaps that is dis-

tributable, operates in an anytime fashion, and is opti-

mal. It bridges the classical convex optimization view of

optimal assignment problems, popular in operations re-

search, with the decentralized task allocation approaches

developed and favored by roboticists. Any stage of the

algorithm’s execution naturally involves only a subset

of the robots and tasks, and communication with other

parts of the system may not be required. But, despite

its decentralized form, the method assumes that at each

stage, the selected subset of robots can communicate

with one another in some way, either via direct commu-

nication (when robots are within communication range,

or when global broadcast communication exists) or a

multi-hop network (if only local communication is avail-

able). This assumption may preclude use of the algo-

rithm in scenarios where robots have only local commu-

nication and where not multi-hop communication pro-

tocol is available. We will show that this assumption

is eliminated in this paper, and we propose a fully de-

centralized task allocation algorithm that minimizes in-

teractions between robots via concurrent processes and

always produces the maximal step toward the optimal

solution.

The paper’s organization is as follows: we first de-

scribe the problem and present necessary preliminar-

ies in Section 3. In Section 4.2 we derive the permuta-

tion decomposition used for local strategic task swaps.

The completely decentralized task swap method is de-

tailed in Section 4. And finally, simulations of large-

scale multi-robot task allocation Problems in Section 5

provide validation of the proposed method.

3 Problem Description and Preliminaries

We consider the multi-robot task assignment problem

whose solution is an association of each robot to exactly

one task, which has been termed the single-task robots,

single-robot tasks, instantaneous assignment instance

(st-sr-ia) by Gerkey and Matarić [2004]. More for-

mally, given a set of n available robotsR = {r1, r2, · · · , rn}
and a set of n available tasks T = {t1, t2, · · · , tn}, and

let C = (cij)n×n be the cost matrix, where cij repre-

sents the cost of having robot i to perform task j, then

the goal is to find a one-to-one mapping ψ : T → R that

minimizes the overall cost. (Note, here we assume that

the number of robots and number of tasks are equal;

Scenarios with unequal number of robots and tasks are

discussed in Section 4.3.)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 Lantao Liu, Nathan Michael, Dylan A. Shell

3.1 Assignment Matrix, Permutation Cycle and

Permutation Group

In this subsection, we describe terminologies and basic

concepts that will be used for developing our decentral-

ized method. Formulation of the assignment problem

as matching or linear integer problems is well known

[Burkard et al., 2009]. Unlike those popular treatments,

we show later (Section 4) that the assignment may also

be formulated using matrix and group operations. The

primary utility of this approach is convenience in an-

alyzing aspects related to decentralization of the algo-

rithm.

3.1.1 Assignment Matrix

Let binary variable xij denote the assignment between

robot task pair (i, j) so that xij is equal to 1 if assigned

and 0 if unassigned, then an assignment matrix can be

denoted as

X =
(
xij
)
n×n =

 x11 . . . x1n
...

. . .
...

xn1 . . . xnn

 . (1)

Since our assignment is a one-to-one mapping, in each

row and each column of X there must be only one entry

with value 1 and all others 0s.

3.1.2 Permutation Matrix and Permutation Cycle

Let ek denote the vector of length n with 1 in the kth

position and 0 in every other positions, then we define

the permutation matrix P as

P =

ek1
ek2

...

ekn

 , ki 6= kj if i 6= j. (2)

Left (right) multiplying X by P reorders/permutes

the rows (columns) of the assignment matrix. If only

matrix entries are permuted while the row indices are

fixed as 1, 2, · · · , n, the assignment solution is changed

accordingly. For instance, using the prime to denote

change (not matrix transpose):

PX =

0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

 =

0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

 = X′.

(3)

Equivalently, if we simplify the assignment matrix

X to be a vector

π = [π(1), π(2), · · · , π(n)]T (4)

where π(i) is the assigned task for robot i (i.e., the

index of elements in π), then the example in Eq. (3)

becomes

Pπ =

0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0

1

4

2

3

 =

3

1

2

4

 = π
′. (5)

This form helps reveal the changing of an assign-

ment clearly. Comparing π and π′, we can observe that

the task t1 (i.e., number 1 in π and π′) is transferred

from robot r1 to robot r2 (i.e., row index of t1 in two

vectors has changed from 1 to 2). Such a transfer op-

eration is written as π(1) 7→ π(2);‡. Similarly, for robot

r2, we have π(2) 7→ π(4); and for robot r4, we have

π(4) 7→ π(1). Robot r3, having no change, keeps task

t2. For the three robots that have changed tasks, a cycle

has formed between them:

π(1) 7→ π(2) 7→ π(4) 7→ π(1). (6)

Definition 1 A Permutation Cycle with length K is

an ordered chain of K distinct elements

i1 7→ i2 7→ · · · 7→ iK 7→ i1, (7)

where ik denotes the index of the elements. In our con-

text, ik can be regarded as the index of robots, and the

cycle may be imagined as robots passing tasks to their

successors. See Fig. 1 for an illustration.

We write the cycle in Eq. (6) as (124)(3) or sim-

ply (124) since the single-element cycle (3) is an iden-

tity map. Additionally, a cycle of length 2 is termed a

transposition (two robots exchanging tasks).

Definition 2 Disjoint Cycles are different cycles that

do not share a common element.

Note that a cycle is directed and the element po-

sitions are not commutative, but the cycle notation is

not unique since any form connecting the head and tail

represents the same cycle, e.g., (124) = (241) = (412)

but (124) 6= (142).

‡ Note that this notation represents a change from our
conference paper [Liu et al., 2014]. The arrow direction in the
present work better illustrates the underlying task-exchange
operator.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Communication Constrained Task Allocation with Optimized Local Task Swaps 5

(a) (b)

(c) (d)

Fig. 1 Illustration for Eq. (3)–(6). (a) A permutation cycle
in the permutation matrix P. The rows with dark entries
that are off the diagonal shall be permuted. Diagonal dark
entries represent identity maps; (b) In the assignment matrix,
a new assignment solution substitutes the old one. The dot-
textured entries denote old assignment X, whereas the solid
dark entries are the new candidates obtained by X

′
= PX. A

horizontal arrow represents the substitution of new task for
a robot, whereas a vertical arrow denotes that for a specific
task, its owner is changed from one robot to another; (c)
Robots r1, r2 and r4 exchanged their tasks along a closed
cycle (124), e.g., r1 passes its task to r2 after permutation;
(d) New task assignment result.

3.1.3 Permutation Group

Definition 3 A group (G, ∗) consists of a nonempty set

G together with a binary operation ∗ on G satisfying the

following conditions:

1) (Closure): a ∗ b ∈ G, ∀a, b ∈ G;

2) (Associativity): (a ∗ b) ∗ c = a ∗ (b ∗ c), ∀a, b, c ∈ G;

3) (Identity element): ∃e ∈ G, a∗e = a = e∗a, ∀a ∈ G;

4) (Inverse element): ∃a−1 ∈ G, a ∗ a−1 = e = a−1 ∗
a, ∀a ∈ G.

In our assignment problem, the composition of two

bijections always gives another bijection, the product

of two permutations is again a permutation. Conse-

quently, the set Sn of all permutations of R = T =

{1, 2, ..., n} (for simplicity, we denote the robot and task

IDs with numerical symbols) forms a permutation group

with operations given by composition, viewing permu-

tations as functions from R(= T) to itself.

Let Sn = (G, ∗) denote the permutation group with

G = {g1, g2, · · · , gm} (8)

where gi is a cyclic permutation and operator ∗ is multi-

plicative. Then a series of permutations on assignment

π can be written as

(gi(gj(· · · (gkπ))) = (gigj · · · gk)π = g′π, g′ ∈ G, (9)

where the multiplicative binary operator ∗ is omitted.

There are two important propositions that are re-

lated to this work:

Proposition 1 Every permutation in Sn can be writ-

ten as a product of disjoint cycles. Disjoint cyclic per-

mutations are subject to the commutative law [Rotman,

1995].

Remark: The commutative property indicates that

disjoint permutation cycles can be executed in an arbi-

trary order, which, expresses the essential orderless and

executional independence within a decentralized imple-

mentation.

Proposition 2 Any permutation cycle can be written

as a product of transpositions (cycles of length 2) [Rot-

man, 1995].

(i1i2 · · · ik) = (i1i2)(i2i3) · · · (ik−1ik) (10)

However, the transpositions are not disjoint and thus

not commutative.

Remark: This can be understood by considering the

permutation as a bubble sorting algorithm which swaps

positions of two elements each time.

By further extending these basic operations, we show

that the permutation group can be effectively used to

minimize interactions among local task allocation pro-

cesses.

3.2 Assignment Optimization

Now, considering the optimization perspective, the as-

signment problem can be formulated so as to relate to

a pair of linear programs.

One is a cost minimization formulation called the

primal program P(R, T):

minimize f(R, T) =
∑

i∈R,j∈T
cijxij ,

subject to
∑
j∈T

xij = 1, ∀i ∈ R,

∑
i∈R

xij = 1, ∀j ∈ T,

xij ≥ 0, ∀i ∈ R, j ∈ T,

(11)

where each xij represents a primal variable. As a con-

sequence of the structure of the constraint matrix, the

problem turns into an integer problem and eventually

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 Lantao Liu, Nathan Michael, Dylan A. Shell

each xij will equal 0 or 1 in the solution when solved via

some combinatorial optimization algorithm. The con-

straints
∑
j xij = 1 and

∑
i xij = 1 guarantee that no

two robots are assigned with the same task and no two

tasks are allocated to the same robot.

There are corresponding dual vectors u = {ui} and

v = {vj} in the dual program D(R, T):

maximize h(R, T) =
∑
i∈R

ui +
∑
j∈T

vj ,

subject to ui + vj ≤ cij , ∀i ∈ R, j ∈ T.
(12)

The dual program solves the problem from a com-

plementary perspective: the sum of each pair (ui, vj)

can be interpreted as the collective profit that a robot-

task pair (ri, tj) gains, and the objective of the program

then is to maximize the overall profit.

Theorem 1 (The Duality Theorem [George, 1963]) If

two programs P(R, T) and D(R, T) are feasible, then

f(R, T) ≥ h(R, T). If either program has a finite op-

timal value, then so does the other, and the optimal

values satisfy f∗(R, T) = h∗(R, T).

Remark: Given finite cost values, our assignment

problem always produces a finite optimal value. Then

the theorem points to three requirements for the exis-

tence of the optimal solution: (i) feasibility of P(R, T);

(ii) feasibility of D(R, T); (iii) f(R, T) = h(R, T).

Maintaining (i) and (ii) is straightforward, but di-

rectly reaching the condition of (iii) is not. In fact, by

assuming f(R, T) = h(R, T), and adjusting P(R, T)

and D(R, T), the following result is obtained:

Theorem 2 (The Complementary Slackness Theorem

[George, 1963]) The optimal solution exists if and only

if xij are feasible for P(R, T) and u, v are feasible for

D(R, T), and

xij(cij − ui − vj) = 0, ∀i ∈ R, j ∈ T . (13)

Remark: Eq. (13) reveals the property of orthogo-

nality between the primal variables and reduced costs.

It also indicates that if a robot-task pair (i, j) is as-

signed, i.e., xij = 1, then the corresponding reduced

cost c̄ij must be equal to 0, where

Definition 4 Reduced costs are defined as

c̄ij = cij − ui − vj , ∀i ∈ R, j ∈ T . (14)

The constraint in Program (12) implies that only if

c̄ij ≥ 0 will the robot-task pair (i, j) be feasible. In

essence, the reduced cost is an auxiliary variable used

to describe the feasibility of pairwise dual variables be-

tween robots and tasks (i.e., we use one variable to

describe feasibility of two dual variables).

3.3 Strategic Task Swap Method

The task swaps in our previous work [Liu and Shell,

2012b] can be regarded as cyclic permutations. The per-

mutation cycle is termed the swap loop or swap cycle

in the task allocation context. A swap loop differs from

a permutation cycle in that the swap loop is associ-

ated with two types of objects (robots and tasks), and

are generated in a rather more strategic way. Fig. 1(a)

shows a permutation cycle (124) where the arrows hop

over multiple rows 1 → 2 → 4, crossing three dark

cells. In contrast, the cycle in Fig. 1(b) is a swap loop

involving two types of dark entries (and six dark cells

are crossed). A swap loop can be transformed to a per-

mutation cycle by keeping only one type of entry in

each row: only the robots/rows information need be re-

tained in the cycle notation. To update the assignment,

each robot on a swap loop substitutes its task with its

successor’s along the closed orbit.

Our prior task-swap assignment algorithm [Liu and

Shell, 2012b] essentially built upon the primal-based

algorithm of Balinski and Gomory [1964]. The algo-

rithm maintains a feasible primal (requirement (i) in

the Duality Theorem) and the complementary slack-

ness (equivalent to requirement (iii)), and iteratively

adjusts the dual program (requirement (ii)). The opti-

mal solution is determined when the dual also becomes

feasible. In the centralized context, it was shown that

with a time complexity of O(n3lgn) and a maximum

number of O(n) swap loops, the optimal assignment

solution is guaranteed to be found.

The main steps appear in Algorithm 3.1 as pseudo-

code. At a high-level, a spanning tree-like data struc-

ture (in the reduced cost matrix) is used to search for

swap loops. See Fig. 2 for an illustration. Searching

starts from an entry (i0, j0) with infeasible reduced cost

(c̄i0j0 < 0). In Fig. 2(a), the entry containing a star is

such an entry. New entries are added as tree nodes by

establishing traversal edges (links). Specifically, if the

current leaf node is an assigned entry with xij = 1, it

is expanded to new leaf nodes that are unvisited unas-

signed entries satisfying c̄ij = 0 in the same row; oth-

erwise if the current leaf node is unassigned, it is ex-

panded to the unique assigned entry in the column that

it resides in. Two sets Rv, Tv are used to record the ex-

panded/visited rows and columns, respectively. Let i′

be the row of an assigned leaf node, then

Update Rv, Tv for i′ :

Rv = Rv ∪ {i′},
Tv = Tv ∪ {j′ | c̄i′j′ = 0,∀j′ ∈ T \ Tv}.

(15)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Communication Constrained Task Allocation with Optimized Local Task Swaps 7

(a) (b)

Fig. 2 Illustration of swap loop searching in a reduced cost matrix. (a) From a starting entry (the one that contains a star), new
entries are added as tree nodes by establishing traversal edges (links). Shaded entries are currently assigned, and bold-edged
entries have reduced costs equal to zero. Waved lines represent the paths found after dual adjustments; (b) A corresponding
spanning-tree like data structure is used to aid efficient searching.

This searching procedure repeats until a loop is found —

when a leaf node hits the starting row i0. (Note that,

i0 /∈ Rv.)
However, if no entry with 0-valued reduced cost can

be found before a loop is formed, the dual variables are

then adjusted to introduce new entries with a reduced

cost of 0.

Adjust u,v :

δ = min {c̄ij | i ∈ Rv, j ∈ T \ Tv}
ui = ui + δ, ∀i ∈ Rv,
vj = vj − δ, ∀j ∈ Tv.

(16)

A swap loop L can also, therefore, be thought of as

a chain of entries alternatively satisfying xij = 1 and

xi′j′ = 0, and all entries on the loop satisfying c̄ij = 0

(the starting infeasible entry (i0, j0) is an exception).

A task swap operation is a substitution of xij by xi′j′ .

We compare the old and new solutions:

f(X′)− f(X)

=
∑

i∈R,j∈T

x′ijc
′
ij −

∑
i∈R,j∈T

xijcij =
∑

(i,j)∈L

c′ij −
∑

(i,j)∈L

cij

=
∑

(i,j)∈L

(
c′ij − (ui + δ)− (vj − δ)

)
−
∑

(i,j)∈L

(cij − ui − vj)

=
∑

(i,j)∈L

c̄′ij −
∑

(i,j)∈L

c̄ij =
∑

(i,j)∈L

c̄′ij = c̄′i0j0

(17)

The new solution is improved if c̄′i0j0 < 0, then the

overall cost is reduced by an amount of |c̄′i0j0 | after

swapping tasks along the loop.

Additional detail on Algorithm 3.1 can be found

in Liu and Shell [2012b].

4 Decentralization of Task Swaps under

Communication Constraint

The preceding formulation in Section 3.3 has potential

for a decentralization because each stage (i.e., the peri-

Algorithm 3.1 Centralized Task Swap Algorithm

1: /* i, j are indices of rows and columns, respectively. π−1(·)
denotes the inverse of an assignment.*/

2: Initialize: u = 0,v = diag(C)
3: for j = 1→ n do

4: Get the smallest entry: (i0, j0) = argmini{c̄ij}; if
c̄i0j0 > 0, break for loop

5: Queue Q← (i0, j0)
6: while Q is not empty do
7: Q pops the top node, assuming entry (it, jt); locate

a new row i′ = π−1(jt)
8: Q← {(i′, j′)|c̄i′j′ = 0, ∀j′ ∈ T \ Tv}
9: Update sets Rv, Tv for i′ via Eq. (15)

10: if i′ == i0 then a swap loop is formed, terminate
11: if Q is empty and loop is not formed then
12: Adjust u,v via Eq. (16), new entries with c̄i′j′ =

0, i′ ∈ R \Rv, j′ ∈ T \ Tv must exist
13: Go to Step 8

odic process of finding one swap loop) is likely to involve

only a subset of the robots. But some challenges must

still be overcome.

– First, there is the question of how the robots gain

access to the required information. The constraints

imposed by the communication network affect the

search process because, in order to reach an opti-

mal solution, the algorithm requires that all robots

in the spanning tree be able to reach one another.

Assuming that this will always be possible is unre-

alistic for multi-robot systems with limited commu-

nication capabilities, unfortunately.

– The second issue lies in inter-stage dependencies,

i.e., a robot cannot be involved in two spanning

trees simultaneously because the iterative dual up-

dates must proceed sequentially.

We propose the following method to address the

problems above.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 Lantao Liu, Nathan Michael, Dylan A. Shell

4.1 Building Spanning Trees while Cognizant of the

Communication Topology

We first consider the case of building a single spanning

tree to search for only one swap loop, but subject to

local communication. The goal is to span a search tree

directly on the network topology rather than on the

reduced cost matrix. As already mentioned, the swap

loop that achieves the most substantial improvement in

costs will be sought, but it can only be found subject to

the constraints on information that may be transmit-

ted.

We start by analyzing the reduced costs on the swap

loop and have the following lemma.

Lemma 1 Let c̄ij be the reduced costs of the unas-

signed entries (i, j) with xij = 0 on the swap loop L,

and define the sum cL as

cL =
∑

(i,j)∈L,xij=0

c̄ij , (18)

then cL is the difference between the new and old solu-

tions:

cL = f(X′)− f(X). (19)

Proof To show this we proceed from the right side to

the left. From Eq. (17), we have

f(X′)− f(X) = c̄′i0j0 = ci0j0 − u′i0 − v
′
j0 . (20)

Since j0 ∈ Tv but i0 /∈ Rv, Eq. (16) implies that u′i0
is never updated. Assuming the searching carries out a

sequence of dual updates δ = {δ1, δ2, · · · , δl}, then,

f(X′)− f(X) = ci0j0 − ui0 − vj′0
=ci0j0 − ui0 − (vj0 − (δ1 + δ2 + · · ·+ δl))

=c̄i0j0 + (δ1 + δ2 + · · ·+ δl),

(21)

where {δ1, δ2, · · · , δl} are exactly those unassigned c̄ij
(except the starting entry) on the swap loop. Let cP =

δ1 + δ2 + · · ·+ δl, then we have

f(X′)− f(X) = c̄i0j0 + cP

=c̄i0j0 +
∑

(i,j)∈L\{(i0,j0)},xij=0

c̄ij

=
∑

(i,j)∈L,xij=0

c̄ij = cL.

(22)

Lemma 1 reveals that only unassigned reduced costs

can effect improvements to the solution and, except

c̄i0j0 , all other reduced costs on the loop are positive.

With this observation, we construct a graph G = (V,E)

where each robot and its assigned task are collected into

a super node vα = (rα ↔ π(rα)) ∈ V , and we reinter-

pret those feasible (positive valued) unassigned entries

as edges∗ e = (vα, vβ) ∈ E with the corresponding re-

duced costs as edge weights w(vα, vβ) = c̄rαπ(rβ). Note,

w(vα, vβ) 6= w(vβ , vα), thus e(vα, vβ) 6= e(vβ , vα). This

model leads immediately to the following theorem.

Theorem 3 The problem of searching for a task swap

loop is transformed into a search for a cycle on a stan-

dard directed graph G = (V,E), and where the total cy-

cle weight cL is exactly the cost reduction between new

and old assignment solutions.

In actuality graph G is built from the multi-robot

communication network topology. Fig. 3 illustrates an

example. The solid edges in the figures represent the

connectivity of the network with edge weights as the

corresponding feasible reduced costs. The dashed edges

connecting to the starting node c̄r1t1 (shown as left-

most) represent the infeasible entries which are not re-

ally on the graph, but they will be used to close the

loop. The spanning tree grows by appending new edges

(those with the least weight) and cP is the path cost

between the root and a leaf node on the tree. Finally,

an dashed edge with weight −7 closes the loop consist-

ing of r1, r2, r3. The overall cost is reduced by −cL =

−(−7 + cP) = 2 after the tasks are swapped.

4.1.1 Refining Swap Loop Searching via Relaxation

Further observation permits an improvement to the lo-

cal search approach just described.

Theorem 4 The spanning tree approach of Algorithm 3.1

is a greedy search method and the swap loop it finds

may have an cost step size that is suboptimal, i.e., the

reduction in optimization objective is not guaranteed to

be maximal.

Proof In each iteration of Algorithm 3.1, only nodes

that are connected to the tree (but not yet on the tree

itself) will be considered. And those nodes with mini-

mum connecting edge weight, there may be more than

one, will be added as new leaf nodes. The tree always

employs the locally optimal choice first and grows in

a way analogous to a breath-first-search (BFS). The

searching process is, therefore, greedy. A path from root

to a leaf node on a spanning tree (even a minimum span-

ning tree) need not necessarily be the shortest path,

which would be the path that reduces the cost maxi-

mally.

∗ The symbols u and v will be used as vertices of graphs
in the remainder of the paper. They are not to be confused
with their use earlier as dual variables.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Communication Constrained Task Allocation with Optimized Local Task Swaps 9

(a) (b) (c)

(d) (e) (f)

Fig. 3 A swap loop is found on the graph built on network topology. Solid edges with w(vα, vβ) = c̄rαπ(rβ) > 0 represent the

connectivity of the network. The dashed edges connecting to the leftmost node (the starting node) are not actually part of
the graph, but represent infeasible entries. (a)—(e) The spanning tree, shown with thick edges, grows. (e) An infeasible edge
closes the loop with cP = 2 + 3 = 5 and cL = −7 + cP = −2. (f) After swapping tasks, the assigned robot-task pairs in the
super nodes are changed. The connectivity of the graph is also updated.

The proof of Theorem 4 sheds light on directions

for improvement of the local search. Lemma 1 shows

that improvement of the assignment solution is essen-

tially determined by the path cost cP . We can im-

prove the path quality using the relaxation technique

popularly employed in single-source-shortest-path al-

gorithms such as Dijkstra’s algorithm. The steps (in

pseudo-code) appear as part of in Algorithm 4.1.

Algorithm 4.1 Swap Loop with Relaxation
1: /* Let v.d be the distance from node v to root; v.d is ∞ by

default.*/
2: Initialize the root node v0 s.t. v0.d = 0
3: Set S = ∅, min priority Qp ← v0
4: while Loop is not found do

5: Qp pops the top node, assuming v; S = S ∪ {v}
6: for each node u on an outgoing edge of v do
7: if u.d > v.d+ w(u, v) then

8: u.d = v.d+ w(u, v), set u’s predecessor as v
9: If between the root and a leaf node there exists a

path P with cP + c̄i0j0 < 0, a swap loop is formed

Relaxation aims at decreasing the cost of reaching

a node by using another node adjacent to it. Unlike a

spanning tree method, the edges among leaf nodes can

be used to find loops.

When a node is relaxed (Step 6–8), the path to it

is shorter and its predecessor is also modified so that

a smaller number of nodes/robots may be involved in

the path. Also, a swap loop with cL < 0 may appear

earlier, reducing the communication load through an

early termination.

Additionally, since the relaxation compares nodes

in set S and those outside S, once a node is in S, the

path from it to the root must be the shortest. However,

Step 9 implies that a loop can be detected even before

the relaxation is finished. The algorithm can stop at

any point in time after a swap loop is detected, any

additional iterations refine the relaxation and can im-

prove quality. Once all the nodes in the loop are in set

S, the swap loop must converge to that which reduces

the cost the most.

The time complexity for searching for a swap loop

is improved over Algorithm 3.1. Specifically, given a to-

tal of n nodes/robots (n can be the size of either the
whole system in the centralized version, or partial sys-

tem in the decentralized version), building a spanning

tree with Algorithm 4.1 requires only O(|E|+ |V |lg|V |),
which is O(n2) in the worse case (the analysis is anal-

ogous to the Dijkstra’s algorithm); in contrast, Algo-

rithm 3.1 needs O(n2lgn) to finish the spanning tree

starting from the same root [Liu and Shell, 2012b].

4.2 Eliminating Inter-Stage Dependencies via

Permutation Cycle Decomposition

In this section, we propose a means of mitigating the

dependencies between the algorithm stages associated

with multiple spanning trees. We will show that the

dependencies among task swaps, originally presented

in our previous work, can be greatly relaxed through a

mechanism of permutation cycle decomposition, thereby

requiring only local communication and fully distribut-

ing the method.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 Lantao Liu, Nathan Michael, Dylan A. Shell

Based on Propositions 1 and 2, we have the following

observations:

Lemma 2 Any permutation cycle with length greater

than or equal to three can be decomposed into non-disjoint

permutations of shorter lengths.

Proof Given an arbitrary permutation g with length

k ≥ 3, one can decompose it into two smaller cycles at

element ip in the original cycle,

g = (i1i2 · · · ik)

= (i1i2) · · · (ip−1ip)(ipip+1) · · · (ik−1ik)

=
(
(i1i2) · · · (ip−1ip)

)(
(ipip+1) · · · (ik−1ik)

)
= (i1i2 · · · ip)(ip · · · ik).

(23)

Such a decomposition can occur on any element in the

cycle so long as 1 < p < k.

Note that the smaller cycles obtained in Eq. (23)

do not commute because the element ip is involved in

two resulting non-disjoint cycles, which must be exe-

cuted strictly in order if one is to get a result identical

to the original cycle. To mitigate this strong ordering

dependence, we have the following theorem.

Theorem 5 If two non-disjoint permutation cycles g1
and g2 share a common element ip, then ip can be iso-

lated from g1 and g2 through further decompositions.

The resultant two new cycles g′1 and g′2 (without ip in-

volved) become disjoint depending on an appropriate ad-

justment of the remainder cycles with length at most 3.

Proof Following the notation in Lemma 2, let g1
def
=

(i1i2 · · · ip) and g2
def
= (ip · · · ik), the common element

is thus ip. It is worth noting that, since ip is involved

in two cycles, and in each cycle it has two neighbors

(one predecessor and one successor), thus ip has totally

four neighbors (i1, ip−1 in g1, and ip+1, ik in g2) that it

directly connects to.

Now we decompose the two permutations:

g1g2

=(i1 · · · ip−1ip)(ipip+1 · · · ik)

=(i1 · · · ip−1)(ip−1ip)(ipip+1)(ip+1 · · · ik)

=(i1 · · · ip−1)(ip−1ipip+1)(ip+1 · · · ik)

def
=g′1g̃g

′
2.

(24)

It shows that two cycles become three cycles where

the middle one g̃ = (ip−1ipip+1) has length 3. Neither

of the other two ending cycles g′1 and g′2 contain ip and

are thus disjoint.

The ending cycles g′1 and g′2 can commute and switch

order only if appropriate operations are carried out.

More formally, let ĝ, ǧ be two transpositions formed

by ip and its four immediate neighbors, i.e., ĝ
def
= (iki1)

and ǧ
def
= (ip−1ip). If we attach ĝ, ǧ each after the com-

muted ending cycles, then we have:

(g′2ĝ)(g′1ǧ)

=(ip+1 · · · ik)(iki1)(i1 · · · ip−1)(ip−1ip)

=(ip+1 · · · iki1)(i1 · · · ip−1ip)
=(ip+1 · · · iki1 · · · ip)
=(i1i2 · · · ik) = g.

(25)

From Eq. (23) and (24), g = g1g2 = g′1g̃g
′
2, thus

Eq. (25) indicates that the two decomposed ending cy-

cles g′1 and g′2 can commute after two transpositions ĝ, ǧ

are performed after each.

Note that, each of the remainder cycles g̃, ĝ, ǧ in-

volves at most 3 elements and represents local oper-

ations near ip. One may regard the above manipula-

tion as the operation of stitching smaller non-disjoint

cycles—which reflect operations that can be computed

locally and concurrently—into a larger one, involving

a larger number of simultaneously acting robots. This

operation leads to a greater degree of centralization for

a potentially better solution.

4.2.1 Minimization of Local Search Interactions

We minimize interactions among agents’ local searching

processes (and augment assignment solution quality)

through manipulating decomposed permutation cycles.

More specifically, since both Algorithm 3.1 and 4.1 as-
sume that during the searching procedure the task as-

signment information remains unchanged, this assump-

tion can be violated if a robot is involved in multiple

spanning trees because executing a loop formed earlier

inevitably assigns this robot a new task, possibly caus-

ing later loops to be invalid (i.e., cL > 0 and no longer

improving the assignment solution).

This means that a fully decentralized approach with

the fewest interactions is desired. In other words, we

prefer the local search processes to execute concurrently

while minimizing interactions amongst the processes.

We combine the permutation manipulations to explore

the decentralized structure, and carefully examine in-

teractions between the search procedures which assess

the tasks to be swapped.

In greater detail, the analysis of the decomposition

of permutation cycles in Theorem 5 shows that non-

disjoint cycles can be decomposed into two disjoint ones

with small remainder cycles. We use this observation to

coordinate multiple non-disjoint task swap loops.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Communication Constrained Task Allocation with Optimized Local Task Swaps 11

Assume task swapping along a loop

L : (· · · ip−1ipip+1 · · ·) (26)

is executed first, and a common robot ip is also involved

in the loop formed thereafter

L′ : (· · · i′p−1ipi′p+1 · · ·). (27)

In this case, g̃ = (ip−1ipi
′
p+1), ĝ = (i′p−1ip+1) and ǧ =

(ip−1ip).

We first check the validity of the later loop L′ by

comparing the changes in reduced costs that are asso-

ciated with ip. Only valid loop will proceed to be re-

fined. Let jp denote the original task for ip before L is

executed, and jp = π(ip) denote its updated task due

to L, then loop L′ is valid if and only if

c̄ipjp − c̄ipj′p < c′L, (28)

where c′L is the total cost of loop L′ as defined before.

(More generally, if two loops share multiple common

robots, the changes in reduced costs associated with

these common robots are summed up and compared

with c′L.)

If the later loop L′ is valid, we then further augment

the solution by “stitching” L and L′. Since there are two

ways of combining the two loops, i.e., we can either

put L first which corresponds to Eq. (24) (in this case

g̃ needs to be performed) or put L′ first as Eq. (25)

describes (in this case ĝ should be carried out). This

can be addressed by comparing between operations of

g̃ and ĝ, and the valid/best operation is selected to

perform immediately after the first loop. Similarly, ǧ

is also tested after executing the second loop and is

performed if it can further improve the solution quality.

(As we mentioned earlier, robots involved in g̃, ĝ and ǧ

can be easily located since they are adjacent in the loop

and are neighbors in the network.)

4.3 Decentralized Algorithm with Concurrent Loop

Searching

Thus far, the two aforementioned hurdles for decentral-

ization —global communication requirement and stage

dependency— have been eliminated. As a consequence,

multiple swap loops can be searched concurrently and

any robot is allowed to participate in multiple search-

ing processes simultaneously. Robots communicate with

neighbors by passing messages containing the latest span-

ning tree information. Note that the robot that initiated

the loop (the root of the search tree) does not need to

explicitly communicate with the last robot on the tail

(a leaf of the search tree) in order to close the loop.

This is because a loop closure can always be detected

by the last robot on the chain and the task swaps can

be done via backtracking along the loop.

In the decentralized implementation each robot car-

ries out Algorithm 4.1 to maximize the local solution

quality. The whole algorithm appears in Algorithm 4.2.

Algorithm 4.2 Decentralized Implementation

1: /* Each robot i maintains a record of neighbors N(i) and
their assignment information. */

2: Select the root: e.g., root i′ can be voted among neighbors
by (i′, j′) = argmin(i,j)c̄ij , ∀i ∈ N(i), j ∈ T

3: Each root starts spanning tree on communication graph
G

4: for each robot i do
5: if robot i is root of some tree then

6: if A (optimal) loop is formed then
7: Revisit those in-loop robots to check loop validity

8: if loop is valid then
9: Notify other robots on the same tree to stop

spanning
10: Execute task swaps following the loop
11: Stitch loops by selecting g̃, ĝ, ǧ
12: else

13: if i receives a message then
14: Span and relax the tree following Algorithm 4.1
15: if the path Pi to i satisfies c̄i′j′ + cPi > 0 then

16: Stop spanning from this node

Finally, the algorithm does not need to use global

information since the graph is only built from the net-

work topology, however, the solution may be subop-

timal because the network imposes constraints which

confine the search so it will be an incomplete search of

the global solution space. Any resulting suboptimality

reflects the constraints imposed by the network connec-

tivity.

Theorem 6 Algorithm 3.1 yields a result that is op-

timal when executed on robots with a communication

network that is a complete graph.

Proof Since the optimization problem solved (in either

primal or dual form) is convex, when any pair of robots

can communicate with one another, the problem does

not involve any local minima. Lemma 1 implies that

when the relaxation runs to completeness, the largest

cost reduction is found (otherwise Dijkstra’s algorithm

would be suboptimal). This means that if some progress

toward a solution can be made then it must be found by

the search and, without local minima, optimality must

result.

We have not discussed the task allocation scenar-

ios with unequal number of robots and tasks until now.

There are two cases: (1) The number of robots is greater

than the number of tasks. In this case, dummy/virtual

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12 Lantao Liu, Nathan Michael, Dylan A. Shell

tasks with sufficiently large costs can be created for the

initial assignment, so that the problem is transformed

to the classic one-to-one mapping assignment problem.

(2) The number of robots is less than that of the tasks.

In this case, directly creating dummy robots does not

work since dummy robots will not be able to do any

computation or be involved in communication. How-

ever, the presented algorithm will still converge even

with fewer number of robots. This is because in our

approach each robot builds search trees and interacts

with neighbors locally, dynamically and concurrently,

in other words, the algorithm is not sensitive to the

number of robots since to each robot only nearby neigh-

boring robots matter, so long as each robot can hold a

task at any time.

5 Experiments

We tested the proposed algorithm in simulation to vali-

date our claims of improved local searching, fast conver-

gence, and low communication load. Data were gener-

ated through a dispatching scenario: a group of robots

in the plane must visit a set of destination way-points.

Costs are computed as the Euclidean distances between

the pair-wise robots and destination points. This set-

ting was selected for its straightforward comprehension

and in order to introduce as few domain specific com-

plexities as possible.

Fig. 4 illustrates an example configuration gener-

ated with 50 robots and 50 target points randomly

distributed in a 100m × 100m square. Light line seg-

ments denote the spanning tree edges, and swap loops

are drawn with thicker lines. Note that the searching

process requires the underlying graph to be static. This

strong assumption is exactly the motivation for design-

ing a decentralized method with local searching, fast

convergence, and anytime output. Fig. 4(a) also shows

that in order to find a swap loop, only a subset of robots

(and their tasks) need to be involved. Fig. 4(b) shows

the corresponding swap loops in the reduced cost ma-

trix.

5.1 Optimized Local Searching

Local searching with relaxation improves the greedy

BFS search described in [Liu and Shell, 2012b]. Fig. 5(a)

shows the practical running time in order to search for

a swap loop. We can see that the time required for the

relaxation method is much less than that of the BFS

approach especially when the system is large. (Experi-

ments were run on a standard laptop of dual-core CPU

(2GHz×2) and 2GB memory, and all statistics are the

mean values of 100 sets of data.)

Fig. 5(b) is a representative example showing that

the assignment solution evolves faster with relaxation.

The stairs in Fig. 5(b) show the decreasing objective

value f(X), where each decrement results from task

swaps along a swap loop. This difference manifests it-

self as a larger downward step in cost reduction for the

relaxation method.

5.2 Solution Convergence

We next compared the convergence performance of the

decentralized implementation (Algorithm 4.2) with the

recent task-swap based optimal assignment algorithm

[Liu and Shell, 2012b] that also allows interruptions at

any time. We define each time step as an interval that

allows a message to be sent or received, and assume that

a robot is able to duplicate messages when necessary

and broadcast them to multiple receivers in a time step

(similar to the communication strategy of Murdoch

architecture [Gerkey and Matarić, 2002]).

The trade-off between the optimality and decen-

tralization is revealed in Fig. 6(a), where we observe

that the optimal algorithm with stage dependence and

global communication has a linear trend reaching the

optimum, whereas the decentralized approaches with

limited communication produces inferior results. It should

be emphasized, however, that without a multi-hop pro-

tocol the decentralized approach has limited informa-

tion that can be shared; it is solving a more constrained

optimization problem. Note also that owing to the lo-
cal search being concurrent, the convergence rate of the

decentralized is much faster than that of the central-

ized method. Specifically, under the same communica-

tion radius (= 20m), both the relaxation and greedy

BFS converge rapidly, but the relaxation method has a

solution quality significantly improved over the greedy

BFS strategy. Then for the relaxation method, we en-

larged the communication radius to 30m, and observed

that its convergence rate decreases whereas the solu-

tion (Relaxation+) is even closer to the optimum, which

demonstrates Theorem 6.

The number of processes used while searching was

also varied in order to investigate its impact. Fig. 6(b)

shows that with increased concurrency, convergence is

quicker and the solution quality is improved. It also

shows that the margin of improvement diminishes with

increasing size, presumably reflecting the degree of par-

allelism intrinsic to the problem.

We opted to use a distributed constraint optimiza-

tion (DCOP) algorithm for further comparison: since

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Communication Constrained Task Allocation with Optimized Local Task Swaps 13

(a) (b)

Fig. 4 Concurrent searching for swap loops. (a) The light-green circles represent robots and the smaller square dots denote
tasks, where tasks can be mobile targets. Note that the longest edge on each loop is a virtual edge that closes the loop. In
practice, a loop closure can always be detected by the last robot on the chain and the task swaps can be done via backtracking
along the loop. (b) Permutation cycles in the reduced cost matrix. A dark entry (i, j) represents the allocation of robot i to
task j. The initial assignment is arbitrary: a robot is assigned to the tasks with the same ID.

(a) (b)

Fig. 5 Local searching with optimized steps. With the relaxation described in Algorithm 4.1, (a) the practical running time
is improved; (b) the step size is optimized .

our method dynamically constructs search trees, the

asynchronous distributed constraint optimization (ADOPT)

[Modi et al., 2006] method, which also utilizes a search

tree structure, was selected for evaluation. (ADOPT

has been used as a benchmark to compare many DCOP

problems [Chechetka and Sycara, 2006, Yeoh et al.,

2008].) ADOPT requires that a global search tree is

constructed in which the agents each form tree nodes.

Each agent i holds and controls a unique assignment

variable xi where xi = 1, · · · , n maps to the assigned

task (randomly chosen at first). To avoid global com-

munication, we assume that xi can exchange the val-

ues/tasks with only those agents in the same sub-tree.

Then ADOPT controls the messages analogous to the

branching technique in the Branch and Bound meth-

ods, but with special treatment and in a distributed

fashion [Modi et al., 2006]. A demonstration of our im-

plementation is shown in Fig. 7.

Fig. 6(c) shows that DCOP can converge to global

optimal solution when the tree is maintained through-

out the whole process (i.e., it remains static). However,

if the global tree is broken into multiple smaller trees

(e.g., owing to agent failures), then the performance

deteriorates drastically. Dependence on a static global

tree allows DCOP to reach only a certain level of decen-

tralization, and it falls short of what we consider fully

distributed. Our method does not suffer from above is-

sue because trees are created and destroyed dynami-

cally and locally.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14 Lantao Liu, Nathan Michael, Dylan A. Shell

(a)

(b) (c)

Fig. 6 Solution convergence analysis. (a) The trade-off between the convergence and the optimality for centralized, greedy BFS
and relaxation methods of different communication radii (100 robots); (b) Our method: performance under different numbers
of searching processes (5–20); (c) DCOP: performance under different numbers of static search trees (1–4).

(a) (b) (c)

(d) (e) (f) (g)

Fig. 7 Task allocation formulated with DCOP. (a) Global tree construction; (b) A complete tree connecting all agents; (c) Two
disjoint sub-trees resulted from the failure of an agent; (d-g) Evolution of assignment matching along with DCOP operations
(a red agent represents its sub-tree is optimal whereas a blue agent represents its sub-tree is still sub-optimal); (g) The optimal
solution from a complete tree.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Communication Constrained Task Allocation with Optimized Local Task Swaps 15

(a) (b)

Fig. 8 Communication comparison in terms of (a) the total number of messages and (b) the average longest hopping distance
under different number of concurrent processes.

5.3 Communication Analysis

Performance in terms of communication costs for the

decentralized implementations was also assessed and

compared. A measure of communication load is con-

structed by counting the total number of messages trans-

mitted across the whole system. Since different methods

converge at different rates and eventually reach differ-

ent qualities, we thus define the communication load as

the total number of messages that are used to decrease

f(X) by a fixed amount. Fig. 8(a) plots the communi-

cation needed to reduce f(X) by 1000 from the initial

(random) solution. We can see that the communication

load is reduced significantly when the relaxation is em-

ployed instead of the greedy BFS. It also shows that

the DCOP approach requires the least communication

since all its messages flow on a global search tree which

remains static.

Finally we investigated properties of the spanning

trees, where the tree depth reflects the longest message

passing (hopping) distance needed to find a swap loop.

Longer hopping distances may cause longer time de-

lays and are likely to involve more distant robots, both

of which reflect a deterioration of the decentralization.

Fig. 8(b) shows that the relaxation reduces the tree

depth by more than half when compared with greedy

BFS; in contrast, the DCOP also needs more total hops

since the global tree has long branches.

6 Conclusion

We propose a new fully decentralized task swap based

multi-robot task allocation method that respects single-

hop communication constraints. The approach allows

concurrent searching processes to proceed locally on a

graph built over the network topology, and the interac-

tions among local processes are minimized. Our formu-

lation of the problem draws on techniques from group

theoretic concepts and optimization duality theory to

gain insight into the process of searching within a lo-

cal subspace of a global optimization problem. We are

able to connect the optimization convergence step size

to the quality of a shortest path problem on a graph.

Our simulation results show that this fully decentral-

ized method converges quickly without sacrificing much

optimality, despite we feel that the constraints imposed

by a limited locus of knowledge and a global optimality

criterion are essentially oppositional aspects.

References

M. L. Balinski and R. E. Gomory. A primal method for

the assignment and transportation problems. Man-

agement Science, 10(3):578–593, 1964.

D. P. Bertsekas. A distributed algorithm for the assign-

ment problem. Lab. for Information and Decision

Systems Report, MIT, 1979.

R. E. Burkard, M. Dell’Amico, and S. Martello. Assign-

ment problems. Society for Industrial and Applied

Mathematics, New York, NY, 2009.

L. Chaimowicz, M. F. M. Campos, and V. Kumar. Dy-

namic role assignment for cooperative robots. In

Proc. of the IEEE Intl. Conf. on Robotics and Au-

tomation, pages 293–298, 2002.

A. Chechetka and K. Sycara. No-commitment branch

and bound search for distributed constraint optimiza-

tion. In Proceedings of Fifth International Joint Con-

ference on Autonomous Agents and Multi-Agent Sys-

tems, pages 1427 – 1429, May 2006.

U. Derigs. The Shortest Augmenting Path Method for

Solving Assignment Problems–Motivation and Com-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16 Lantao Liu, Nathan Michael, Dylan A. Shell

putational Experience. Annals of OPerations Re-

search, pages 57–102, 1985.

M. B. Dias, R. Zlot, N. Kalra, and A. Stentz. Market-

Based Multirobot Coordination: A Survey and Anal-

ysis. Proceedings of the IEEE, 94(7):1257–1270, 2006.

J. Edmonds and R. M. Karp. Theoretical Improve-

ments in Algorithmic Efficiency for Network Flow

Problems. J. ACM 19(2):248–264, 19(2):248–264,

1972.

A. Farinelli, L. Iocchi, D. Nardi, and V. A. Ziparo.

Assignment of dynamically perceived tasks by token

passing in multi-robot systems. In Proc. of the IEEE,

Special Issue on Multi-robot Systems, 2006.

D. George. Linear Programming and Extensions.

Princeton University Press, August 1963.

B. P. Gerkey and M. J. Matarić. Sold!: auction meth-

ods for multirobot coordination. IEEE Trans. on

Robotics and Autom., 18(5), 2002.

B. P. Gerkey and M. J. Matarić. A formal analysis

and taxonomy of task allocation in multi-robot sys-

tems. International Journal of Robotics Research, 23

(9):939–954, September 2004.

S. Giordani, M. Lujak, and F. Martinelli. A Distributed

Algorithm for the Multi-Robot Task Allocation Prob-

lem. LNCS: Trends in Applied Intelligent Systems,

6096:721–730, 2010.

A. V. Goldberg and R. Kennedy. An Efficient Cost Scal-

ing Algorithm for the Assignment Problem. Math.

Program., 71(2):153–177, 1995.

M. Golfarelli, D. Maio, and S. Rizzi. Multi-agent path

planning based on task-swap negotiation. In Proc.

UK Planning and Scheduling Special Interest Group

Workshop, pages 69–82, 1997.

K. Hirayama and M. Yokoo. Distributed partial

constraint satisfaction problem. In Principles and

Practice of Constraint Programming, pages 222–236,

1997.

G. A. Korsah, A. Stentz, and M. B. Dias. A comprehen-

sive taxonomy for multi-robot task allocation. Inter-

national Journal of Robotics Research, 32(12):1495–

1512, 2013.

H. W. Kuhn. The Hungarian Method for the Assign-

ment Problem. Naval Research Logistic Quarterly

2:83–97, 2:83–97, 1955.

M. G. Lagoudakis, E. Markakis, D. Kempe, P. Ke-

skinocak, A. Kleywegt, S. Koenig, C. Tovey, A. Mey-

erson, and S. Jain. Auction-based multi-robot rout-

ing. In Robotics: Science and Systems, 2005.

T. Lemaire, R. Alami, and S. Lacroix. A distributed

tasks allocation scheme in multi-UAV context. In

Proc. ICRA, pages 3622–3627, 2004.

L. Liu and D. A. Shell. Multi-robot formation morph-

ing through matching graph. In International Sym-

posium on Distributed Autonomous Robotic Systems

(DARS), 2012a.

L. Liu and D. A. Shell. A distributable and

computation-flexible assignment algorithm: From lo-

cal task swapping to global optimality. In Proceedings

of Robotics: Science and Systems, 2012b.

L. Liu and D. A. Shell. An anytime assignment algo-

rithm: From local task swapping to global optimality.

Auton. Robots, 2013.

L. Liu, N. Michael, and D. Shell. Fully decentralized

task swaps with optimized local searching. In Pro-

ceedings of Robotics: Science and Systems, Berkeley,

USA, July 2014.

N. Michael, M. M. Zavlanos, V. Kumar, and G. J. Pap-

pas. Distributed multi-robot task assignment and

formation control. In IEEE Intl. Conf on Robotics

and Automation, pages 128–133, 2008.

P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo.

Adopt: Asynchronous distributed constraint opti-

mization with quality guarantees. Artificial Intelli-

gence, 161:149–180, 2006.

L. E. Parker. Multiple Mobile Robot Systems. In Bruno

Siciliano and Oussama Khatib, editors, Handbook of

Robotics, chapter 40. Springer, 2008.

D. W. Pentico. Assignment problems: A golden an-

niversary survey. European Journal of Operational

Research, pages 774–793, 2007.

A. Petcu and B. Faltings. A scalable method for multi-

agent constraint optimization. In Proceedings of the

19th International Joint Conference on Artificial In-

telligence, IJCAI’05, pages 266–271, 2005.

J. J. Rotman. An introduction to the theory of groups,

volume 148. Springer Science & Business Media,

1995.

S. Sariel and T. Balch. A distributed multi-robot coop-

eration framework for real time task achievement. In

Proceedings of Distributed Autonomous Robotic Sys-

tems, 2006.

P. Stone, G. A. Kaminka, S. Kraus, and J. S. Rosen-

schein. Ad Hoc Autonomous Agent Teams: Collab-

oration without Pre-Coordination. In Proc. AAAI,

2010.

C. Sung, N. Ayanian, and D. Rus. Improving the per-

formance of multi-robot systems by task switching.

In IEEE International Conference on Robotics and

Automation, pages 2984 – 2991, 2013.

F. Tang and L. E. Parker. A Complete Methodol-

ogy for Generating Multi-robot Task Solutions Using

ASyMTRe-D and Market-based Task Allocation. In

Proc. of IEEE International Conference on Robotics

and Automation (ICRA’93), pages 3351–3358, 2007.

M. Turpin, K. Mohta, N. Michael, and V. Kumar. Goal

assignment and trajectory planning for large teams

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Communication Constrained Task Allocation with Optimized Local Task Swaps 17

of aerial robots. In Proceedings of Robotics: Science

and Systems, Berlin, Germany, June 2013.

M. Turpin, N. Michael, and V. Kumar. CAPT: Con-

current assignment and planning of trajectories for

multiple robots. International Journal of Robotics

Research, 33(1):98–112, 2014.

J. Wawerla and R. T. Vaughan. Robot task switch-

ing under diminishing returns. In Proceedings of the

2009 IEEE/RSJ international conference on Intelli-

gent robots and systems, IROS’09, pages 5033–5038,

2009.

W. Yeoh, A. Felner, and S. Koenig. Bnb-adopt: An

asynchronous branch-and-bound dcop algorithm. In

In Proceedings of AAMAS, pages 591–598, 2008.

M. M. Zavlanos, L. Spesivtsev, and G. J. Pappas. A

Distributed Auction Algorithm for the Assignment

Problem. In Proceedings of the IEEE Conference

on Decision and Control, pages 1212–1217, Cancun,

Mexico, December 2008.

X. Zheng and S. Koenig. K-swaps: cooperative negoti-

ation for solving task-allocation problems. In Proc.

IJCAI, pages 373–378, 2009.

R. Zlot and A. Stentz. Market-based multirobot coor-

dination for complex tasks. I. J. Robotic Res., 25(1):

73–101, 2006.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

