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Abstract

Flocking motions have been the subject of hundreds of studies over the past six decades. The vast
majority of models have nearly identical aims: bottom-up demonstration of basic emergent flocking
motions. Despite a significant fraction of the literature providing algorithmic descriptions of models,
incompleteness and imprecision are also readily identifiable in flocking algorithms, algorithmic input,
and validation of the models. To address this issue, this meta-study introduces a data-flow template,
which unifies many of the existing approaches. Additionally, there are small differences and ambiguities
in the flocking scenarios being studied by different researchers; unfortunately, these differences are of
considerable significance. For example, much subtlety is needed to specify sensory requirements exactly
and minor modifications may critically alter a flock’s exhibited motions. We introduce two taxonomies
that minimize both incompleteness and imprecision, and enable us to highlight those publications that
study flocking motions under comparable assumptions. Furthermore, we aggregate and translate the
publications into a consolidated notation. The common notation along with the data-flow template and
the two taxonomies constitute a collection of tools, that together, facilitates complete and precise flocking
motion models, and enables much of the work to be unified. To conclude, we make recommendations for
more diverse research directions and propose criteria for rigorous problem definitions and descriptions of
future flocking motion models.

1 Introduction

Flocking behaviors by groups of individuals has been extensively studied for the past six decades in multiple
research communities, including biology (Aoki, 1984; Hildenbrandt et al, 2010; Vine, 1971), physics (Vic-
sek et al, 1995; Szabó et al, 2008; Czirók et al, 1997), and robotics (Arkin and Balch, 1999; Gazi and
Passino, 2005; Ferrante et al, 2012). Although many works have expressed confidence in our comprehen-
sion of this phenomenon (Goldstone and Janssen, 2005), understanding of the flocking phenomenon remains
incomplete (Giardina, 2008; Parrish et al, 2002; Vicsek and Zafeiris, 2012; Lopez et al, 2012; Hildenbrandt
et al, 2010). While several candidate models are available (e.g., Wood and Ackland (2007); Warburton and
Lazarus (1991); Rauch et al (1995); Okubo (1986); Moussäıd et al (2009); James et al (2004); Helbing et al
(2000); Hauert et al (2011)), there is no consensus on the precise details of the motions needed to produce
rich flocking motions under realistic sensing models, actuation, and dynamics constraints. This stems, we
believe, partly from a poor definition of what constitutes a flocking behavior.

Although diverse research communities study different varieties of the problem and questions surround-
ing the phenomenon (Clark and Evans, 1954; Dingle and Drake, 2007; Emlen, Jr., 1952; Partridge, 1982;
Pitcher et al, 1976; Rands et al, 2004; Viscido and Wethey, 2002; Whitfield, 2003; Simons, 2004; Parrish and
Edelstein-Keshet, 1999; Parrish, 1989; Miki and Nakamura, 2006; Hutto, 1988; Edelstein-Keshet, 2001; Ben-
der and Fenton, 1970), the vast majority of the flocking literature aims at bottom-up production of flocking
motion (Goldstone and Janssen, 2005; Parrish et al, 2002). Generally, studies are reported without explicitly
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detailing the sensing capabilities, limiting assumptions, and/or computation capabilities of the individual
flock members. Additionally, there is currently no common or accepted method for the design, validation,
and/or presentation of flocking motion models (Parrish et al, 2002; Vicsek and Zafeiris, 2012), which makes
it difficult to determine the current state of the literature and to compare existing motion models.

We have reviewed over one-hundred publications from various communities and have selected a subset of
thirty-two to conduct a detailed meta-study. These publications were carefully chosen to maximize coverage
of the common design choices and assumptions found throughout the literature and to be a representative
cross-section of the literature as a whole. We have chosen to included one of our recent publications (Fine
and Shell, 2011) that was developed with the conclusions of this work in mind. In Section 6 we will use that
study as a case-study to highlight the use of the tools presented here.

Our study reveals that the current presentation of proposed motion models lack either completeness,
precision, or both, which significantly hinders repeatability. Additionally, there are small, sometimes subtle,
implicit and/or explicit assumptions that are currently overlooked (examples we have teased out include:
member-based detection (Fine and Shell, 2011, 2012), lack of occlusions (Fine and Shell, 2011), perfect
sensing (Fine and Shell, 2011)), which may impact the produced motions. Furthermore, even models that
are completely and precisely presented are not always realized exactly when validated (e.g., a motion model
designed for local sensing might be validated using global sensing). Therefore, it is difficult to know the
degree to which a particular motion model is actually capable of producing flocking motion in a realistic
scenario or if the model’s assumptions are realistic. To clarify, we use the following terms when referring to
flocking motion models:

• Completeness refers to how many of the key aspects of the flocking model (Section 2) are presented.

• Precision (or lack thereof) is the quality of the specification/presentation of the various aspects of
the flocking motion model.

To better understand all aspects involved in the generation of flocking motions, we introduce a series
of analytical tools that help reduce incompleteness and imprecision in the design and presentation of these
models. Together, these three distinct tools use three different approaches for the understanding of the
flocking phenomena; (1) organizational, (2) categorical, and (3) structural. To gain a complete and precise
understanding of a given model, we must use all three tools, as they highlight different aspects of the model.

The first tool, the data-flow template (DT), identifies and addresses the key aspects for the production of
flocking motions and how these aspects relate. Together, the five aspects, or stages, of the DT (see Section 2)
give an organizational description for the production of flocking motions that can be used for understanding
what information is required and what stage(s) utilize it. Additionally, the DT can be a useful blueprint for
the design of new flocking motion models.

Moving beyond the organization of each particular motion model, we sought to chart the relationships
across existing models with our second tool; the objective is to categorize existing work concisely while
retaining sufficient precision to allow a practitioner to resolve implementation questions. We developed
a taxonomy to detail the computation, sensing, and motion capabilities of the individual flock members.
Additionally, we introduce a second taxonomy that aids in the classification of validation methods used for
a particular flocking motion model. When using the two taxonomies together, one may gain insight into
which assumptions or capabilities may be infeasible or impractical for a robotic or biological flock member.
Using the two taxonomies together also affords the ability to identify which motion model design choices
have been fully validated (e.g., local sensing versus global sensing).

Flocking motion models that appear to be similar at both the organizational and categorical levels may
actually differ significantly in the structure of the motion computation. The third tool used for gaining a
fuller understanding of the model is a consolidated notation and formalization which focuses on the motion
computation of a given motion model (i.e., the motion rule). The motion rule is a combination of the
neighbor selection and the motion computation stages and can be considered the algorithm of the motion
model. Formalization of the current motion rules facilitates understanding the implementation differences
between the various motion models. Even though many of the motion models have the same aim, the
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formalization and notation shows that the implementation of the models are typically quite different, which
can lead to different modeling assumptions.

1.1 Scope

Of the publications reviewed for this study, we only considered literature which uses a microscopic motion
model for investigating flocking motions. Microscopic flocking motion models have been the primary focus of
the many diverse research communities, thus resulting in several reviews and surveys of the literature (Vicsek
and Zafeiris, 2012; Blomqvist et al, 2012; Goldstone and Janssen, 2005; Giardina, 2008; Parrish et al, 2002).
These models typically focus on the motion rule used to produce the motions of the individual flock members.
Such models have been used to explore why flocks exist (Hamilton, 1971; Partridge, 1982; Viscido et al, 2002;
Viscido and Wethey, 2002; Bazazi et al, 2008; Barbosa, 1995), what is required for the production of flocking
motions (Reynolds, 1987; Pitcher et al, 1976; Fine and Shell, 2011, 2012), how much influence individuals have
on the group (Couzin et al, 2005; Conradt et al, 2009; Warburton and Lazarus, 1991), what special/unique
properties might exist in a flock (Vicsek et al, 1995), and how can we apply these motions to robots (Turgut
et al, 2008; Arkin and Balch, 1999; Ferrante et al, 2012).

In addition to investigating flocking motion using microscopic models, some work uses macroscopic mod-
els (Vaughan et al, 2000; Mogilner and Edelstein-Keshet, 1999; Babak et al, 2004). Instead of studying
the individual flock members, macroscopic models typically focus on group-level motions. In some of the
literature, macroscopic models are used as a tool for the validation of microscopic models and are not used
as a stand alone model (Albi and Pareschi, 2012; Cavagna et al, 2012). Such work is considered outside the
scope of this paper.

1.2 Notation

To improve precision in understanding the literature, we use the notation presented in Table 1. The chosen
notation represents something of a unified superset of notation seen in the selected publications. This notation
allows for unambiguous formalization of the selected publications and is used throughout this meta-study.

2 Data-flow Template

The data-flow template (DT) aids in designing and presenting complete microscopic flocking motion mod-
els. Each of the five stages (sensing, flock member detection, neighbor selection, motion computation, and
physical motion) of the DT represent the key aspects for the generation of flocking motions. The five stages
of the DT are connected by the information that is passed between them. With an explicit understanding of
the five stages and the relative connections, one gains an complete understanding of the motion model and
it facilitates repeatability among researchers. The DT differs from the other tools presented in this work, in
that the DT defines microscopic motion models at the logical level. In this way, the DT is a blueprint for
flocking motion models, as it details the major building blocks and how they fit together.

In addition to serving as a blueprint for the creation of flocking motion models, the DT is a useful tool
for understanding the complexity of a given model. Complexity, here, refers to how much computation, in
the motion computation stage, is required to execute a given model. Therefore, a motion model that uses
all of the detected flock members is less complex than a model that only uses a subset of the detected flock
members, since this model performs extra computation to produce the subset. The DT used in this way
can be useful for gaining a better understanding for which stages can be executed at the hardware level,
thus making the model less complex. Figure 1 shows a generic view of the DT along with the connections
between the various stages.
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Notation and Definitions

Bold capital roman letter Denotes a set (e.g., A(t)).

Bold lowercase roman letter Denotes a vector (e.g., vi(t)).

=̇ Definition (i.e., x =̇ y should be read as “x is defined as y”).

∗ Denotes a preference (e.g., di∗(t)=̇ the direction vector from agent i to location ∗ at
time t).

x̂i(t) Denotes the normalized form of xi(t).

xix(t) Denotes the x component of xi(t) (We only use this notation for the first three
components; x, y, and z).

⊥ (xi(t)) Denotes the vector perpendicular to xi(t).

∠(xi(t)) Denotes the argument of the vector xi(t) (i.e., the angle describing the direction of a
vector).

A(t) The set of all flock members at time t.

Di(t) The set of all flock members detected by the ith flock member at time t (i.e., Di(t) ⊆
A(t)).

Ii(t) The set of all flock members selected by the perception function (i.e., Ii(t) ⊆ Di(t)).

ri(t) The position of the ith flock member at time t.

dij(t) The direction vector from the ith flock member to the jth flock member at time t.

vi(t) The velocity of the ith flock member at time t.

ui(t) The speed of the ith flock member at time t.

θi(t) The orientation of the ith flock member at time t (w.r.t. some true/global direction).

R[α,β] The set of all valid distances (i.e., any flock member which has a distance d ∈ R[α,β]

would exists in R[α,β]).

L2(ri, rj) The Euclidean norm between ri(t) and rj(t) (i.e., || · ||2).

wi
k The kth gain/constant for the ith flock member (if the superscript is omitted then it

is a global gain/constant).

Table 1: Definitions and style guidelines for the formalization and unification of the motion models presented
in this meta-study.

Flock Member

Detection
Sensing

Neighbor

Selection

Motion

Computation
Physical

Motion

Figure 1: A diagrammatic representation of the proposed DT for microscopic flocking motion models. It
details the main aspects for the generation of flocking motions via the five boxes (stages). The connections
between the stages encode the data that propagates between them. In particular, the connections between
the sensing stage and flock member detection stage represents the raw sensor information from each sensor
(e.g., laser range-finder, camera, GPS). The connection between the flock member detection and neighbor
selection stage is the set of detected flock members (Di(t)). The neighbor selection stage passes at least
one set of selected flock members (Ii(t)) to the motion computation stage which passes the next computed
motion to the physical motion stage.

2.1 The Five Stages: Definitions

2.1.1 Sensing

The sensing stage translates the visible environment (from the individual sensors reference frame∗ into usable
input for the later stages (e.g., a laser range-finder converts the visible environment into a list of ranges). A

∗Typically the sensor’s reference frame will be that of the flock member, but when the model uses global sensors (e.g.,
overhead camera) the two reference frames will differ.
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flock member’s internal representation of the visible environment is based on the sensors used, therefore the
design of the following stages is directly affected by this stage. For example, if a flock member is equipped
with a laser range-finder the flock member detection stage may use shape (based on the type of raw sensor
data) to detect other flock members in the environment. Although there is no formal input to the sensing
stage, the DT in Figure 1 shows input to the sensing stage from the physical motion stage because the
resulting motion of that stage may affect the visible environment.

2.1.2 Flock Member Detection

The flock member detection stage uses the raw sensor information provided by the sensing stage and outputs
the set of all detected flock members (Di(t)). The set Di(t) is a subset of all possible flock members,
represented by the set A(t), that are within the visible sensing region (R[α, β]). In other words, if the senors
defined in the sensing stage only senses information within a two meter radius (R[0, 2 meters]), then the set
Di(t) will only contain flock members that are within a two meter radius. Additionally, each flock member
in the set Di(t) encompasses all of the required information (e.g., position and velocity) and we assume the
type of information used for the description of a flock member has no effect on the DT. Therefore, if the
model requires position and orientation information, then for each flock member in Di(t), there will be a
corresponding rj(t) and θj(t).

2.1.3 Neighbor Selection

The neighbor selection stage takes the set Di(t) provided by the flock member detection stage and outputs
at least one subset of the set Di(t). The set(s) generated by the neighbor selection stage only contain flock
members which will be used in the motion computation stage. Therefore, if the motion computation stage
only uses the nearest neighbor† (in distance) to compute the next motion, then the neighbor selection stage
will only output a set that contains the nearest neighbor.

To reduce the set Di(t) to the desired output, the neighbor selection stage uses a set of perception
functions (see Table 2 for a list of perception function definitions). The neighbor selection function can use
any number and combination of these functions in order to reduce the set Di(t) into usable input for the
motion computation stage. The perception functions could be used in succession (e.g., union of the output of
two perception functions) or in parallel (i.e., the neighbor selection stage would output more than one set).
For example, if the motion computation stage may require two sets as input (e.g., attraction and repulsion
sets), the neighbor selection stage will output two sets; the set of ‘attraction-zone’ flock members and the
set of ‘repulsion-zone’ flock members. One possible representation of the neighbor selection function that
considers the attraction-repulsion zones, using the notation in Table 1, is (IRepulsion(t) ∩ IAttraction(t)) ⊆
Di(t).

2.1.4 Motion Computation

The motion computation stage uses the set(s) generated by the neighbor selection stage to calculate the
next motion of the flock member (e.g. this stage can update any combination of ri(t), θi(t), ui(t), or vi(t)).
It is important to note that this stage only describes the internal representation of the next motion and
does not describe how the internal representation is translated into low-level control commands for the flock
member. In the case of the attraction/repulsion zone example, the motion computation stage may compute
two different motion vectors that are then summed together to produce the next motion. Table 4 describes
most of the neighbor selection and motion computation stages in the selected publications.

2.1.5 Physical Motion

The physical motion stage takes the computed motion from the motion computation stage and translates
it into a form that can be realized in either a simulated or physical robot (e.g., a kinematic motion model

†In this paper, flock member X calls member Y a neighbor if and only if Y can be sensed by X.
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All() = {j ∈ A : j} = A All flock members are selected.

FixedSeti() = {j ∈ Si ⊆ Di : j} = Si

Each flock member is given a fixed set of flock
members Si (e.g., flock members are nodes in a
graph with fixed connectivity).

DistanceBasedi(d(·), R[dmin, dmax]) = {j ∈ Di : dmin ≤ d(i, j) < dmax}

All flock members within some distance from
the sensing flock member are selected.

Nearesti(d(·)) = k ∈ Di where k ∈ t(argmin
j ∈ Di

d(i, j))

Only the nearest flock member from the sensing
flock member is selected.

VoronoiBasedi() = {j ∈ Vi ⊆ A : j} = Vi

The voronoi neighbors, represented by the set
Vi(t), of the sensing flock member are selected.

k-Nearesti(d(·)) = {j ∈ Di : k-argmin
j ∈ Di

d(i, j)}

A generalized form of the nearest neighbor per-
ception function which selects the k-nearest
flock members from the sensing flock member.

BoundingBoxi(u1,u2) = {j ∈ Di : (u1x ≤ rjx ≤ u2x ) ∧ (u1y ≤ rjy ≤ u2y )}

All flock members within a defined bounding
box are selected (this function is designed for
a 2D plane but it is trivial to extend to higher
dimensions).

Anglei(α) = {j ∈ Di : arccos(̂rj · ρ̂i) < α}

All flock members that are within a specified
field of view are selected.

Table 2: Descriptions of perception functions found in the selected literature. We suggest that the majority
of neighbor selection stages could be created using a combination of the functions listed here, but these may
not be the only possible functions.
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or left and right motor speeds for a two wheeled robot). Similar to the sensing stage, there is no formal
output given by the physical motion stage; however, the resulting motions have an impact on the visible
environment used by the sensing stage (e.g. physical motion could affect which flock members belong to
Di(t+∆t)). Therefore, we have connected the sensing stage and the physical motion stage in Figure 1.

2.2 The Five Stages: Selected Literature

By applying the DT to the selected literature we can (1) show the five stages are indeed key aspects for the
generation of flocking motions, (2) gain a better understanding of the current microscopic flocking motion
models, and (3) determine which aspects of flocking motion generation have not been fully studied. This
section highlights specific examples found in the literature that have various levels of completeness in regards
to specific DT stages. Figure 2 gives examples of specific data-flows seen in the literature between the five
stages of the DT.

2.2.1 Sensing

Surveying the literature using the DT shows that different research communities tend to only focus on
particular aspects of flocking motion generation. Biology and physics models simplify both the sensing and
physical motion stages, where control literature models simplify the sensing stage but introduce motion
constraints and various types of noise. There are few works which investigate the sensing stage in great
detail, with one example being Kelly and Keating (1996). The treatment of the sensing stage in Kelly and
Keating (1996) describes all of the sensors used and the various properties associated with those specific
sensors. Additionally, Kelly and Keating (1996) give a detailed description of the physical flock member,
which could have an impact on the sensing, flock member detection, and neighbor selection stages. The
data-flow between the sensing and flock member detection stages for the model presented by Kelly and
Keating (1996) can be seen in Figure 2a.

Although the level of detail given in Kelly and Keating (1996) is desirable, it is not always feasible to
describe all five stages in a detailed manner due to space limitations. In contrast to the verbose description
in Kelly and Keating (1996), Gazi and Passino (2005) gives a brief, yet complete description of the sensing
capabilities of the flock members. Even though the sensing capabilities for the flock members rely on strong
assumptions (instantaneous and perfect sensing with an infinite range), the treatment of the sensing stage
does not allow for ambiguities in the understanding of the presented approach.

The vast majority of the literature either does not discuss or present a complete description of the sensing
stage. An example of a publication that does not treat the sensing stage can be seen in Tanner et al (2003a).
Tanner et al (2003a) simply state that there are n flock members moving in a plane that contain a position
(ri(t)) and a velocity (vi(t)). There is no discussion of how the positions and velocities are sensed and/or
calculated. Only from the context could we infer that the model in Tanner et al (2003a) uses an oracle to
maintain the information of the flock members.

For the publications that have a partial treatment of the sensing stage (Vicsek et al, 1995; Viscido et al,
2002; Czirók et al, 1997), it is typical to see the following style of description: “The flock member can detect
all members within a radius of r”. From this description the reader cannot disambiguate between the case
where the sensing radius is a simulation of a sensor limitation or if the sensing radius is a part of the motion
model. We know from the biology literature that some species only use a limited/specific number of flock
members to calculate their next motion, thus the distinction of what the sensing radius actually represents
is important for the understanding of the overall model.

2.2.2 Flock Member Detection

The flock member detection stage is one of the least completely treated and discussed aspects of flocking
motion generation. The vast majority of the literature does not consider flock member detection and makes
the assumption that all of the flock members within the sensing range are included in the set Di(t). Addi-
tionally, the flock member detection stage is also responsible for the detection of the required information.
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If in the sensing stage a velocity sensor is not specified and the motion model requires the flock member’s
velocity, then the flock member detection stage should detail how the velocity information is calculated (e.g.,
the velocity is inferred from the displacement of ri(t) and ri(t + 1)).

A couple of good treatments of the flock member detection stage can be seen in Turgut et al (2008);
Kelly and Keating (1996); Arkin and Balch (1999). Turgut et al (2008) give an adequate description through
describing how all of the required information is sensed (e.g., velocity, identification, orientation, etc.) by
the flock members. However, Turgut et al (2008) does not discuss if any noise or detection error exist in
the flock member detection stage. A common data-flow between the flock member detection and neighbor
selection stage can be seen in Figure 2b.

To this point, we have only considered a flock member detection stage that detects real flock members
(i.e., Di(t) ⊂ Ai(t)). Another possible role of the flock member detection stage is the detection/creation of
virtual flock members. Virtual flock members can be used to avoid obstacles (Olfati-Saber, 2006) and/or to
assist in maintaining a desired flock structure (Lindhé et al, 2005). A virtual flock member is created from
the sensed information. The information typically used for the creation of virtual flock members is encoded
in the set Ai(t) and any detected obstacles. In our notation, a virtual flock member is a flock member that
exist in the set Di(t) but does not exist in the set Ai(t). It is important to note that a virtual flock member
in the set Di(t) cannot be distinguished from a non-virtual flock member in the same set.

2.2.3 Neighbor Selection

The neighbor selection stage is treated in almost all of the literature and is the only stage that is generally
completely described. One of the most complete treatments can be found in Viscido et al (2002). For each
of the perception functions, Viscido et al (2002) explicitly states which flock members will be selected and
passed to the motion computation stage. The data-flow for one of the models presented by Viscido et al
(2002) between the neighbor selection and motion computation stage can be seen in Figure 2c. In addition
to which flock members are to be selected, Viscido et al (2002) gives brief explanations for the selection
decisions. The one exception to this is in their treatment of the local crowded horizon (LCH) motion model.
Viscido et al (2002) do not clarify if all of the detected flock members are selected or if only the members
apart of the ‘most crowded horizon’ are selected.

In contrast to Viscido et al (2002) fairly complete treatment of the neighbor selection stage, Mikhailov
and Zanette (1999) do not explicitly treat this stage at all. With that said, it is clear from the context
that Mikhailov and Zanette (1999) are using a perception function that selects all of the flock members in
the set Di(t) (see the perception function All() in Table 2).

The majority of the literature typically uses one perception function in the neighbor selection stage;
however, there are some works which use a combination of perception functions. Using the perception
functions in Table 2 we see that the motion model proposed by Gueron et al (1996) uses over six perception
functions. This is because the motion computation stage for Gueron et al (1996) has a large number of
conditions which affect the computation output (similar to the “attraction/repulsion” zone example used
earlier). For a more detailed treatment of this work please see Section 4.1.1.

Topological Flocking Models
In recent years, microscopic flocking motion literature has been using the term ‘topological’ to describe

a particular set of flocking motion models (Tanner et al, 2003a,b; Ballerini et al, 2008; Ginelli and Chaté,
2010; Niizato and Gunji, 2011; Bode et al, 2011; Cavagna et al, 2010). Topological motion models only differ
from ‘metric’ motion models in the neighbor selection stage of the DT, however, this distinction is not clear
in the majority of the topological literature. Niizato and Gunji (2011) does a good job in teasing out the
difference between topological and metric flocking motion models. Additionally, Niizato and Gunji (2011)
presents a motion model that utilizes both a metric and topological neighbor selection function.

2.2.4 Motion Computation

Even though the motion computation stage is always treated, the description of this stage is typically
incomplete, which causes ambiguities when attempting to formalize or implement a motion model. One
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reason for the lack of completeness is from not explicitly addressing all of the outputs generated by the
neighbor selection stage. For example, the simple nearest neighbor motion model (Viscido et al, 2002) does
not detail the flock members computed motions when there are no neighbors. In other words, if the set Di(t)
is empty, the motion computation stage is undefined.

Another cause for the lack of incompleteness in the motion computation stage is from the use of vague
terminology such as“back-up” and “turn left”. As we discuss later in this work (see Section 4.1.3) we see
that the use of vague terminology prevents us from formalizing such models, and thus it prevents us from
implementing a model as it was intended to be implemented. A third reason for incompleteness of the
motion computation stage can be seen in Viscido et al (2002). Within the same publication there are two
possible interpretations of the LCH motion model, but the authors never distinguish between the two of
them. The first prose description of the LCH motion model and the implemented version of the model are
similar but not exactly the same. We have implemented both of these interpretations on a physical system
and, fortunately, found that the generated motions only differ slightly (Fine and Shell, 2012). However, the
assumptions made by the two different interpretations do have an impact of the complexity of the motion
model.

2.2.5 Physical Motion

The physical motion stage is rarely treated in the flocking literature (Ferrante et al, 2012). A common input
to this stage can be seen in Figure 2d, where the motion computation stage takes a computed position (ri(t))
and translates it into low-level motor commands for the flock member.

(a) The sensing stage reduces the visible environment into
an array of distances from a laser rangefinder and a list
of velocities gathered through wireless communication;
both being common sensors chosen for robotic applica-
tions. The array and list are passed to the flock member
detection stage as the only inputs. This particular data-
flow is seen in Kelly and Keating (1996).

(b) The flock member detection stage translates the in-
formation given by the sensing stage into a set of n flock
members. It is important to note that Di(t) is a set of ab-
stract flock members and that a individual flock member
(fm) can be thought of as a feature vector. The features
of a flock member are defined by the required attributes
(e.g., rj(t), vj(t), θj(t), etc.). The set of flock members
is passed to the neighbor selection stage. This data flow
is used in all of the selected literature.

(c) The neighbor selection stage selects a subset (Ii(t))
of the set Di(t) to be passed to the motion computation
stage. The selection function used in this example only
selects the nearest flock member. This example can be
seen in Hamilton (1971) and Viscido et al (2002).

(d) The motion computation stage (i.e., control-law) uses
the set Ii(t) to compute the next motion for the ith flock
member. In this example, the next position for the flock
member is (1.3, 2.5) and it is passed to the physical mo-
tion stage. This example can be seen in Viscido et al
(2002), Hamilton (1971), Szabó et al (2008), Szabó et al
(2009), and Gazi and Passino (2003).

Figure 2: Specific examples of data-flow between the various stages in the DM. Note that the examples
listed here are from a combination of various publications. There is no known example of a publication that
unambiguously describes the data-flow between all stages.

3 Current Microscopic Models

In this section we analyze the high-level design choices for the selected microscopic motion models. Table 3 is
a categorical view of the sensing and computational requirements of individual flock members as well as the
composition of the entire flock (i.e., is the flock heterogeneous or homogeneous). The eight attributes (flock
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composition, flock member mobility, continuous/discrete time, collision avoidance, neighbor identification,
neighbor’s position, neighbor’s velocity, and neighbor’s orientation) highlighted in Table 3, together, give an
adequate description of the model’s required information. Additionally, Table 3 allows one to gain a better
understanding for if a particular model is biologically feasible, or how easily the model may be to implement
on a physical system. For example, if a motion model requires idealize/perfect motion, then the resulting
motions of this rule implemented on a physical (i.e., noisy) system may not be equivalent to the desired
motions. In general, Table 3 can be used to answer three questions; (1) what is the composition of the flock,
(2) how realistic are the constraints, and (3) what sensing information is required?
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Viscido et al (2002)(SNN/HA/LCH) � © ⊙ – –
√

– –

Conradt et al (2009) ⊞ © ⊖ Member –
√ √

–

Gueron et al (1996) ⊞ © ⊙ Member –
√

– –

Couzin et al (2005) ⊞ © ⊙ Member –
√ √

–

Lopez et al (2012) ⊞ © ⊙ – –
√

– –

Hamilton (1971) � © ⊙ – –
√

– –

Vicsek et al (1995) � © ⊙ – –
√

–
√

Dong (2012) � © ⊙ – –
√ √

–

Smith and Martin (2009) � © ⊙ – –
√

–
√

Shimoyama et al (1996) � © ⊖ Member –
√ √ √

Czirók et al (1997) � © ⊙ – –
√

–
√

Szabó et al (2008) � © ⊙ – –
√ √ √

Szabó et al (2009) � © ⊙ – –
√ √ √

Levine et al (2000) � © ⊖ Member –
√

– –

Toner and Tu (1998) � © ⊙ – –
√

–
√

Grégoire et al (2003) � © ⊙ Member –
√

–
√

Camperi et al (2012) � © ⊙ Member –
√ √

–

Helbing et al (2005) ⊞ © ⊖ All –
√ √

–

Matarić (1993) � △ ⊖ All –
√

– –

Reynolds (1987) � △ ⊖ All –
√ √ √

Kelly and Keating (1996) � △ ⊖ All
√ √ √ √

Turgut et al (2008) � △ ⊙ All –
√ √

–

Gökçe and Şahin (2009) ⊞ △ ⊙ All –
√ √ √

Tanner et al (2003a) � © ⊖ Member
√‡ √ √ √

Tanner et al (2003b) � © ⊖ Member –
√ √ √

Jadbabaie et al (2002) � © ⊙ – –
√

–
√

Gazi and Passino (2005) � © ⊙ –
√ √

– –

Gazi and Passino (2003) � © ⊙ Member –
√ √ √

Olfati-Saber (2006) � © ⊙ All –
√

–
√

Arkin and Balch (1999) � △ ⊖ All
√ √

– –

Fine and Shell (2011) � △ ⊙ – –
√

– –

Hauert et al (2011) � △ ⊙ Member –
√ √

–

Legend: �Homogeneous ⊞Heterogeneous © Idealized △Constrained ⊖Continuous ⊙Discrete

Table 3: A categorical review of the information and flock member requirements for each of the selected
motion models. This table can be used as a first pass to identify which models could be useful when
designing a new model or when identifying models that may benefit from additional investigations. Entries
marked with a (

√
) signifies that the particular attribute is utilized. For the collision avoidance attribute,

(Member) signifies that the model only considers member to member collision avoidance, while (All) signifies
that the model considers both member and environment collision avoidance.

‡Identification is only used in the perception function.
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3.1 Definitions of Table 3 Attributes

3.1.1 Flock Composition

Several flocking motion studies investigate the possibility of differences (sometimes subtle, sometime signif-
icant) in the flock members. Apart from physical differences (e.g., in sensing capability, size, appearance),
there can be differences in the underlying control law; more precisely, the motion computation stage in the
DT may vary between flock members. A flock’s composition can either be homogeneous (�), where all flock
members have identical motion computation stages, or heterogeneous (⊞), where at least one flock member
has a different motion computation stage.

This definition of group composition only considers the motion computation stage when determining if a
flock is homogeneous or not, and does not consider the motions exhibited by individual flock members. For
example, if all flock members have an identical probabilistic motion model (Viscido et al, 2002; Shimoyama
et al, 1996), then the flock is considered homogeneous even though the motions of the individual flock
members given identical input may not be the same. However, if the model has parameters which are
unique to a subset of flock members (Conradt et al, 2009; Couzin et al, 2005), we consider the flock to be
heterogeneous because the unique parameters can drastically affect the flock member’s motion. In the case
of Couzin et al (2005) there are two types of flock members (informed and uninformed), thus Ai(t) can be
partitioned into two distinct subsets of flock members, and therefore considered to be heterogeneous.

For this publication, we do not consider either the sensor configuration or the physical appearance of the
flock members in regards to the flock’s composition, since we are only interested in the chosen motion model.
However, a variation of flock composition could consider the sensor configuration of the flock members.
Knowing the particular sensor configuration may reveal implementation details that may affect the design
of the model. Even though we do not consider this here, the sensor configuration should be discussed when
presenting the sensing stage. Studies have also investigated the effects of heterogeneous flock members (in
appearance) on the human perception of a flock (Ip et al, 2006). We do not consider heterogeneous flocks
(in appearance) because we assume that the physical appearance of the flock members (for the selected
literature) does not affect the exhibited flocking motions.

3.1.2 Mobility

The mobility of the flock details the physical motion individual flock members can perform and we assume
that all of the flock members have the same mobility (i.e., the flock is homogeneous in regards to mobility). A
flock member’s mobility can either be idealized (©), where the flock member can immediately and perfectly
perform the computed motion, or constrained (△), where the flock member has a restricted set of possible
motions (e.g., grid-based motion) or imperfect (noisy) motion. For example, if a flock member that has
idealized motion executes a model that calculates the next position (ri(t + 1)) at time t, we know that
the flock member will arrive at ri(t + 1) (with no error). Conversely, if that same flock member now has
constrained motion, there could be a difference between the calculated and observed ri(t+1) (i.e., the flock
member is not guaranteed to arrive at ri(t+ 1)).

3.1.3 Discrete/Continuous

Flock members can execute the given model in either discrete time (⊙) or in continuous time (⊖). Flock
members operating in discrete time only sense, compute, and act (move) in distinct time intervals (i.e., a flock
member may only sense, compute, and act every 0.1 seconds, regardless of the sensors sensing frequency).
Conversely, flock members that execute the given model in continuous time will sense, compute, and act
at the frequency of the given sensors and the time it takes to preform the computations. The important
distinction between the two time choices is that in discrete time, the flock members may ignore information if
the time interval is too large, where in continuous time, no information will be ignored (assuming all sensors
have the same frequency). However, if the information from the sensors is noisy and the flock member is
operating in continuous time, the resulting motion may be sporadic and may not exhibit the desired motions.
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3.1.4 Collision Avoidance

The collision avoidance of the flock details the individual flock member’s ability to avoid various types of
collisions. The two types of collisions studied in the literature are member-member collisions (a flock member
collides with another flock member) and member-environment collisions (a flock member collides with an
object in the environment that is not another flock member). Flock members can avoid collisions with other
flock members (Member), the environment (Environmental), both flock member and environmental obstacles
(All), or flock members have no collision avoidance capabilities (–).

3.1.5 Identification

Motion models that utilize identification assume that each flock member has a unique label (ID) (e.g.,
‘leader’ or ‘flock member 42’). Furthermore, these models assume that each flock member has the ability
to ‘detect’ other flock member’s ID at any time. Identification can be used to assist in member-to-member
communication as well as allowing ‘follower’ flock members to identify the ‘leader’ flock member(s).

It is important to note, if a flock member has the ability to identify other members, this does not
imply that the member has the ability to associate information between sensing steps (for the definition
of association see Section 6). Furthermore, we must note that the index of the flock members in the sets
Ai(t) and Di(t) cannot be used for identification (i.e., the flock member j ∈ Di(t) is not guaranteed to be
member j ∈ Di(t + 1)). Therefore, if identification is required, there must be an identification attribute
associated with each member, just as all other attributes (e.g., position, velocity).

3.1.6 Position, Velocity, and Orientation

The position, velocity, and orientation columns identify whether or not a model utilizes that particular type
of information. These three columns do not distinguish how the information is sensed or computed (e.g.,
global versus local reference frame), rather they simple state what information is required. In other words,
these columns identify the minimum informational requirements the motion model must have in order to
compute the next motion for the flock member.

3.2 Observations from Table 3

3.2.1 Group Composition

Observing Table 3, we see that six of the investigations consider heterogeneous flock members. Even though
we have a limited definition of heterogeneity, all of the studies which consider homogeneous flock members,
use truly homogeneous members (i.e., all aspects of the flock members are identical). For the publications
which do consider heterogeneous flocks, the studies typically investigate how informed members or leaders

can affect the motions of the flock (Couzin et al, 2005; Conradt et al, 2009). These investigations have
parameters which differ according to the flock member’s classification (e.g., leader or follower). In Gueron
et al (1996), heterogeneity represents strong and weak flock members, where strong flock members move
faster then weak members. We do not consider this to be heterogeneity with respect to mobility because
the feasible motions of the flock members are still the same, one type of flock member simply performs the
motion faster than the other (i.e., a different gain in the motion computation stage).

3.2.2 Mobility

We observed eight publications which consider constrained motion, which all exist in the robotics and control
literature. The majority of the literature assumes that if a flock member computes it’s next position as r,
then at time t + 1 the flock member will be at r (with no error). Of the literature that does consider
constrained motion, none of the models explicitly handle the motion constraints in any of the DT stages.
We must note that we chose to classify Vicsek et al (1995) as using idealized motion. Even though this
model is probabilistic in regards to the motion noise, the noise is added in the motion computation stage.
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When the flock member moves to the calculated position in the physical motion stage, there is no error;
thus, the Vicsek et al (1995) model is consider to use idealized motion.

3.2.3 Continuous/Discrete Time

Table 3 shows a divide among research groups with respect to the use of continuous or discrete time models.
Almost all of the selected literature from the biology and physics communities use discrete time, where the
robotics and control groups predominately use continuous time. One possible cause for this dichotomy are
the chosen forms of validation; see Table 6 (e.g., computer simulation versus physical implementation).

Continuous time models are typically more complete (in the specific sense outlined in the Introduction)
than discrete time models, although, there are some exceptions. Gueron et al (1996) is an example of a
discrete time motion model that is completely described. As we see in Gueron et al (1996), the authors
took great care to present what motion output would occur given any possible input. Another example of
a completely described discrete time model can be found in Conradt et al (2009), where the authors detail
what flock members do in the absence of neighbors (i.e., the neighbor selection stage outputs an empty list).

3.2.4 Collision Avoidance

Eight of the publications consider both environmental and flock member collision avoidance, with nine
other publications considering member-member collision avoidance. The flock members in the Olfati-Saber
(2006) study perform collision avoidance with both the environment and other flock members; however, the
motion computation stage does not handle any environmental obstacles. Flock members generate virtual
flock members (see Section 6) which travel along the boundary of the detected obstacles, thus the motion
computation stage only considers flock member avoidance. Additionally, none of the investigations explicitly
describe, with the exception of Reynolds (1987), how the obstacle avoidance is performed.

3.2.5 Position/Velocity/Orientation

When considering the complexity of a given motion model, we only consider if the model requires position,
velocity, and/or orientation information. There does not appear to be a difference in the design of the
motion computation stage with respect to the way in which the information in sensed (e.g., global, local, or
inferred). However, there is a difference in how the sensed information is used.

The majority of the motion models use the information in the motion computation stage, but some
models (Vicsek et al, 1995; Jadbabaie et al, 2002) use some of the information in the neighbor selection
stage. In Viscido et al (2002) the motion computation stage only requires the velocities (vj(t)) of the
selected flock members; however, position information (ri(t)) is used to select a subset of flock members
from Ai(t). In Table 3 we do not make a distinction on where the information is used.

With exception of the prose description of the LCH motion rule in Hamilton (1971), all of the selected
models require position information. In the proposed, but not validated, description of the LCH motion rule
each flock member moves towards the center of the highest density of detected flock members. With respect
to velocity and orientation information, there does not seem to be any major trends seen in the literature.

4 Specification of Motion Rules

To aid in the comparison of various flocking motion models and to assist in the understanding of the current
state of the literature, we translated the selected models into a common notation and formalized stages 3
and 4, which together create the motion rule. Table 4 shows the formalization of the neighbor selection stage
and motion computation stage for each of the selected models. Observing Table 4 reveals that even though
each of these models have the same aim, there are many ways in which the flocking problem can be solved.
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Paper Neighbor Selection Motion Computation

Viscido et al
(2002) (SNN)

k = Nearesti(L
2) ri(t + ∆t) =























ri(t) + d̂ik(t) if L2(ri(t), rk(t)) > rρ,

ri(t) otherwise.

Viscido et al
(2002) (HA)

k = Nearesti(L
2) ri(t + ∆t) =























ri(t) + ê(t) if L2(ri(t), rk(t)) > rρ,

⊥ (ri(t) + ê(t)) otherwise.

l = Nearestk(L2) e(t) = (d̂lk(t) + rl(t)) − ri(t)

Viscido et al
(2002) (LCH)§

Ii = All()

ri(t + ∆t) = ri(t) + ê

e =
∑

j∈Ii

dij

1 + w1L2(ri(t), rj(t))

Where w1 has units of 1
distance

Conradt et al
(2009)

Iiα = DistanceBasedi(L
2, R[0, α])

di(t) =























































− 1
|Iiα |

∑

j∈Iia

rj(t) − ri(t)

L2(ri(t), rj(t))
if |Iiα | 6= 0,

= 1
4|I

iβ
|

∑

j∈I
iβ

rj(t) − ri(t)

L2(rj(t), ri(t))
+

1

4|I
iβ

|
∑

j∈I
iβ

v̂j(t) + w
i
1

r∗(t) − ri(t)

2L2(r∗(t), ri(t))
if |I

iβ
| 6= 0,

r∗(t)−ri(t)
|r∗(t)−ri(t)|

otherwise.I
iβ

= DistanceBasedi(L
2, R[α, β])

Gueron et al
(1996)

IS = BoundingBoxi((rix − w1, rix + w1),
(riy − w2, riy + w2))

θi(t + ∆t) =























































































































θi(t)

if (F ∧ ¬LF ∧ ¬RF ∧ ¬LB ∧ ¬RB)∨

(¬F ∧ LF ∧ RF ∧ ¬LB ∧ ¬RB)∨

(¬F ∧ ¬LF ∧ ¬RF ∧ LB ∧ RB),

θi(t) − 90◦
if (¬F ∧ LF ∧ ¬RF ∧ ¬LB ∧ ¬RB)∨

(¬F ∧ ¬LF ∧ ¬RF ∧ LB ∧ ¬RB),

θi(t) + 90◦
if (¬F ∧ ¬LF ∧ RF ∧ ¬LB ∧ ¬RB)∨

(¬F ∧ ¬LF ∧ ¬RF ∧ ¬LB ∧ RB).

F = Anglei() ∩ IS

LF = Anglei() ∩ IS

RF = Anglei() ∩ IS

ui(t + ∆t) =























































































































ui(t)
1
wi

if (F ∧ ¬LF ∧ ¬RF ∧ ¬LB ∧ ¬RB),

ui(t)

if (¬F ∧ LF ∧ ¬RF ∧ ¬LB ∧ ¬RB)∨

(¬F ∧ ¬LF ∧ ¬RF ∧ LB ∧ ¬RB)∨

(¬F ∧ ¬LF ∧ RF ∧ ¬LB ∧ ¬RB)∨

(¬F ∧ ¬LF ∧ ¬RF ∧ ¬LB ∧ RB),

0 if (¬F ∧ LF ∧ RF ∧ ¬LB ∧ ¬RB),

ui(t)wi if (¬F ∧ ¬LF ∧ ¬RF ∧ LB ∧ RB).

LB = Anglei() ∩ IS

RB = Anglei() ∩ IS

See Section 4.1.1

Continued on next page

§This is the formalization of the LCH motion rule that was validated in Viscido et al (2002). The other version of the motion
rule is discussed in more detail through out this meta-study (see Section 3.2.5).
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Couzin et al
(2005)

I = DistanceBasedi(L
2, R[0,β])

di(t + ∆t) =
ê+w1di∗(t)
|ê+w1di∗(t)|

e =
∑

j∈I

rj(t) − ri(t)

|rj(t) − ri(t)|
+
∑

j∈I

vj(t)

|vj(t)|

Lopez et al
(2012)

I = DistanceBasedi(L
2, R[0,β])

ri(t + ∆t) = ri(t) + w1∆t ∗ θi(t + ∆t)

θi(t+∆t) = 1
|I|

∑

j∈I

w2(|rj (t)−ri(t)|)θj (t)+
1

|I|
∑

j∈I

w3(|rj(t)−ri(t)|)
rj(t) − rj(t)

|rj(t) − rj(t)|
+ ηi(t)

Where ηi(t) =̇ a stochastic component

Hamilton
(1971) (1D)

I = VoronoiBasedi()

ri(t + ∆t)







































ri(t) if L2(rI0
(t), rI1

(t)) < min(L2(rl(t), ri(t)), L
2(rk(t), ri(t))),

rl(t)−ri(t)
2

if L2(rl(t), ri(t)) < L2(rk(t), ri(t)),

rk(t)−ri(t)
2

otherwise.

k = VoronoiBasedI1
()\i

l = VoronoiBasedI2
()\i

Hamilton
(1971) (2D)

k = Nearesti(L
2, R[0, β]) ri(t + ∆t) =























ri(t) + d̂ik(t) if L2(ri(t), rk(t)) > rρ,

ri(t) otherwise.

Vicsek et al
(1995);
Czirók et al
(1997); Smith
and Martin
(2009)¶

I = DistanceBasedi(L
2, R[0, β])

ri(t + ∆t) = ri(t) + vi(t)∆t

θi(t + ∆t) =
∑

j∈I

arctan





sin θj(t)

cos θj(t)



 + ∆θ

Where ∆θ ∈ U(− η
2
,

η
2
)

Dong (2012)

I = DistanceBasedi(L
2, R[0, β])

ri(t + ∆t) = ri(t) + vi(t)∆t

vi(t + ∆t) =
∑

j∈I

∆taij(L
2
(ri(t), rj(t)))(vj (t) − vi(t)) + vi(t)

aij (x) =























1 if x ≤ w1,

0 otherwise.

Where w1 > 0

Shimoyama
et al (1996)

I = DistanceBasedi(L
2, R[0, β])

v̇i(t) = 1
m

(−w1vi(t) + w2ni(t) +
∑

j∈I

αij(t)fij (t) + gi(t))

Continued on next page

¶Uses a common absolute velocity.

15



Continued from previous page

Paper Neighbor Selection Motion Computation

(Also based
on Sugawara
(2012))

ṅi(t) = 1
τ

(ni(t) × v̂i(t) × ni(t))

αij(t) = 1 + d

[

ni(t) ·
rj(t)−ri(t)

|rj(t)−ri(t)|

]

fij(t) = −w3





(

|rj(t)−ri(t)|
w4

)−3

−
(

|rj(t)−ri(t)|
w4

)−2


×
(

rj(t)−ri(t)

w4

)

exp

(

−|rj(t)−ri(t)|
w4

)

gi(t) = w5

(

ei(t)−ri(t)
|I||ei(t)−ri(t)|

)

ei(t) =

∑

j∈I rj(t)

|I|

Where m
.
= agent’s mass, τ

.
= rotational relaxation time, and (0 ≤ d ≤ 1) for αij(t).

Szabó et al
(2008, 2009)

I = DistanceBasedi(L
2, R[0, β])

ei(t + ∆t) = ν · M(γ, ξ) · N(s ·
∑

j∈I vj (t)

|I| + (1 − s) · a(t)∆ t)

ri(t + ∆t) = ri(t) + ei(t)∆t

Where ν
.
= |v|, M(e, ξ)

.
= rational tensor representing random perturbation with γ := random

unit vector chosen uniformly vectors ⊥ N(

∑

j∈I vj(t)

|I| ) and ξ ∈ U(−ηπ, ηπ),N(e) = e
|e| ,s ∈

(0, 1],a(t) =
v(t)−v(t−∆t)

∆t

Levine et al
(2000)

I = DistanceBasedi(L
2, R[0, β])

v̂i(t) = 1
m

(

w1 f̂i(t) − w2vi(t) − ∇Ui(t)
)

f̂i(t) =
∑

j∈I

v̂j(t) exp

(

−
|ri(t) − rj(t)|

w3

)

Ui(t) =
∑

j∈I

w4 exp

(

−
|ri(t) − rj(t)|

w5

)

−
∑

j∈I

w6 exp

(

−
|ri(t) − rj(t)|

w7

)

Toner and Tu
(1998)

I = DistanceBasedi(L
2, R[0, β])

θi(t + ∆t) =
∑

j∈I

θj(t) + ηi(t)

ri(t + ∆t) = ri(t) + e where e = [cos θi(t + ∆t), sin θi(t + ∆t)]

Grégoire et al
(2003)

I = DistanceBasedi(L
2, R[0, β]) Model 1: θi(t + ∆t) = arg



w1
∑

j∈I

vj (t) + w2
∑

j∈I

fij



 + ηξi(t)

Model 2: θi(t + ∆t) = arg



w1

∑

j∈I

vj (t) + w2

∑

j∈I

fij + |I|ηei(t)





fij =
rj(t) − ri(t)

L2(rj(t) − ri(t))







































−∞ if L2(rj (t) − ri(t) < w3),

1
4

L2(rj(t) − Ri(t)) − w4
w5 − w4

if w3 < L2(rj (t) − ri(t)) < w5,

1 otherwise.

Continued on next page
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Camperi et al
(2012)

I = DistanceBasedi(L
2, R[0, β]) vi(t + ∆t) = v0ê

e = w1
∑

j∈I

vj (t) + w2
∑

j∈I

fij + |I|ηei(t)

fij =
rj(t) − ri(t)

L2(rj(t) − ri(t))







































−∞ if L2(rj (t) − ri(t) < w3),

1
4

L2(rj(t) − Ri(t)) − w4
w5 − w4

if w3 < L2(rj (t) − ri(t)) < w5,

1 otherwise.

v0 =̇ constant speed of member

Helbing et al
(2005)

See Section 4.1.2

Matarić
(1993)

See Section 4.1.3

Reynolds
(1987)

See Section 4.1.4

Kelly and
Keating
(1996)

See Section 4.1.5

Turgut et al
(2008)

I = DistanceBased(L2, R[0, β])

di(t + ∆t) = ê

e =
∑

j∈I(t)

e
θ̃j (t)

+ w1
1

8

8
∑

k=1

fke
4
π

k

fk =























−
(L2(ri(t)−rOk

(t))−rρ)2

w2
if L2(ri(t) − rOk

(t)) ≥ rρ,

(L2(ri(t)−rOk
(t))−rρ)2

w2
otherwise.

Where θ̃j (t) = ∠

(

e

(

θi(t)−θj (t)+ π
2

)

+ w3eη

)

, and η = N







∑

j∈Ii(t)

(

θi(t) − θj(t) +
π

2

)

, σ







Gökçe and
Şahin (2009)

I = DistanceBased(L2, R[0, β])

di(t + ∆t) = ê

e =
∑

j∈I(t)

e
θ̃j (t)

+ w1
1

8

8
∑

k=1

fke
4
π

k
+ w2(di∗(t) − di(t))

fk =























−
(L2(ri(t)−rOk

(t))−rρ)2

w3
if L2(ri(t) − rOk

(t)) ≥ rρ,

(L2(ri(t)−rOk
(t))−rρ)2

w3
otherwise.

Where θ̃j (t) = θi(t) − θj (t) + π
2

and rOk
(t) =̇ the pose of the kth obstacle.

Tanner et al
(2003a)

I = FixedSet i()

ṙi = Vi(t)

Continued on next page
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V̇i = ui(t)

ui(t) =
∑

j∈I

(vi(t) − vj(t)) −
∑

j∈I

∇ri(t)
Uij

Uij =























i 1
(L2)2+log (L2)2

L2 < rρ

w1 L2 ≥ rρ

Tanner et al
(2003b)

I = DistanceBased(L2, R[0, β])

ṙi = Vi(t)

V̇i = ui(t)

ui(t) =
∑

j∈I

(vi(t) − vj(t)) −
∑

j∈I

∇ri(t)
Uij

Uij =























i 1
(L2)2+log (L2)2

L2 < rρ

w1 L2 ≥ rρ

Jadbabaie
et al
(2002) (Lead-
erless)

I = DistanceBased(L2, R[0, β])

θi(t + ∆t) = 1
w1

(|I|θi(t) +
∑

j∈I

θj(t))

Where w1 > |I|

Jadbabaie
et al
(2002) (Leader-
Follower)

If = DistanceBased(L2, R[0, β])
θi(t + ∆t) = 1

1+|If∩Il|
(θi(t) +

∑

j∈If∩Il

θj(t))

Il = FixedSet ()

Gazi and
Passino
(2003)

I = All() ri(t + ∆t) =
∑

j∈I

f(L
2
(ri(t), rj(t)) where f(x) = −x(w1 − w2exp(

√
x⊤x

2

w3
)) with w2 > w1

Gazi and
Passino
(2005)

I = VoronoiBasedi()

xi(t + ∆t) =



































































































xi(0) if i = 1,

max





















xi−1(t) + w1,

min













xi(t) − g

(

xi(t) −
xi−1(τi−1)+xi+1(τi+1)

2

)

,

xi−1(t) − w1

































if i 6= 1, N,

max













xN−1(t) + w1,

xN (t) − g(xN (t) − xN−1(τN−1) − r)













if i = N.

k = VoronoiBasedI1
()\i

l = VoronoiBasedI2
()\i

Where g(·) .
= a scaling function and τi

.
= the time when xi was last sensed.

Olfati-Saber

(2006)

I = DistanceBased(L2, R[0, β])

vi(t + ∆t) =
∑

j∈I

φα(||rj(t) − ri(t)||σ )nij +
∑

j∈I

aij(vj (t) − vi(t)) + f
γ
i

Continued on next page
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φα(x) = ph

(

x
||r||σ

)

1
2



(w1 + w2)





x +w3
√

1 + (x + w3)2



 + (w1 − w2)





||x||σ = 1
ǫ

[
√

1 + ǫ||x||2 − 1

]

nij =
rj(t) − ri(t)

√

1 + ǫ||rj (t) −ri(t)||2

aij = ph

(

||rj(t) − ri(t)||σ
||r||σ

)

in [0, 1]

ph(x) =







































1 x ∈ [0, h)

1
2

[

1 + cos
(

π
x − h
1 − h

)]

x ∈ [h, 1]

0 otherwise.

f
γ
i

= −w4
(

ri(t) − r∗(t)
)

− w5
(

vi(t) − v∗(t)
)

Where w4, w5 > 0, h ∈ (0, 1)

Arkin and
Balch (1999)

See Section 4.1.6

Fine and Shell
(2011)

I = DistanceBasedi(L
2, R[0, β]) ri(t + ∆t) =



































































































ri(t) + ê(t − ∆t) if |I| = 0

ri(t) + d̂iI0
(t) if |I| = 1 and L2(ri(t), rI0

(t)) > rρ

ri(t) if |I| = 1 and L2(ri(t), rI0
(t)) ≤ rρ

ri(t) if 6 ∃ k ∈ I where L2(ri(t), rIk
(t)) > w1

ri(t) + ê(t) if L2(ri(t), ra1(t)) > rρ

⊥ (ri(t) + ê(t)) otherwise.

e(t) = (d̂a2a1(t) + ra2(t)) − ri(t)

a1 = min(∀ k ∈ I, L2(ri(t), rk(t)))

a2 = min(∀ k ∈ I, L2(ra1(t), rk(t)))

Hauert et al
(2011)‖

I = DistanceBased(L2, R[0, β])

θi(t + ∆t) = θi(t) − w1 ŝi(t) + w2 âi(t) + w3ĉi(t) + w4di∗(t)

si(t) =

∑

j∈I

1

ri(t) − rj(t)

|I|

ai(t) =

∑

j∈I

vj (t)

|I|

ci(t) =

∑

j∈I

rj(t)

|I|

Table 4: The translation of the neighbor selection and motion computation stages from the selected flocking
motion models. Together, these two stages constitute the motion rule, which is the primary focus of the
vast majority of the literature. The motion rules presented in this table have be translated into the common
notation (Table 1) presented earlier in this study. The neighbor selection column details the required per-
ception functions (Table 2) along with what set(s) of neighbors will be considered. The motion computation
column details the low-level control law, or algorithm, which computes the next motion of the flock member.

‖Uses a fixed velocity. 19



4.1 Literature Omitted from Table 4

Not all of the models from the selected literature can be easily formalized in our proposed framework (Matarić,
1993; Kelly and Keating, 1996; Reynolds, 1987; Arkin and Balch, 1999; Gueron et al, 1996), which have been
labeled as “See Section 4.X.Y” in Table 4. The most common reason (found in all omitted works except
for Gueron et al (1996)) for omission is ambiguity in the details of the low-level control law used to produce
the flocking motions. Gueron et al (1996) is a unique case in which the motion rule is completely and
precisely described, but the model is so complex, it does not lend it self to being formalized.

4.1.1 The Dynamics of Herds: From Individuals to Aggregations
(Gueron et al, 1996)

In Gueron et al (1996), the authors presented the motion rule in enough detail where formalization is possible,
but the rule is extremely verbose, which made it impractical to completely formalize the model in Table 4.
Table 4 shows the formalization of one of the four spatial regions (e.g., attraction, repulsion) which affects
the flock member’s motion. As shown in Table 4, the high number of discrete conditions in the motion
computation stage requires a high number of perception functions in the neighbor selection stage. This
suggests some care should be taken when designing the neighbor selection and motion computation stages.

4.1.2 Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design
Solutions
(Helbing et al, 2005)

Helbing et al (2005) presents a motion model based on the social force model presented in Helbing and
Molnár (1995). This model, along with other similar models (Moussäıd et al, 2009), could be formalized
into the presented notation if a complete and precise description of all of the forces were given. Specifically
in Helbing et al (2005), the authors present the force fαi(rα, ri, t) but only define the force as “attraction
effects”. Furthermore, the term ξα(t) is defined to be a “fluctuation term [that] reflects random behavioral
variations”. ξα(t) is clearly a noise term but the authors do not sufficiently define the properties of this term.

4.1.3 Designing Emergent Behaviors: From Local Interactions to Collective Intelligence
(Matarić, 1993)

In Matarić (1993), the flocking motions are created from multiple behaviors, such as Follow, Avoid, Aggregate,
and Disperse. Within the descriptions of each behavior there are ambiguities which make it difficult to
formalize the behaviors. For example, the avoidance behavior in Matarić (1993) is composed of two types
of avoidance; environmental and member. Within the environmental avoidance computation, there are
ambiguous phrases such as “backup and turn”, “turn right, go.”, and “if an [obstacle] is on the right”. It
is difficult to translate these phrases into our proposed framework and notation without making certain
decisions which could skew the original model design.

Another difficulty with the formalization of the avoidance behavior is the dynamics between the two
types of avoidance. Both avoidance methods have the similar statement of “If an [obstacle/flock member] is
on right...”. If an obstacle is on the left and a flock member is on the right, it is unclear what the resulting
behavior should be according to the description given in (Matarić, 1993). Similar ambiguities can be found
in the other behaviors and the dynamics between them.

Even without these ambiguities, it would be difficult to recreate the motion model presented in Matarić
(1993). The presentation of the behaviors uses phrases such as “backup” and “turn right”. If we where
to formalize these behaviors, the majority of the terms would be parameters and not calculations based on
input. This is not a problem when it comes to validating the model which produces flocking motions, but it
does make it difficult to reproduce the work for further study and comparisons.
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Version Neighbor Selection Motion Computation

Reynolds
(2004)

I = DistanceBased(L2, R[0, β])

vi(t) = w1 ŝi(t) + w2âi(t) + w3ĉi(t)

si(t) =

∑

j∈I

ri(t) − rj(t)

−δ2(ri(t), rj(t))
2

|I|

ai(t) =

∑

j∈I

θj (t)

|I| − θi(t)

ci(t) =

∑

j∈I

rj(t)

|I| − ri(t)

Kline (1996)

I = DistanceBased(L2, R[0, β])

vi(t) = w1 ŝi(t) + w2âi(t) + w3ĉi(t)

si(t) =























0 if k = ∅,

δ2(ri(t), rj(t)) otherwise.

I = DistanceBased (L2, R[0, α])∩ Nearest()

ai(t) =























































































































0 if k = ∅,

aix (t) =























aix (t) − w5 if (rk(t) − ri(t))x < w4,

aix (t) + w6 otherwise.

aiy (t) =























aiy (t) − w5 if (rk(t) − ri(t))y < w4,

aiy (t) + w6 otherwise.

aiz (t) =























aiz (t) − w5 if (rk(t) − ri(t))z < w4,

aiz (t) + w6 otherwise.

otherwise.

ci(t) =

∑

j∈I

rj(t)

|I| − ri(t)

Table 5: Both entries in this table are possible implementations of the motion model in Reynolds (1987).
The two implementations only vary slightly, however, the differences have effects on the complexity of the
flock members and the underlying causes of flocking motions.

4.1.4 Flocks, herds and schools: A distributed behavioral model
(Reynolds, 1987)

As in the previous studies discussed, Reynolds (1987) is difficult to formalize without introducing bias. Even
though the three rules for flocking presented in Reynolds (1987) are highly cited in the robotics literature,
the details of the three rules are ambiguous. Again, the problem lies in the details of the low-level behaviors
and vague descriptions of the various parameters needed.

Table 5 shows two possible formalizations of the flocking motion model in Reynolds (1987). Both Reynolds
(2004) and Kline (1996) were formalized using actual software implementations of Reynolds proposed model.
Even though these formalizations are similar and produce similar flocking motions, there are a few key
differences.

First, Kline (1996) only considers the closest flock member within a given radius when computing ai(t)
and si(t) where Reynolds (2004) considers all flock members within the sensing radius. The computational
differences between these two approaches have a direct affect on the neighbor selection function. Please note
that in the formalization of the neighbor selection function in Kline (1996), we had to include the union of
DistanceBased(·) ∩ Nearest() in order to select the nearest neighbor, which is explicitly used in the motion
computation stage.
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4.1.5 On Flocking By The Fusion Of Sonar And Active Infrared Sensors
(Kelly and Keating, 1996)

Similar to Matarić (1993), Kelly and Keating (1996) has ambiguous behavior descriptions, which makes it
difficult to formalize into our unifying framework. In Kelly and Keating (1996) the authors present the
dynamics between the different behaviors as a hierarchy but does not fully present the underling behaviors.
The authors use phrases such as “try to maintain position” and “speed up”, which are difficult to formalize
without making assumptions on the author’s intent.

4.1.6 Behavior-based Formation Control for Multi-robot Teams
(Arkin and Balch, 1999)

This work is a prime example of how researchers should report all of the various parameters and gains used
in the validation process. In addition to there being no ambiguities in respect to the parameters and gains,
the authors list the actual values used, thus allowing for repeatability. However, we were unable to formalize
this work due to some ambiguity in the presentation of the primitive schemas used. For example, the Move-
to-goal schema states “Attract to goal with variable gain. Set high when heading for goal.” Even though,
it seems straight forward to formulate this schema, we do not attempt to formalize this work for the same
reasons as in Section 4.1.5.

5 Validation Methods

In this section we analyze the various methods of motion model validation found in the selected literature.
Table 6 is a review of the validation choices (e.g., synchronous versus asynchronous flock members) and the
various validation methods (e.g., computer simulations versus physical implementations). The six attributes
(validation method, synchrony, neighbor’s position, neighbor’s velocity, neighbor’s orientation, flock’s envi-
ronment) highlighted in Table 6 give an adequate description of how current models are being validated.
The information provided in Table 6 also affords us the ability to gain insight into which models may be
more effective in a real world situation. In other words, if a motion model is only validated using global
information in an obstacle free environment, this model may not produce flocking motions when introduced
in a more realistic environment. Additionally, Table 6 can be used to cross-check the assumptions made
in the design of a given model (e.g., a model design for local information should be validated with local
information).
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Viscido et al (2002)(SNN/HA/LCH) MSP √
Global – – Bounded Free Space

Warburton and Lazarus (1991) MSP √
Global Global Global Unbounded Free Space

Conradt et al (2009) MSP √
Global Global Global Unbounded Free Space

Codling et al (2007) MSP √
Global Global Global Unbounded Free Space

Gueron et al (1996) MSP √
Local Global Global Unbounded Free Space

Couzin et al (2005) MSP √
Global Global Global Unbounded Free Space

Lopez et al (2012) MSP √
Global Global Global Unbounded Free Space

Huth and Wissel (1992) MSP √
Global Global Global Unbounded Free Space

Hamilton (1971) MSP √
Global – – Unbounded Free Space

Vicsek et al (1995) MSP √
Global Constant Global Periodic Free Space

Dong (2012) MSP √
Global Global – Unbounded Free Space

Smith and Martin (2009) MSP √
Global Constant Global Periodic Free Space

Shimoyama et al (1996) MSP √
Global Global Global Unbounded Free Space

Czirók et al (1997) MSP √
Global Global Global Periodic Free Space

Continued on next page
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Szabó et al (2008) MSP √
Global Global Global Periodic Free Space

Szabó et al (2009) MSP √
Global Global Global Periodic Free Space

Levine et al (2000) MSP – Global Constant Global Periodic Free Space

Toner and Tu (1998) MSP √
Global Constant Global Bounded Free Space

Grégoire et al (2003) MSP √
Global Constant Global Periodic Free Space

Camperi et al (2012) MSP √
Global Global – Unbounded Free Space

Helbing et al (2000) MSP∗∗– Global Global – BoundedObstacles

Matarić (1993) MSP – Local – Local Bounded Free Space

Reynolds (1987) MSP √
Global Global Global UnboundedObstacles

Kelly and Keating (1996) MSP – Local Inferred Inferred Bounded Free Space

Turgut et al (2008) MSP – Global – Local Bounded Free Space

Gökçe and Şahin (2009) MSP – Global – Local Bounded Free Space

Tanner et al (2003a) MSP √
Global Global Global Bounded Free Space

Tanner et al (2003b) MSP √
Global Global Global Unbounded Free Space

Jadbabaie et al (2002) MSP √
Global Constant Global –

Gazi and Passino (2005) MSP – Global Global Global Unbounded Free Space

Gazi and Passino (2003) MSP √
Global – – –

Olfati-Saber (2006) MSP √
Global Global Global UnboundedObstacles

Arkin and Balch (1999) MSP – Global – – UnboundedObstacles

Fine and Shell (2011) MSP – Local – – Bounded Free Space

Hauert et al (2011) MSP – Local Local – Unbounded Free Space

Legend: M:Mathematical S: Simulation P: Physical

Table 6: Details the validation methods chosen for the selected motion models. The form of validation
employed varies significantly within the publications.

5.1 Definitions of Attributes for Table 6

5.1.1 Validation Method

The validation method attribute details what combination of the possible methods where used to validate
the motion model and characteristics of the flocking motion produced by the model. The methods seen in the
selected literature are mathematical verification (M) of flocking motion characteristics (e.g., flock stability),
computer simulation (S), and the use of physical implementations (P). Both computer simulations and
physical implementations rely on implementing the motion model and studying the exhibited motions of
the flock. Literature that use mathematical methods typically prove the existence of various group-level
characteristics (e.g., does the flock converge to a stable formation or does a phase shift occur). The difference
between validation (computer simulations and physical implementations) and verification (mathematical) lies
in the scope of the chosen method. Validation methods consider the overall motions produced by the flock,
where verification methods consider particular aspects of the flocking motions (e.g., convergence and flock
stability).

5.1.2 Synchrony

Synchrony defines whether or not flock members sense, compute, and act in unison. If one flock member
executes any of the five stages at a different time or frequency, validation is said to be asynchronous. The
key distinction between synchronous and asynchronous validation is that if the model is asynchronous, then
we cannot assume the sets Ai(t) and Aj(t) are identical because the sensing of the flock members could have
been executed at different times.

∗∗The physical agent were human participants.
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5.1.3 Position/Velocity/Orientation

The position, velocity, and orientation attributes describe the way in which the required information (see
Table 3) is actually sensed. The three sensing methods found in the literature are global (Global), local
(Local), or inferred from other information (Inferred). In the selected publications global information is either
sensed by an overhead sensor or by an oracle that maintains the required information. Local information is
gathered by the flock member via sensors or member-to-member communication. Inferred information can
be gathered in two ways, (1) by using two distinct types of information (e.g., speed and orientation can yield
velocity) or (2) by associating data from multiple sensing iterations (e.g., displacement of position over time
can yield velocity).

5.1.4 Environment

The environment attribute describes the type of environment considered in the validation of the proposed
model. The environment can be any combination of bounded, unbounded, or periodic space, with or without
obstacles. For all of the literature reviewed in this study, all of the models where designed with regards to
a particular environment. There are no cases in the selected literature where a motion model was tested in
an environment it was not designed for.

5.2 Observations from Table 6

5.2.1 Validation Methods

The most commonly seen form of validation is the use of computer simulations which is then followed by
physical implementations. It is important to note there are various degrees of simulation validation (e.g.,
physics-based, sensor-based, etc.), which are not covered in this meta-study. Mathematical verifications are
typically used to show that certain known flock properties hold given a particular model. In Tanner et al
(2003a) and Tanner et al (2003b) the authors uses graph theory to show the flock members maintain a stable
flock (i.e., all flock members maintain common velocities and avoid collisions with other flock members).
However, mathematical verifications are also used to explore certain properties of the flock, such as phase
shifts in Mikhailov and Zanette (1999)††. The most complete validation treatment of a proposed microscopic
model found in the selected literature was done in Lindhé et al (2005). This work uses all three methods of
validation covered in this meta-study.

5.2.2 Synchrony

From Table 6 we observe that ten of the publications consider asynchronous flock members. Additionally,
we noticed that all of the publications that consider asynchronous flock members are from the control and
robotics literature. The low number of asynchronous flocks is surprising because we know from Şamiloǧlu
et al (2006) that asynchronism can have negative impacts on the exhibited flocking motions.

5.2.3 Position/Velocity/Orientation

All of the motion models from the selected literature only require local information (see formalization of
motion rules in Table 4); however, many of the studies use global information for the validation. This
disconnect between design and validation leaves room for subtle assumptions which could affect the flock’s
overall motion; such as the effects of occlusions. Physical flock members using local sensing may not be able
to detect the same set of neighbors as a global sensor due to occlusions from flock members and environmental
obstacles (i.e. the set Di(t) using a global sensor may differ from the same set sensed via a local sensor).
For example, if there are three collinear flock members, a member on the end of that line may only be able
to detect one neighbor using local sensing rather than both neighbors. This issue becomes apparent when
considering the Hamiltonian (HA) motion rule from Viscido et al (2002).

††Phase shifts refer to the moments in time when a flock becomes or discontinues being a flock.
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If the motion computation stage presented in Viscido et al (2002) uses local information, the motion
computation stage becomes undefined in some cases. Since the HA motion model was validated using global
information (with the absence of occlusions), the motion computation stage does not treat cases where only
one neighbor is detected; thus presenting a potential problem when local information is used. For a more
detailed treatment of the HA motion rule please see Viscido et al (2002) and Fine and Shell (2011). There
is not an instance in the selected literature where the effects of occlusions are properly treated or studied.

Velocity information is, arguably, the most complex type of information used in the literature; being a
combination of a member’s speed and orientation. Typically, flock members need to employ extra strategies
and information in order to attain the velocity of its neighbors; either through communication and identifi-
cation, or data association. There are only a few works in the selected literature (Kelly and Keating, 1996;
Vicsek et al, 1995; Czirók et al, 1997) which describe how the velocity information is attained. The other
literature simply states that the motion computation stage uses velocity information.

5.2.4 Environment

The environment used for physical and simulated validation is an important aspect to consider when planning
to implement a particular approach on a physical system. None of the selected literature has investigated the
effects that the environment has on the motions of the flock, with very few studies considering environmental
obstacles (Reynolds, 1987; Olfati-Saber, 2006; Lindhé et al, 2005; Arkin and Balch, 1999). Investigations
which do consider environmental obstacles typically select environments with few obstacles which are widely
spaced from each other. Olfati-Saber (2006) is one of the more complete treatments with respect to the
effects the environment has on the flock’s motions.

6 Discussion

This meta-study presented three types of tools (data-flowmodel, two taxonomies, and a notation/formalization)
to assist in the reduction of incompleteness and imprecision in microscopic flocking motion models. The pro-
posed DT along with the two taxonomies and the notation/formalization allow for better understanding
and comparison of the current literature on flocking motion models; however, there do exist some cases and
investigations in which the current tool-set does not work as well as it could. Through the exploration of
these outlying cases, we have highlighted future avenues of research that could prove beneficial to the overall
understanding of the flocking phenomenon.

Case-study: Fine and Shell (2011)
The flocking motion model presented in Fine and Shell (2011) is the Hamiltonian (HA) motion model

first presented in Viscido et al (2002). In Fine and Shell (2011) we present the HA motion model using
the tool-set presented in this meta-study in-mind. By translating the HA motion model from Viscido et al
(2002) into the notation presented here, we showed the existence of subtle inconsistencies and unrealistic
assumptions. Table 4 shows the difference in completeness for both the motion models presented in Viscido
et al (2002) and Fine and Shell (2011). Furthermore, by applying the DT to the model in Viscido et al (2002),
we were able to show that the exhibited motions of any motion model are independent of the perception
function used (under certain parameter constraints).

Collision Avoidance in the Data-flow Template
Although our model is general, it imposes enough constraints to serve as a constructive guide toward

consistent, complete, and precise descriptions of flocking motion models. One consideration not covered in
the current DT is the motion computation stage’s ability to handle collisions. The majority of the literature
states that flock members avoid collisions with the environment, but the publications rarely describe the
process/computations required to perform such motions (e.g., how does the flock member detect the environ-
ment, which parts (objects) are used in the computation stage, and/or how do the avoidance computations
affect the motion computations). To allow for a better understanding of the collision avoidance capabilities,
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we must modify the DT as presented in Figure 1; which only defines the motion model when there are no
obstacles in the environment.

To address collision avoidance in the DT we introduced the modified DT in Figure 3, which shows the
addition of a sixth and seventh stage (obstacle detection and obstacle selection). These two additional stages
are executed in parallel with the flock member detection and neighbor selection stages, respectively. The
obstacle detection stage takes the same input as the flock member detection stage (input from the flock
member’s sensors) and produces a set of obstacles. This set can be passed to the obstacle selection stage,
which outputs a subset of detected obstacles for the motion computation stage, or the set can be paired with
the flock members in the set Di(t) to generate virtual flock members (see ① in Figure 3).

Figure 3: The modified DT that includes the obstacle detection and obstacle selection stages. These two
stages allow for the addition of obstacle avoidance behaviors and the generation of virtual flock members.
The connection at ① can be treated as a place holder for adding a method that generates the required virtual
flock members, as in Olfati-Saber (2006).

Another aspect of flock member collisions, either with other members or the environment, not covered
in the current body of the flocking literature is the ability to use collisions as input to the motion model.
There have been studies in biology that have suggested that certain ants use information form ant-to-ant
collisions in order to adjust their behaviors. Even though these studies focus on task switching, it is plausible
to assume certain flocking motion models may use collisions as input to the motion computation stage (e.g.,
flock members using collisions to navigate the environment). It would be interesting to see if it is possible
to create flocking motions with only using information sensed from direct contact and how that might affect
the common assumptions made in the flocking motion literature.

Implicit Assumptions in Flock Member Detection
The vast majority of the flocking literature to date has made the implicit assumption of agent-based

detection. A flock member detection stage that uses agent-based detection takes all of the sensed informa-
tion from a single flock member and reduces it to a single description of that particular flock member. For
example, if a model requires the position of the k neighbors, then the flock member detection stage would
output (to the neighbor selection stage) k position values. This would be the case even if the sensor took
multiple readings from the same neighbor (e.g., a neighbor could take-up multiple laser-range finder readings
due to its physical size). Fine and Shell (2011) show that the implicit assumption of agent-based detection
is not necessary for the production of flocking motions and introduces flocking motion through the use of
sensor-based detection, which does not reduce the sensor information to a single description. Similarly, Fine
and Shell (2012) show that flocking motions can be produced by simply detecting groups of flock members,
instead of detecting the individual members. The work done in Fine and Shell (2011) and Fine and Shell
(2012) show that implicit assumptions in the flock member detection stage can have negative affects on both
the exhibited flocking motion and on the completeness of the flocking motion model; thus care must be taken
when determining the model’s assumptions.

Neighbor Identification
In theory, identification can prove useful for maintaining the flock’s structure and determining a flock

member’s membership within the flock (e.g., is the flock member a leader or follower). Unfortunately, ob-
taining identification information in practice (on a physical implementation) is difficult and error prone.
On a physical system there are three common ways to obtain the required identification information; (1)
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member-to-member communication, (2) direct sensing (e.g., flock members can identify the ‘color’ of its
neighbor), and/or (3) association. To date, it is not clear if biological flock members utilize identification,
but Occam’s razor would suggest that identification would not be required since flocking motions can be
produced without it. Clearly, further investigations are needed in order to understand the role, if any, iden-
tification plays in the production of flocking motion.

Association
Association is the ability for a flock member to pair sensor information from two consecutive sensor

readings. Association can be used in three ways, (1) as a standalone part of a given model (i.e., using prior
information as input to the motion model), (2) inferring information from multiple readings (e.g., using a
flock member’s position displacement to determine that member’s velocity), and/or (3) using association
to aid in identification (e.g., if the flock member knows the starting positions of its neighbors, the flock
member could use association to keep track of its neighbors’ IDs). It is important to note, association and
identification are distinct attributes that are independent of each other (i.e., it is possible to use any combi-
nation of these attributes). We have omitted the association column from Table 3 due to the lack of proper
presentation in the selected literature.

Data-Centric Approach to Determining Parameter Values
As we see in Kline (1996); Olfati-Saber (2006); Gökçe and Şahin (2009); Shimoyama et al (1996) many

publications present motion models that contain many different parameters or gains. Very few works, if any,
describe how the parameters for the motion model’s validation where selected, where some works (Vicsek
et al, 1995) validate the model over a range of parameter settings. Even in the investigations that study
a range of parameter values, the justification of the chosen values remains unclear. The majority of the
time the values are artificially ‘tuned’ until the desired flocking motions are produced from the given model.
Useful information about the effects of parameter values may be found if we determine the parameter values
from biological flocks (Moussäıd et al, 2009; Lopez et al, 2012; Lukeman et al, 2010). For example, the
repulsion radius of the flock members could be determined by analyzing the average distance maintained
between the members of the biological flock.

Flocking Motion is Independent to Information Types
Observing Table 3, we can seen that almost every possible combination of required information was used

in the studied motion models. If we now only consider the information required by the motion computation
stage, the number of combinations seen in the literature increases. From this, it is reasonable to assume that
flocking motion models do not require a specific type of information. Further support for this observation
can be found in Fine and Shell (2012) with the introduction of information-abstracted flocking. Fine and
Shell (2012) show the existence of a flocking motion model that is structured in away as to allow for the use
of different combinations of information without modifying the motion model.

Physical Implementations in Three Dimensions
The flocking phenomenon is seen all throughout nature in both two-dimensional (e.g., sheep and cattle)

and three-dimensional animals (e.g., fish and birds). With that said, the vast majority of physical imple-
mentations of motion models only exist on two-dimensional wheeled robotic platforms. Recently, however,
there has been increased research interest in implementing flocking motion on flying robots (Hauert et al,
2011). Hauert et al (2011) implements the motion model first presented by Reynolds (1987) on fixed-wing
flying robots.

6.1 Recommendations from the Tool-Set

The goal of the following recommendations are to help outline a framework/style for the presentation and
design of future microscopic flocking motion models. All of the recommendations have resulted from applying
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the previously presented tools to the selected publications. We feel that if these recommendations are followed
for future publications, the overall understanding of the flocking problem will be enhanced.

Data-flow Template (see Section 2)

1. The available and type of raw sensor information in the sensing stage affects all other aspects of
the flocking motion model. Therefore, the sensing stage should explicitly list how all of the required
information (e.g., position, velocity, identification, etc.) is sensed from the flock member’s environment.

2. We have seen in multiple studies (Vicsek et al, 1995) that not all required information is used in the
motion computation stage. For those works, it remains unclear if that information is a part of the
motion model, or if that information is simulating a sensor or flock member limitation. Therefore, the
purpose and use of all required information should be clearly described.

3. Specific sensing attributes and limitations (e.g., agent-based detection) may affect the exhibited flocking
motions and/or the design of the motion model. Therefore, the sensing stage and the flock member
detection stage should present any and all assumptions made.

4. As we saw in the presentation of the Viscido et al (2002) and Reynolds (1987) motion models, there
is a possibility for multiple interpretations of a given model. To help reduce ambiguities, algorithmic
presentations of motion computation stages should be preferred over prose descriptions.

5. The vast majority of the flocking motion literature treats/presents multiple stages as one stage (typ-
ically the neighbor selection and motion computation stages), which could lead to incompleteness
and/or imprecision. Therefore, we recommend that all five DT stages should be logically separated
and should also be treated/presented separately.

Design and Validation Taxonomies (see Sections 3 and 5 respectively)

1. Ambiguities and/or omissions of important information in the current motion models make it difficult
to compare works across the literature. Therefore, future publication should explicitly state what
attributes and assumptions the motion model requires and utilizes, respectively.

2. To better accommodate the implementation of flocking motion models on physical systems (robotic or
biological), continuous time models should be preferred over discrete time models.

3. In some of the literature, the motion model was design for local information, but when the model was
validated the flock members had access to global information. This inconsistency in the motion model
validation could lead to models which are difficult to implement on a physical system. Therefore, the
method in which the required information is sensed should reflect the type of information required by
motion computation stage (i.e., globally versus locally sensed).

4. To better simulate real-world situations, future motion models should be validated using asynchronous
flock members (when applicable).

5. The phenomenon of flocking is created through the interaction of many distributed individual flock
members. Therefore, motion models should only use locally sensed information when investigating the
flocking phenomenon.

6. Due to flocks existing and operating in real-world environments, future investigations should validate
motion models in obstacle filled environments (similar to environments biological flocks may encounter)
or detail the assumptions that make this unnecessary or potentially detrimental to the model.

28



7 Conclusion

In this meta-study we have explored the current state of flocking motion literature that focuses on micro-
scopic flocking motion models. Using the three presented tools (data-flow template, two taxonomies, and a
formalization/notation) we have identified and detailed the commonly seen designs and assumptions in the
current motion models. Through the use of our DT we have identified that there are at least five critical
aspects of the flocking problem. We have shown that failure to properly treat all of the five stages of the DT
could lead to incompleteness and/or imprecision in the presentation of the motion model. To demonstrate
this, we have detailed examples were adhering to the DT, leads to a more complete and precise under-
standing of the model (Section 2.2). Additionally, through analysis of the selected publications using the
two taxonomies (Tables 3 and 6), we have identified the common assumptions made in the literature, and
have shown that the majority of the investigations of microscopic motion models have the same underlying
aim. Therefore, in an attempt to increase the breadth of flocking motion research, we make the following
recommendations for future research investigations.

7.1 Directions for Future Investigations

1. The vast majority of the literature uses agent-based flock member detection, therefore we suggest that
future robotic investigations explore other detection methods, such as sensor-based detection.

2. As mentioned in Section 3, there are other possible definitions of group composition; thus, future
studies could consider the effects the various definitions have on the motion model and the exhibited
motions of the flock.

3. Future investigations could explore what flocking motions are afforded by using collisions as input to
the motion computation stage.

4. The vast majority of the flocking motion models require position information from the flock member’s
neighbors. Therefore, future investigations could explore the production of flocking motions without
the use of position information.

5. It is reasonable to assume that the output of the motion computation stage will affect the input of the
sensing stage (as seen in Figure 1). Future investigations could explore this connection in depth and
study various aspects of a physical flock, such as occlusions.
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Gökçe F, Şahin E (2009) To flock or not to flock: the pros and cons of flocking in long-range “migration” of mobile
robot swarms. In: Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS ’09), Budapest, Hungary, pp 65–72

Goldstone RL, Janssen MA (2005) Computational models of collective behavior. Trends in Cognitive Sciences 9(9):424
– 430
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