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Solution Synthesis
A group of robots can move to, or push boxes to, specified locations by sharing
information when individual robots cannot perform the tasks separately.
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ABSTRACT | This paper presents a reasoning system that
enables a group of heterogeneous robots to form coalitions to
accomplish a multirobot task using tightly coupled sensor
sharing. Our approach, which we call ASyMTRe, maps environ-
mental sensors and perceptual and motor control schemas to
the required flow of information through the multirobot sys-
tem, automatically reconfiguring the connections of schemas
within and across robots to synthesize valid and efficient
multirobot behaviors for accomplishing a multirobot task. We
present the centralized anytime ASyMTRe configuration algo-
rithm, proving that the algorithm is correct, and formally ad-
dressing issues of completeness and optimality. We then
present a distributed version of ASyMTRe, called ASyMTRe-D,
which uses communication to enable distributed coalition for-
mation. We validate the centralized approach by applying the
ASyMTRe methodology to two application scenarios: multi-
robot transportation and multirobot box pushing. We then
validate the ASyMTRe-D implementation in the multirobot
transportation task, illustrating its fault-tolerance capabilities.
The advantages of this new approach are that it: 1) enables
robots to synthesize new task solutions using fundamentally
different combinations of sensors and effectors for different
coalition compositions and 2) provides a general mechanism
for sharing sensory information across networked robots.

KEYWORDS | Coalition formation; information invariants;
multirobot teams; schema theory; sensor sharing; task
allocation

I . INTRODUCTION
Researchers generally agree that multirobot systems have
several advantages over single-robot systems [1], [5]. The
most common motivations for developing multirobot sys-
tem solutions are that: 1) the task complexity is too high
for a single robot to accomplish; 2) the task is inherently
distributed; 3) building several resource-bounded robots is
much easier than having a single powerful robot; 4) mul-
tiple robots can solve problems faster using parallelism;
and 5) the introduction of multiple robots increases ro-
bustness through redundancy. The issues that must be
addressed in developing multirobot solutions are depen-
dent upon the task requirements and the sensory and
effector capabilities of the available robots. The earliest
research in multirobot systems focused on swarm intelli-
gence approaches using homogeneous robot teams, in-
spired by insect societies (e.g., [3], [28]). In these
approaches, individual robots typically perform the same
type of subtask in the same environment, resulting in
global group behaviors that emerge from the local inter-
action of individual robots. The fundamental research
challenge in these systems is designing the local control
laws so as to generate the desired global team behavior.

Other types of robot systems involve heterogeneous
robots, which have differing sensor and effector capabil-
ities. In these teams, the mapping of tasks to robots is
much more important to the efficiency of the system, since
robots vary in the quality of their solutions to tasks. Tra-
ditionally, this problem has been called the multirobot task
allocation (MRTA) problem. Gerkey [14] has developed a
taxonomy for describing these problems, distinguishing
robots as either single-task (ST) or multitask (MT), tasks as
either single-robot (SR) or multirobot (MR), and assign-
ment types as either instantaneous (IA) or time-extended
(TA). The vast majority of prior work on MRTA (e.g., [4],
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[8], [16], [23], [31], [45], [47], [48]) has addressed single-
task robots executing single-robot tasks using either
instantaneous assignment (denoted ST-SR-IA) or time-
extended assignment (denoted ST-SR-TA).

In this paper, we address a different problem in the
MRTA taxonomyVnamely, single-task robots performing
multirobot tasks using instantaneous assignment (ST-MR-
IA). In other words, we are addressing the development of
heterogeneous robot coalitions that solve a single multirobot
task. While this problem has been addressed extensively in
the multiagent community (e.g., [24], [36], [37]), it has
been noted by Vig [44] that most of the multiagent ap-
proaches to coalition formation cannot be directly trans-
ferred to multirobot applications, since robot capabilities
and sensors are situated directly on the robots and are not
transferable between robots. Our approach is aimed at
enabling sensor-sharing across robots for the purpose of
forming coalitions to solve single-multirobot tasks.

More generally, multirobot coalition formation deals
with the issue of how to organize multiple robots into
subgroups to accomplish a task. Coalitions are typically
considered to be temporary organizations of entities that
bring together diverse capabilities for solving a particular
task that cannot be handled by single robots. Coalitions are
similar to the idea of teams, except that they typically have
a shorter duration and can change frequently over time.
We are particularly interested in automated techniques for
coalition formation, especially when the specific task
solution is highly dependent upon the available capabilities
of the heterogeneous robots, and thus cannot be specified
in advance. This is especially challenging in heterogeneous
robot systems, in which sensory and computational re-
sources are distributed across different robots. For such a
group to accomplish the task as a whole, it must determine
how to couple the appropriate sensory and computational
capabilities from each robot, resulting in automatically
formed coalitions that serve specific purposes.

To address this challenge, we present our approach
called ASyMTRe (which stands for BAutomated Synthesis
of Multirobot Task solutions through software Recon-
figuration,[ pronounced like the word Basymmetry[),
which we first introduced in [41], [42]. This approach is
aimed at increasing the autonomous task solution capabil-
ities of heterogeneous multirobot systems by changing the
fundamental abstraction that is used to represent robot
competences from the typical Btask[ abstraction to a
biologically inspired Bschema[ [2], [27] abstraction, and
providing a mechanism for the automatic reconfiguration
of these schemas to address the multirobot task at hand.1

In doing this, we are able to simultaneously obtain a num-

ber of significant new benefits in multirobot coalition
formation that have previously been difficult to achieve.
These benefits include: 1) enabling robots to automatically
generate task solutions based on sensor-sharing across
robot coalition members, in configurations not previously
explicitly defined by the human designer; 2) providing a
way for robots to develop coalitions to address multirobot
tasks; and 3) enabling flexible software code reuse from
one multirobot application to another through the task-
independent schema abstraction that is viewed as a
generator of semantic information content which can be
combined in many ways by various diverse tasks. Even-
tually, we expect that the ASyMTRe approach can be
layered with prior task planning/allocation approaches,
with ASyMTRe serving as a lower level solution generator
for generating a coalition to solve single-multirobot tasks.
The coalitions would then compete (with other coalitions
or single robots) for task assignments using the higher
level, more traditional task planning/allocation strategies.

The basic ASyMTRe approach is an anytime centralized
reasoner, generating multirobot coalitions using complete
information, with solution quality increasing as more time
is available for the reasoning process. In order to allow for
increased robustness, we also present a distributed version
of ASyMTRe, called ASyMTRe-D (which we first intro-
duced in [43]), which uses communication to enable dis-
tributed formation of coalitions. This distributed version
offers a tradeoff of increased robustness versus solution
quality compared to the centralized version. Our ultimate
objective in this research is to eventually enable the human
designer to specify the desired balance between solution
quality and robustness, enabling the reasoning approach to
invoke the appropriate level of information-sharing among
robots to reach the specified solution characteristics.

The rest of this paper is organized as follows. Section II
describes the centralized ASyMTRe solution approach.
Section III analyzes the theoretical soundness, complete-
ness, and optimality of this approach. In Section IV, we
describe the distributed version of ASyMTRe, called
ASyMTRe-D. Section V describes the experimental results
that validate this approach. We then present a review of
related work in Section VI and conclude in Section VII.

II . THE ASYMTRE APPROACH

A. Schema Theory and Information Types
The basic building block of our approach is a collection

of schemas, inspired by the work of Lyons and Arbib [27]
and Arkin [2], which first applied schema theory to cog-
nitive and agent systems. In [27], a formal model of com-
putation is constructed, called robot schemas. In this
earlier work, the schema includes a list of input and output
ports, a local variable list, and a behavior, which defines
how the input is processed to generate the output. A
network of schemas can be built by manually connecting

1Our approach does not necessarily require a schema implementation,
and could alternatively be implemented using traditional Bbehaviors.[ We
selected the schema approach because schemas tend to be more fine-
grained and less sensor- and task-specific than behaviors. Additionally,
schemas have a more formal, commonly accepted interface definition, as
defined by [27], which facilitates the formal ASyMTRe specification.
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the outputs of one schema to the inputs of another schema.
At the higher level, a nested network is established to
represent the collaboration among robots. Arkin [2] fur-
ther develops these ideas by presenting schema-based
control for mobile robots. In his approach, perceptual
schema interpret sensory stimuli, feeding the results to
one or more motor schemas. Computations from multiple
motor schemas are summed and normalized to generate
the overall robot behavior.

Based upon this prior work, the fundamental building
blocks of our approach are collections of environmental
sensors (ES), perceptual schemas (PS), and motor schemas
(MS). Our ASyMTRe approach extends this prior work
by introducing a new component, called communication
schemas (CS). Perceptual schemas process input from en-
vironmental sensors to provide information to motor
schemas, which then generate output control vectors rep-
resenting the way the robot should move in response to the
perceived stimuli. Communication schemas transfer infor-
mation between various schemas distributed across multiple
robots. All of these schemas are assumed to be prepro-
grammed into the robots at design time, and represent
fundamental low-level capabilities of individual robots.

Our ASyMTRe approach further extends this prior
work on schema theory by autonomously and dynamically
connecting the schemas at run time instead of using
predefined (manual) connections. In our approach,
schemas are situated in each robot, but are not connected
to each other at the beginning of a task. Instead, they are
configured using our automated ASyMTRe approach. Our
automation is based upon recognizing and defining the
fundamental information that is needed to accomplish the
task. The information needed to automatically activate a
certain schema remains the same regardless of the way that
the robot may obtain or generate it. Thus, we label inputs
and outputs of all schemas with a set of information types
that are unique to the task. Note that we use the term
information types as distinct from data types. This
distinguishes our approach from Lyon [27]. Information
types have semantic meaning and define the specific
sensing or computational data of a schema or a sensor,
such as the global position of a robot, rather than just the
format of the data. Semantics of the information is built
into these information types, and does not just refer to a
data type (such as boolean or integer). These information
labels provide us a method for automating the inter-
connections of schemas, enabling robots to share sensory
and perceptual information as needed to accomplish the
multirobot task.

We define the inputs and outputs of the schemas to
belong to the set of information types F � �F1� F2� � � ��.
For schema Si, ISi and OSi � F, represent the input and
output sets of Si, respectively. As in [27], we assume that
each schema has multiple inputs and outputs. There are
two types of inputs to a schema (see Fig. 1). The solid-line
arrows entering a schema represent an Bor[ condition,

meaning that it is sufficient for the schema to only have
one of the specified inputs. The dashed-line arrows rep-
resent an Band[ condition, where all the indicated inputs
are needed to produce a result. For example, in Fig. 1, MS1
can calculate output only if it receives both F1 and F2.
However, PS2 can produce output based on either the
output of PS1 or CS1. An output of a schema can be
connected to an input of another schema if and only if
their information types match. Using the mapping from
schemas to information types, robots can collaborate to
define different task strategies in terms of the required
flow of information in the system. Once the interconnec-
tions between schema are established, the robots have
executable code to accomplish their task.

Given a set of n robots and a task T, the solution con-
figuration problem can be represented as �R� T� U�, where
R � �R1� R2� � � � � Rn� is the set of n robots, T � �MS1�
MS2� � � �� is the set of motor schemas that define the
group-level task to be achieved, along with application-
specific parameters as needed,2 and U provides utility
information to be defined later. A robot Ri is represented
by Ri � �ESi� Si�. ESi is a set of environmental sensors that
are installed on Ri, where OESi

j � F is the output of ESi
j

(that is, the jth ES on robot Ri). Si is the set of schemas that
are preprogrammed into Ri at design time. Each schema is
represented by �Si

j� ISi
j � OSi

j �. A schema can be activated if
and only if its input can be obtained from the output of
another schema or sensor. A set of Connection Constraints
regulate the connections between schemas. As shown in
Table 1, these constraints specify the restrictions on cor-
rect connections between various schemas.

Fig. 1. An example of how the schemas are connected to accomplish a
task. (For clarity, we have eliminated the superscripts in this figure.)

Table 1 Connection Constraints for Schemas

2More complex task definitions, including task sequences, can be
defined in a manner similar to the formal, schema-compatible, speci-
fication of tasks in [13].
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Given the above information, the problem �R� T� U� has
a solution if and only if for each Ri � R and for all MSj � T,
the inputs of MSj are satisfied, along with all the inputs
from the schemas that feed into MSj. A solution is a
combination of schemas that can satisfy the above
requirements.

B. Potential Solutions
A potential solution is one way to connect schemas on

an individual robot for it to fulfill its part of the task (i.e.,
for all MSj � T, the inputs of MSj are satisfied, along with
all the inputs from the schemas that feed into MSj). We
represent a potential solution by

PoSi
j � Si

1� Si
2� � � � � Si

k� Fi
1� Fi

2� � � � � Fi
h

� �
(1)

where PoSi
j is the jth potential solution for Ri, Si

x
�1 	 x 	 k� is the xth schema of Ri that needs to be
activated, and Fi

y �1 	 y 	 h� is the yth information type
that needs to be transferred to Ri. For example, in Fig. 1,
if we assume that T � �MS1�, one potential solution is to
activate �PS1� PS2� PS3� MS1�, provided that the robot has
both ES1 and ES2. Another potential solution is to activate
�PS2� CS1� CS2� MS1� when F3 and F2 can be transferred
from other robots.

C. Solution Quality
With multiple potential solutions available, we intro-

duce utility to measure their qualities. We define a sensori-
computational system (SCS) [10] as a module that computes
a function of its sensory inputs and produces outputs. An
SCSi

j is formally represented by �Si
j� ESi

j� OSi
j �, where Si

j is
the jth PS�CS on Ri, ESi

j is the sensory input, and OSi
j is the

output. Each SCSi
j is assigned a cost Ci

j and a success
probability Pi

j, where Ci
j represents the sensing cost of using

ESi
j and Pi

j represents the success rate of Si
j to generate a

satisfactory result. The success probabilities would typi-
cally come from a learning process that performs task
monitoring during execution, similar to the ideas de-
scribed in [33]. We calculate the utility3 of activating SCSi

j
or producing OSi

j by Ui
j

Ui
j � max 0� w � Pi

j 
 �1 
 w� � Ci
j� max

j
Ci

j

� �� �� �
� (2)

Here, w �0 	 w 	 1� is a weight factor that balances the
relative importance of the success probability and the

relative cost. We measure the quality of a potential solu-
tion PoSi

j by summing the utilities of all the SCSi
j that need

to be activated on the local robot and the utilities of the
information types that are obtained from other robots. The
goal is to maximize the utility of the selected potential
solution.

D. Potential Configuration Space (PCS)
When a group of robots is brought together to ac-

complish a task, each with its unique sensors and corre-
sponding schemas, the brute force way to solve the
problem is to perform an exhaustive search of all the
possible combinations of schemas within or across robots.
We refer to this complete space as the original configu-
ration space (OCS). However, the number of possible
connections in the OCS is exponentially large in the
number of robots. In the general case, the robots will be
developed separately, and it is highly possible that the
schemas with the same functionality are represented
differently on different robots. By definition, schemas Si
and Sj are of the same functionality, func�Si� � func�Sj�,
and are thus in the same equivalence class, if and only if
ISi � ISj and OSi � OSj , and they have the same success
probability and sensing cost. To reduce the size of the
search space, we generate a reduced configuration space,
called the potential configuration space (PCS), by includ-
ing only one entry for each equivalence class of schema.
The extent of the size reduction that we achieve depends
upon the specific robot group composition and the degree
of overlap in their capabilities. Step I in Fig. 2 shows an
example of reducing the configuration space. Assume,
without loss of generality, that the robot group is com-
posed of n robots, each of which has h schemas, and each
schema requires k inputs. The OCS is of size is O��nhk�nh�.
After the reduction, the PCS is of size O��h�k�h�

�, where h�

is the number of equivalence classes, and h� 	 nh. This

Fig. 2. The ASyMTRe solution process. Step I: Reduce the OCS to
the PCS by creating one entry per schema equivalence class.
Step II: Generate the list of potential solutions based on the schemas
in the PCS. Step III: Instantiate the selected potential solutions on

specific robots. Here, we assume T � �MS1
1� MS2

1 �, func�PSi
k� � func�PSj

k�,
func�CSi

k� � func�CSj
k�, and func�MSi

k� � func�MSj
k�.

3In fact, the utility of a solution should also consider other aspects,
such as the quality of information, frequency of the output, the compu-
tational complexity, etc. We will extend our utility definition to include
these aspects in future work.
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analysis assumes that every output of any schema can be a
potential input of any schema. In practice, the size of the
OCS and PCS are even smaller because of the connection
constraints shown in Table 1. The conversion from the
OCS to the PCS not only reduces the size of the entire
search space, but also discards the duplicated solutions. As
an example, consider a case of n homogeneous robots that
have the same p schemas. Then, the OCS would have np
schemas, but the PCS would only have p schemas, since the
duplicates would be removed from the PCS. Thus, in
practice, the reduction can have a significant impact on the
search space size, although theoretically, the search space
could still be exponential.

Theorem 1: If a solution exists in the OCS, it must exist
in the PCS.

Proof: Assume to the contrary that one of the solu-
tions present in the OCS does not exist in the PCS. This
could only occur if at least one schema Si in the solution
does not exist in the PCS, which means there exists an Si in
the OCS, but there does not exist an Sj in the PCS such that
func�Si� � func�Sj�. According to the definition of the
PCS, there will be one entry for each equivalence class of
schema. Thus, there cannot be a solution in the OCS that
does not exist in the PCS. h

E. The ASyMTRe Configuration Algorithm
After the PCS is generated, the ASyMTRe configura-

tion algorithm searches through the PCS to generate a list
of potential solutions for each robot, which are the ex-
haustive combinations of schemas (within or across the
robots) that could be connected for a single robot to ac-
complish its part of the task. Note that the list of potential
solutions are not for the entire task, but are ways to con-
nect schemas in the robot coalition in order for some
individual robot to contribute to the task. During the
configuration process, the algorithm searches through the
list of potential solutions to assign the best solution for each
robot. As shown in Theorem 1, the algorithm will not miss
any solutions by searching in the PCS. Once solutions are
found in the PCS, we must map them back to the OCS and
instantiate them on robots by translating the schemas in the
solutions into robot-specific schemas. Steps II and III in
Fig. 2 demonstrate an example of the instantiation process.

The configuration process involves greedily searching
the list of potential solutions and selecting the solution
with the maximum local utility from each robot’s perspec-
tive �Ui�. Our goal is to maximize the total utility

�
i Ui.

Similar to [37], we assume robots work in a nonsuper-
additive environment. Thus, the larger a coalition is, the
higher the communication and computation costs are.
Therefore, in practice, we impose a maximum cooperation
size constraint on the algorithm, to reduce the complexity
of the robots executing the resulting solution. In addition,
we impose heuristics on the search process in the form of
robot orderings, which tend to guide the search towards

good solutions quickly. The first ordering sorts robots
according to increasing robot sensing capabilities. Less
capable robots (whose motor schemas must be activated in
the solution, as defined by the task definition) are consid-
ered first because finding a solution is relatively easy when
the sensing resources are abundant. The second ordering
sorts robots by the number of other robots with which they
can cooperate, as calculated during the first search process.
This number represents the number of robots that can
provide the information that is needed by the current
robot. Thus, robots with fewer other robots to cooperate
with will have the chance to find their collaborators earlier
in the search process.

We formulate our approach as an anytime algorithm
[46] that provides a satisfactory answer within a short
time, with its solution quality increasing over time. In our
domain, the algorithm first generates an ordering of robots
with which the algorithm can configure solutions. If more
time is available, another ordering of robots is selected
sequentially and the above procedure is repeated until the
deadline is reached. The algorithm will report the solution
with the highest utility it has found so far or report no
solution if a solution is not found. Since we have a finite
number of robots and a finite solution space, the algorithm
will ultimately find the optimal solution if there exists one,
given sufficient search time. All of the previously described
aspects of the ASyMTRe approach are combined to yield
the centralized ASyMTRe configuration algorithm shown
in Table 2.4

III . ASyMTRe ALGORITHM ANALYSIS
We now analyze the soundness, completeness, and opti-
mality of the ASyMTRe configuration algorithm.5 Here,
soundness is the proof of the correctness of the generated
solutions with respect to the environmental setting.
Completeness is the guarantee that a solution will be found
if it exists. Optimality is ensuring that the system will select
an optimal solution.

A. Soundness

Theorem 2: The ASyMTRe configuration algorithm is
correct.

Proof: Assume to the contrary that the algorithm is
not correct. This could occur in two ways: 1) at least one of
the connections made is not a valid connection and 2) not

4Note that other search techniques to find a solution, such as
evolutionary approaches, could also be used here. Exploring the tradeoffs
with other search approaches is a subject of our future research.

5Due to the similarity between our configuration algorithm and the
coalition formation algorithm presented in [37], we plan to analyze the
bounds on our solution quality in future work. It has been proved in [37]
that similar algorithms are of low logarithmic ratio bounds to the optimal
solution.
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all needed connections are made to compose a solution.
We argue that these two cases will not occur.

First, an output of a schema Si can be connected to an
input of a schema Sj if and only if OSi � ISk

j , which means
the output of Si has the same information type as one of the
inputs required by Sj. Since we know all the input and
output information types for every schema, and we
maintain the connection constraints that specify the types
of schema connections that the system allows, it is not
possible to generate an invalid connection.

Second, a potential solution is a combination of
schemas such that the inputs for each MSi � T are satisfied,
along with all the inputs from the schemas that feed into
MSi. Since the algorithm complies with this standard, all
needed connections will be made to become a potential
solution. Thus, a solution generated by ASyMTRe will be a
correct solution. h

B. Completeness and Optimality

Theorem 3: The ASyMTRe configuration algorithm is
complete and optimal given enough time.

Proof: We prove completeness and optimality by
showing that the algorithm can sequentially search the
entire solution space given enough time. Step 5 (in Table 2)
shows the major configuration process in which, given an
ordering of robots, the algorithm searches through the list
of potential solutions to find solutions for every coalition
member. Note that the ordering is sequentially selected
rather than randomly generated. If the algorithm is given
enough time, it will ultimately test all possible orderings of
robots, which is O�n��, and reports the solution with the
highest utility. Since the solution space is eventually ex-
plored in its entirety by the algorithm, it is complete and
optimal, given enough time. h

Despite this proof, we note that in reality, practical
constraints require a fast response, especially when dealing
with failures that require quick reconfiguration. Since the
coalition formation problem can be cast as an instance of
the Set Partitioning Problem [14], we know that the coa-
lition formation problem is NP-hard, with worst case time
complexity of O�n��. Therefore, it is not possible to gen-
erate an optimal solution in practice when n is large.
However, in our experiments, the algorithm consistently
returns a good coalition solution within a few seconds, as
will be presented in Section V-D.

IV. THE DISTRIBUTED ASyMTRe-D
APPROACH
In ASyMTRe-D, the sharing of information, and thus the
cooperation among robots, is achieved through a distrib-
uted negotiation process, based on the Contract Net
Protocol [39]. Each robot decides what information it
needs and then requests this information from others.
The solution is evaluated based upon each robot’s local
information, and the final decision is determined by mu-
tual selection. The negotiation process is totally distrib-
uted, with no centralized control or centralized data
storage.

Such a distributed system offers a reliable, extensible,
and flexible mechanism to make ASyMTRe suitable for
applications where robot or sensor failures are common,
or the robot group composition is dynamic. The negoti-
ation process is triggered at the beginning of each task to
generate initial solution strategies, and is called to replan
solutions to accommodate changes in the robot group or
task. It is important to note, however, that the distributed
approach trades off solution quality for robustness. The
intent of this approach is not to develop a new negotiation
protocol, but instead to develop a method for the robot
group to vary their reasoning between fully centralized
and fully distributed decision-making, according to the
desired balance between solution quality and robustness.
As we show in our empirical studies in Section V-D, the
time requirement for distributed solutions scales better
than the centralized approach as the robot team size
increases.

Table 2 The ASyMTRe Configuration Algorithm
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A. Distributed ASyMTRe-D Negotiation Protocol
The distributed negotiation protocol involves the

following major steps.
� Make request. Depending on the requirements of

each potential solution, a robot broadcasts requests
for the information types it needs from other
robots. These requests are either simple requests or
complex requests. Simple requests ask other robots
if they can provide particular information types.
These requests are sent out at the beginning to
estimate the potential number of robots �pn� that
can provide the required information. Each robot
will wait for a period that is proportional to its pn
value before sending out the complex requests,
which ask for utility information for supplying the
requested information types. Thus, the robots with
fewer potential helpers have higher priorities to
make requests, since they will likely have fewer
chances for success. For tasks that are time critical,
this step can be ignored and robots can directly
send out complex requests instead.

� Serve request and submit help. After evaluating
the required information, each robot replies in a
first-come-first-served (FCFS) order. Simple
replies are sent out without the estimation of
utilities to enable the requesting robot to collect
information about its pn. Otherwise, the robots
will estimate the utility of providing the required
information by (2). Since a requesting robot se-
lects the potential solution with the highest utility,
some capable robots are more likely to be chosen
than others. Because we assume robots work in a
nonsuper-additive environment, we impose a max-
to-help �k� constraint on each robot, which limits
the number of robots that one can provide infor-
mation. This constraint can reduce the complexity
of the resulting solution due to motion constraints
and balances the burden among capable robots.

� Rank and confirm help. Solutions are ranked by
decreasing utilities. Each robot then selects the
solution with the highest utility and sends a con-
firmation message. When there are multiple solu-
tions with the same utility, the selection also
follows the FCFS rule. If no robot responds to the
request after the timeout, the robot will repeat the
negotiation process until it reports Bfailure[ after a
period. The confirmation message will be broad-
cast to all robots, so that the other robots that are
also willing to help can be released from their
commitment and serve more requests.

To ensure a general and robust negotiation process,
some traditional mechanisms are built into the distributed
protocol [9]. First, our protocol employs timeouts during
the negotiation process. The settings of timeout values
are based on experiments and estimation, which can be
tuned as parameters to the program. A robot will wait for

a finite time for any replies, and if there is no reply, it
will send out requests again. This process will continue
for a period before the robot reports Bfailure,[ which is
either due to no robots being available to help, or to the
requests or replies getting lost. A helping robot will also
wait for a finite time for the confirmation. In this way,
the robot can be released to help other robots if the
confirmation gets lost or it is not selected to help. Similar
to [16], our protocol also uses broadcast messaging, rather
than point-to-point, because it is efficient in transferring
data and does not require the system to know specific
destination information.

V. EXPERIMENTAL RESULTS
We have validated the ASyMTRe approach using a series of
experiments both in simulation and on physical robots to
demonstrate the solution generation process of both the
centralized and the distributed approaches and the perfor-
mance comparison between them. We used Player/Stage
[15] as the simulation interface and ActivMedia Pioneer 3
mobile robots in the physical experiments. In this section,
we present our experimental approaches and analyze the
results.

A. Multirobot Transportation Through
Centralized ASyMTRe

1) Task Description: In this application (which we first
reported in [6] and [35]), a group of robots must navigate
from their starting positions to a set of goal positions (one
per robot) defined in a global coordinate reference frame.
Assume that all the robots are programmed with the motor
schema go-to-goal, which moves the robot from its current
position to a goal position, defined in a global coordinate
reference frame. To successfully use this motor schema, a
robot must know its own current position relative to its
goal. If every robot can localize itself, obviously the solu-
tion is to have every robot navigate independently. How-
ever, in some groups, there might be robots that do not
have the sensing, effector, and algorithmic capabilities to
localize (e.g., see [34]); they need help from more capable
robots to provide the information needed to fulfill the task.
In the following paragraphs, we detail the application by
introducing the environmental sensors and various schema
used in this application.

The environmental sensors are: laser scanner with an
environmental map (�����), omnidirectional camera
(������), and �	
�, providing up to 23 different
combinations of robot capabilities, as shown in Table 3.
All robots also have a communication sensor, (����). We
assume: 1) a robot with a laser or DGPS can estimate its
current global position in the environment; 2) a robot with
a camera or laser can estimate the relative position of
another robot in the environment, as long as the other
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robot is within its sensing range; and 3) a robot has the
computational ability to convert a relative position to a
global position.

We have implemented the following schemas on the
robots: PS1, which estimates global position using laser
(with an environmental map) or DGPS; PS2, which gives
the goal position; PS3, which estimates the relative po-
sition of another robot using camera or laser, and fiducial
marker; PS4, which estimates self global position accord-
ing to another robot’s global position and relative position;
PS5, which estimates the global position of another robot
according to its own global position and the estimated
relative position of the other robot; CSi, which transfers
information between robots; and MS1, which calculates
motor commands that lead the robot toward the goal. We
define the task, T � �MS1�, meaning that MS1 should be
active on all coalition members.

In Table 4, we define the set of information types F and
label the input and output information for each schema
used in this application. According to the flow of infor-
mation, the centralized configuration algorithm generates
all the possible connections that can connect the available
schemas and lead the robot to achieve its goal. Two specific
connections are shown in Fig. 3. The first solution involves
R3 using the laser to localize and then communicating this
information to R4. R4 combines the received information

with the detected relative position of R3 (using its camera)
to calculate its own global position. The second solution
involves R7 using its laser to globally localize itself and
using the camera to calculate the relative position of R1.
With this information, R7 can calculate the global position
of R1 and communicate this information to R1.

With multiple solutions available, a robot needs to
determine which solution it should use. This is decided by
each robot’s sensing cost and the estimated success rate of
the particular solution it chooses. Typically, the sensing
cost is determined by the sensory and computational re-
quirements of the solution. Perceptual processes with a
significant amount of sensor processing, such as laser scan
matching or image processing, are given higher sensing
costs. Perceptual processes with a relatively low processing
requirement, such as DGPS, are assigned lower sensing
costs. Success probability is an estimated value based upon
learning and experience. Perceptual processes that are
easily influenced by environmental factors, such as image
processing under different lighting conditions, are given
lower success probabilities. Here, we only provide fuzzy
estimates for costs and probabilities (see Table 4); in
actual applications, these estimates will likely be specific
numeric values.

2) Physical Robot Implementation: Several of the schemas
described above were implemented on two Pioneer robots
equipped with a SICK laser range scanner and a Cannon
pan-tilt-zoom camera. Both robots possess a wireless ad
hoc networking capability, enabling them to communicate
with each other. Experiments were conducted in a known
indoor environment using a map generated using an
autonomous laser range mapping algorithm. Laser-based
localization used a standard Monte Carlo localization
technique. The implementation of PS3 makes use of prior
work in [34] for performing vision-based sensing of the
relative position of another robot. This approach makes use
of a cylindrical marker designed to provide a unique robot
ID, as well as relative position and orientation information
suitable for a vision-based analysis. Using these two robots,
three sets of experiments based on sensor availability were
tested to illustrate the ability of these building blocks to

Fig. 3. Two ways to connect the schemas in the transportation task.

Table 4 Input and Output Information Types for Various Schemas and
Their Corresponding Sensing Costs and Success Probabilities

Table 3 Eight Types of Robot With Different Sensing Capabilities
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generate fundamentally different cooperative behaviors of
the same task through sensor sharing.

Experiment set 1 is a baseline case in which both robots
have full use of their laser scanner and camera. Each robot
localizes itself using its laser scanner and reaches its own
goal independently. Experiment set 2 involves a fully ca-
pable robot R3 with laser, as well as a robot R4 with only
a camera. They automatically connect their schemas ac-
cording to the first solution shown in Fig. 3 to accomplish
the task. Experiment set 3 involves a sensorless robot R1
with communication capabilities only and a fully capable
robot R7. They automatically connect their schemas ac-
cording to the second solution shown in Fig. 3. A snapshot
of these experiments is shown in Fig. 4.

In extensive experimentation, data on the success rate
was collected with an average of ten trials of each set.
Robots in experiment set 1 were 100% successful in reach-
ing goal positions. Experiment set 2 had four failures and
set 3 had one failure. The failures were caused either by:
1) variable lighting conditions that led to a false calcu-
lation of the relative robot positions using the vision-based
robot marker detection or 2) the robot not being in the
field of view of the observer. However, even with these
failures, these overall results are better than what would
be possible without sensor sharing. In experimental sets 2
and 3, if the robots did not share their sensory resources,
one of the robots would never reach its goal position,
since it would not have enough information to determine
its current position. Thus, our sensor sharing mechanism
extends the ability of the robot group to accomplish tasks
that otherwise could not have been achieved. To increase
the robustness of the application, once a failure is de-
tected, the ASyMTRe reasoning process can be called to
reconfigure solutions for the available robots. We discuss
this further in Section V-C2 with ASyMTRe-D.

B. Cooperative Box Pushing Through
Centralized ASyMTRe

1) Task Description: Cooperative box pushing was
studied by Donald et al. [11] in the development of infor-

mation invariants for analyzing the complexity of alterna-
tive cooperation algorithms. To illustrate the connection of
our approach to the theory of information invariants, we
have defined our box pushing experimentation in a similar
manner to [11]. The goal is to organize the group into
coalitions, such that each coalition is able to push a box
with exactly two robots,6 which we call pusher robots.
Assume that all the robots are programmed with the motor
schema Push �MS1�, which pushes the box along a straight
line. To use this motor schema, a robot must be able to
perceive the box’s vector relative to itself. Here, the rela-
tive vector includes the applied force, relative displace-
ment, the angle between the actual pushing direction and
the line of pushing. For example, the two pusher robots
can record the relative displacements while they are push-
ing the box; by comparing these two values, they can
decide which robot should push harder. We define five
environmental sensors for this task, as follows: �����,
������, 
������, ������, and ��������. These
sensors define 25 possible robot capabilities. Three
methods were presented in [11] to push a box with two
robots. In addition, we generate a fourth method in which
the pusher robots do not have the capabilities to perceive
the relative vector of the box. The alternative cooperative
box pushing methods are as follows.

1) Using bumper, two robots compute their applied
forces �PS1� and share this information with each
other, allowing them to decide which robot should
push harder.

2) Using odometry, two robots compute the relative
displacements �PS2� along the line of pushing;
they exchange the location information and take
actions to reduce the difference between the
relative displacements.

3) Using grippers, two robots compute the angles
�PS3� between the line of pushing and its actual
moving direction; they take actions to reduce its
angle on the next stepVno explicit communica-
tion is needed.

4) Using laser or camera, a helper robot can help the
pushers calculate the relative vector of the box
�PS4�, enabling the pusher robots to take actions.
To do this, the helper robot needs to move along
with the box �MS2� and keep the pushers in its
field of view.

The information set in the box pushing application is
F � �force,displacement,angle,box relative vector�. The
schemas and their input and output information are de-
fined in Table 5. Fig. 5 shows one of the connections that
enables the robots to push a box. To calculate the utility,
we assume that the sensing costs and success probabilities
for {
������, ������, ��������} are the same. The

6This can be generalized to an arbitrary number of robots.

Fig. 4. Physical robot implementation of the transportation task. The
initial setup of the two robots is on the left. The result when the two
robots reach their goal points (indicated by the squares on the floor) is
shown on the right.
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����� and ������ values are the same as the multi-
robot transportation application.

2) Results of Box Pushing: To demonstrate how the box
pushing task can be achieved, we selected a group of seven
robots from six different types, as shown in Table 6. Fig. 6
presents the results, in which the group is divided into
three coalitions. In coalition 1, robots R1 and R4 push the
box together. Since R1 cannot perceive the box’s relative
vector by itself, they are helped by R5 using either laser or
camera (with the specific choice depending on the utility).
In coalition 2, robots R3 and R6 push the box together
using method 2, since they both have odometry. In
coalition 3, robots R2 and R7 push the box together using
method 1, since they both have bumper.

C. Multirobot Transportation Through ASyMTRe-D
The previous experiments on the centralized ASyMTRe

approach have validated the correctness of the ASyMTRe
approach for automatically generating schema connections
within or across robots. Now, we evaluate the ASyMTRe-D
approach through more complex experiments, in order to
demonstrate two aspects of the ASyMTRe-D approach: the
continuous reasoning capabilities of the robot group over a
period while performing a more complex task, and the
robustness of the approach.

1) Simulation Setup and Results: To illustrate how
ASyMTRe-D can be used in more complex tasks requiring

new coalitions over time, we implemented the transpor-
tation task in simulation, using a larger number of robots.
In this task, robots are randomly assigned a series of goal
positions to visit.7 In some cases, robots are assigned the
same goal position. Once a subgroup of robots has been
assigned their goal positions, the robots form coalitions as
needed using ASyMTRe-D. When all the robots accom-
plish their current tasks (i.e., visit their assigned goal
positions), new positions are assigned and new coalitions
are formed as needed. In the experiment reported in
Fig. 7, only two robots out of the group of seven can
navigate independently to goal positions. The remaining
robots need navigation assistance, as described previously
in the earlier version of the transportation task. The task
priority for robots in this application is: 1) help robots in
the group that share the same goal position; 2) help
robots in any other group; and 3) navigate to robot’s own
goal position.

Fig. 7 is one of the typical runs of the transportation
task in simulation. Here, we generated two random goals

7Note again that we are not addressing the higher level assignment of
single-robot tasks (i.e., goal positions) to multiple robots. This issue is
addressed by other task allocation approaches fitting the ST-SR-IA and ST-
SR-TA taxonomic category. Here, we assume that other task allocation
approaches would determine the assignments of goal positions to robots.
We focus instead on how robots can repeatedly form different coalitions to
enable individual robots to reach their assigned positions.

Fig. 5. One way of connecting the schemas to accomplish the BPush[
goal. This solution involves R1 using its laser to perceive the relative
vector of the box, and then communicating this information to the
pusher robots.

Table 6 Box Pushing: Robot Coalition Composition

Fig. 6. Results of applying ASyMTRe to an instance of the box
pushing task, in which the robot group is composed of seven
robots from six different types. The group is autonomously
divided into three coalitions; each heterogeneous coalition
can successfully push a box.

Table 5 Perceptual Schemas, Communication Schemas, and Motor
Schemas in Multirobot Box Pushing

Parker and Tang: Building Multirobot Coalitions Through Automated Task Solution Synthesis

1298 Proceedings of the IEEE | Vol. 94, No. 7, July 2006

Authorized licensed use limited to: University of Southern California. Downloaded on September 22, 2009 at 23:45 from IEEE Xplore.  Restrictions apply. 



for the robot group, assigning the first goal position to a
group of three robots, and the other goal position to a
group of four robots. As shown in this figure, each of the
more capable robots leads less capable robots to their goal
positions. One of the more capable robots then returns to
form a second coalition of robots for reaching their goal
positions. Any introduction of a new position or the
failure of a robot to find help will trigger the ASyMTRe-D
negotiation process to configure new coalitions. This pro-
cess continues repeatedly as new position assignments are
made.

2) Physical Experimental Setup and Results: In order to
evaluate the robustness of the ASyMTRe-D approach, we
designed three different sets of experiments on a group of
physical robots. According to the different categories of
failures in a typical experiment defined by [9], we illus-
trate how the ASyMTRe-D approach will help the
coalition recover from partial/sensor failure, or complete
robot death. The robot group is composed of the follow-
ing types of robots: R1 with a laser-scanner and an en-
vironmental map for the robot to localize, and a camera
mounted backward to calculate the global position of
another robot (within its field of view) based on marker
recognition; R2 with a camera mounted in the front to
track the marker within its field of view; R3 with no
sensors. We also assume that all robots have communi-
cation capabilities. To accomplish a task, robots of the
coalition must navigate from a starting position to a goal
position.

We conducted three sets of experiments to illustrate
the fault-tolerant capabilities of ASyMTRe-D. In exper-
iment set 1, R1 and R2 form a coalition such that R2
follows R1 by tracking the marker mounted on R1. There
are no failures introduced in this set. In experiment set
2, R1 and R2 still form a coalition with R2 tracking R1.
During the execution, the camera on R2 is covered such
that it cannot detect R1 anymore. This sensor failure
triggers the reasoning process to generate new solutions
for the two to accomplish the goal. The new solution is
for the leading robot R1 to calculate R2’s global position
and communicate this information to R2. An example of
this experiment is shown in Fig. 8. In experiment set 3,
R1 and R2 form a coalition at the beginning, then during
execution, a simulated robot death is introduced on R2,
which triggers the whole group to reconfigure solutions.
The new solution is that R1 goes back to pick up R3, and
they navigate together to the goal position. An example
of this experiment is shown in Fig. 9.

We performed ten successful trials for each experiment
set, and collected data on the completion time (reported in
Figs. 8 and 9) and the number of successful trials. In total,
we have performed 32 trials, with one failure in set 2
and 3, respectively. Both failures happened because of
false marker detection data when the leader robot tried to
guide the follower robot. More fault detection mecha-
nisms can be built into the application to increase its
robustness, such as monitoring group members to detect
their faults [16]. These experiments show the software
reconfigurability of ASyMTRe-D upon failures.

Fig. 7. The simulation results of a more complex multirobot transportation mission, where robots are given successive goal positions.
(a)–(c): the first group (four robots) configures the solutions, two robots start out to go to the position on the left (represented by the cross),
while two robots wait at the starting positions for help; the other group configures solutions and starts out moving to the position on the right.
(d)–(f): after the third round of configuration that involves the two capable robots and the rest of the robots that still need help, the leader robot
in the second group (right) goes back to pick up the two robots. (g) and (h): the other two robots follow the leader to their goal position.
(i) and (j): the leader robot goes back to its original goal. (a) t � 10 s. (b) t � 60 s. (c) t � 130 s. (d) t � 160 s. (e) t � 260 s. (f) t � 300 s. (g) t � 350 s.
(h) t � 390 s. (i) t � 460 s. (j) t � 500 s.
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D. Comparison Between Centralized/
Distributed ASyMTRe

The above experiments present the example opera-
tional results of applying ASyMTRe to various multi-
robot applications and the robustness of the ASyMTRe-D
approach. The following experiments explore the perfor-
mance of both approaches and compare their scalabilities
and solution qualities by varying the size of the robot
group �n�. First, we define a simple case where the group
is composed of five robots with various capabilities (see
Table 3) to accomplish the transportation task. We then
increased the group size by duplicating the robots with the
same set of capabilities in the simple case. We ran these
instances on both centralized and distributed ASyMTRe
and collected data on the reasoning time and the overall
coalition utility. In centralized ASyMTRe, the total time
for generating a solution includes: the time to generate
all the orderings of robots, which increases exponen-
tially �O�n���, and the actual reasoning time �O�mn2��.
In ASyMTRe-D, the time is the average reasoning time
�O�mn�� for the group to generate a solution. Here, m is

the solution size. For these experiments, the negotiation
timeout values are set as follows: wait for reply: 0.75 s; try
repetitive requests: 10 s; and wait for confirmation: 4 s. As
shown in Fig. 10, the average time to generate a solution
increases as the robot group size increases, linearly for
ASyMTRe-D, but exponentially for centralized ASyMTRe,
but the coalition utility does not vary significantly with
varying group sizes. Additionally, in Fig. 11, the coalition
utility is plotted for four different coalition sizes. In
centralized ASyMTRe, the coalition utility increases as
more time is given because of the anytime aspect of the
centralized reasoning algorithm. Additionally, the cen-
tralized results always have a higher utility than that of the
ASyMTRe-D, since the centralized approach operates with
complete information.

When comparing centralized ASyMTRe with
ASyMTRe-D (see Table 7), we observe that ASyMTRe-D
is robust and flexible with little maintenance of the
knowledge base since any change in the team capabilities
only needs to be updated locally. However, ASyMTRe-D
trades off its solution quality because of the local greedy

Fig. 9. Simulated robot failure. In this experiment, the leader robot R1 uses its laser to navigate and the follower robot R2 uses its camera
to follow the marker on the leader. Then, there is a simulated failure of R2 and the coalition reconfigures the solution. The new solution is that
R1 goes back to pick up another follower R3 and guide it to the goal. Over ten trials, the average time for these experiments was 187.1 s, with
standard deviation of 5.45 s.

Fig. 8. Partial robot failure. In this experiment, the leader robot R1 uses its laser to navigate and the follower robot R2 uses its camera to
follow the marker on the leader. During task execution, the camera on R2 is covered (as indicated by the arrow), and the coalition reconfigures
to continue the task. The new solution is that R1 uses its camera to guide R2 to the goal. Over ten trials, the average time for these experiments was
112.6 s, with standard deviation of 2.63 s, compared to the no-failure experiment time average of 96.1 s, with standard deviation of 1.45 s.
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search process. If we run centralized ASyMTRe on a single
robot (method 2 in Table 7), the best solution can be found
given enough time. However, except for the concern of
single-point failure, this method requires a complete
sharing of robots’ capabilities at the beginning and sending
the solutions back to all robots at the end. The centralized
knowledge base also needs to be updated when the team
capabilities change. To increase the robustness, we could
run centralized ASyMTRe on every robot (method 3 in
Table 7). However, robots still need to share capability
information with each other at the beginning or whenever
the team capabilities change. This method requires more
work to maintain the knowledge base than the centralized
approach on a single base station, since the knowledge base
updates must be duplicated on all robots.

VI. RELATED WORK
The multirobot coalition formation approach incorporated
into the ASyMTRe system is closely related to several
bodies of research, including coalition formation in multi-
agent research, teamwork theories, and task allocation. The
following subsections describe this prior work in more
detail.

A. Coalition Formation in Multiagent Research
Coalition formation is not a new concept in the multi-

agent community (e.g., [24], [36], [37]). In these systems,
agents are organized into coalescent teams to achieve a
higher level goal [19]. In particular, the work of Shehory
[37] inspired some aspects of our work. Shehory’s work
describes a method of allocating a set of interdependent
tasks to a group of agents by forming coalitions. Tasks are

assumed to have a precedence order, and agents use coa-
lition formation to achieve efficient task allocation. This
problem is similar to the set-partitioning problem and is
well known to be NP-hard. However, by applying limi-
tations on the permitted coalitions (e.g., the coalition
size k), their greedy distributed set-partitioning algorithm
has a low ratio bound O�nk�. These algorithms also have
the anytime property, returning better solutions over time.
Shehory found this property to be especially important for
operating in dynamic environments. In future work, we
plan to use these results to try to prove similar approxi-
mation bounds on the ASyMTRe approach.

In other research, Sandholm et al. [36] present an
approach to find coalitions via a partial search, with the
generated results being guaranteed to be within a bound
from the optimum. Although their algorithm reduces the
search space dramatically, it is still exponential in the
number of agents, and thus is not applicable for large
groups. When there are a large number of agents, self-
organization helps to improve the performance and to
generate coalitions dynamically based upon interactions
and communication among local agents [26]. However, as
noted in [44], many of the multiagent approaches to coa-
lition formation cannot be directly transferred to multi-
robot applications, since robot capabilities and sensors are
situated directly on the robots and are not transferable
between robots. Our ASyMTRe work differs from the prior
work in multiagent coalition formation, in that we abstract
the problem at the schema level, rather than the task level,
permitting more flexibility in the solution approach, and
allowing the system to take into account the situated nature
of sensors and robot capabilities. Additionally, our ap-
proach enables sensor-sharing across multiple robot team
members.

Fig. 10. The average time increases linearly for ASyMTRe-D, but
exponentially for centralized ASyMTRe with increasing team size.
The coalition utility is also shown on each data point given the
specific group size and reasoning time. The computation of the time
and utility is averaged over ten samples. The standard deviation of
the utility is 0.3 with an average of 3.7 for ASyMTRe-D, and is
0.2 with an average of 4.8 for centralized ASyMTRe.

Fig. 11. Given a specific group size (n � 8, 15, 20, 25), the solution
quality of the centralized approach increases over time, which is also
relatively better than the distributed approach. In these applications,
we were able to run the centralized algorithm to its completion only
when n is 8, which generates an optimal solution.
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B. Teamwork
Similar to coalitions, agents form teams to work to-

gether to accomplish a common goal [40]. Several team-
work models have been developed to provide mechanisms
for agents to negotiate with each other to agree upon a plan
to achieve the team level goal (e.g., [7], [18], [20], [25],
[40]). A common technique is the use of joint intentions
(e.g., [7]) to develop shared plans to achieve the team
level goal. In this approach, a belief–goal–commitment
model is presented with formal definitions of events,
belief, goal, and mutual belief. Other models reason about
the proper teamwork, such as joint responsibility [20] and
SharedPlan [17]. Based on some of the above theoretic
work [7], [17], Tambe built STEAM (an abbreviation for
Shell for Team) [40], a general teamwork model that takes
into account the flexibility in a dynamic environment and
reusability for different task domains. Jennings’ work on
joint responsibility [20] is also an extension of the joint
intention model, involving satisfaction of defined precon-
ditions to start cooperation and generation of plans for
agents to behave during cooperation and in faulty cases.
These approaches provide powerful high-level models for
problem solving and role assignment taking into account
the team capabilities. However, they do not address the
issue of how agents can autonomously determine their
proper contributions to the solution based upon their
sensing, effector, and computational capabilities. These
lower level issues are those that are addressed in our
ASyMTRe approach.

We also note that, like many autonomous planning
techniques, our representation of the robot capabilities is
similar to that used in STRIPS planning [12]. These ideas
have been extended to behavior-based robotic systems in
the work of [29], which provides a mechanism for encod-
ing complex, sequential, and hierarchical tasks within a
behavior-based framework, suitable for plan generation.
STRIPS-type planning is usually based on preconditions
that describe the state of the world, rather than the
capabilities of the robot team members. However, we
abstract the problem of robot capabilities problem in a
different manner. By representing robot schema inputs
in terms of information requirements instead of re-
source requirements and environmental state conditions,
we allow for more flexibility in how the robots share
sensor and perceptual information to accomplish a
multirobot task.

Our objectives in the automated synthesis of multi-
robot coalitions are similar to the work of Jones and
Mataric [22], which addresses the automated synthesis of
communication-based multirobot controllers. Similar to
[22], our work also enables robots to share task-relevant
information using communication. However, our work
differs in that the composition of the coalition and the
fundamental actions of robots (i.e., the schemas that are
activated), are dependent upon the particular sensor and
effector capabilities of robot team members. Thus, our
work focuses on coalitions performing single-multirobot
tasks, rather than teams of robots performing independent
subtasks.

C. Task Allocation
Research specific to heterogeneous robots often fo-

cuses on the issue of task allocation, which is the problem
of determining a suitable mapping between robots and
tasks. Several approaches to robot team task allocation
have been developed (e.g., [16], [31], [45], [48]). Since it
has been shown that developing the optimal mapping
of tasks to robots is NP-hard [30], existing mechanisms
for MRTA typically use some type of heuristic greedy
strategy to achieve the mapping, leading to the genera-
tion of suboptimal solutions. A formal analysis comparing
the computation, communication requirements and so-
lution qualities of several well-known approaches is pre-
sented in [14].

Typically, a task is decomposed into independent sub-
tasks [31], hierarchical task trees [47], or roles [21], [38]
either by a general autonomous planner or by the human
designer. Independent subtasks or roles can be achieved
concurrently, while subtasks in task trees are achieved
according to their interdependence. Examples of behav-
ior-based approaches to MRTA include ALLIANCE [32],
which uses motivational behaviors to achieve fault-
tolerant, adaptive action selection, enabling a team of
robots to select appropriate actions contributing to a
mission based on the mission requirements, the activities
of other teammates, and the robot’s internal states. BLE
[45] is another behavior-based approach to multirobot
coordination, which allows robots to execute tasks by
continuously broadcasting locally computed eligibilities
and only selecting the robot with the best eligibility to
perform the task. In this case, task allocation is achieved
through behavior inhibition.

Table 7 Comparison Between Centralized ASyMTRe and ASyMTRe-D
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After Smith [39] first introduced the Contract Net
Protocol (CNP), many market-based approaches address-
ing multirobot cooperation through negotiation were de-
veloped, including M+ [4], MURDOCH [16], TraderBots
[8], [47], [48], and Hoplites [23]. In these approaches, a
task is divided into subtasks or hierarchical subtask trees
(in the case of [47]) for the robots to bid and negotiate to
carry out the subtasks. Each robot can estimate the utility
of executing a subtask (or hierarchical tree of subtasks),
which measures the quality and cost factors of the re-
sulting actions. The goal is to greedily assign subtasks or
task trees to the robot that can perform the task with the
highest utility.

Our ASyMTRe-D approach is also based upon an
economy model, which utilizes broadcasting and timeouts
to ensure a robust communication model. Of the prior
market-based approaches, Hoplites [23] is most closely
related to ours, in that both approaches address tightly
coupled multirobot tasks. However, Hoplites (and other
market-based approaches) primarily address the coordina-
tion of interacting robot tasks (i.e., multiple single-robot
tasks operating in parallel, ST-SR-IA). In contrast, our
work addresses robot coalitions for performing single-
multirobot tasks (ST-MR-IA). Robots are no longer work-
ing on independent subtasks or hierarchical task trees;
instead, they are sharing sensor and effector capabilities to
solve a single task that requires multiple robots working
together simultaneously.

As in ASyMTRe, Fua and Ge [13] also address the
problem of multirobot tasks (ST-MR-IA) using the
COBOS cooperative backoff adaptive scheme. In the
COBOS approach, task specifications include the capa-
bilities a robot must possess to be eligible for a task.
These capabilities can be represented using schemas (as
in ASyMTRe) or resources (as in MURDOCH, [16]).
However, COBOS assumes that the list of required capa-
bilities for a given task is fixed; ASyMTRe, on the other
hand, discovers alternative combinations of capabilities
(i.e., schemas that generate required information) that
can accomplish the task, and does not assume a fixed list
of capabilities (or even information types) that are
needed to accomplish a task. By abstracting the task using
schemas and information requirements, rather than
specific solutions based on specific sensors, we believe
ASyMTRe generates more flexible solution strategies for
multirobot coalition formation that are not dependent
upon a fixed list of capabilities or resources required for
each task.

VII. CONCLUSION AND FUTURE WORK
This paper has presented ASyMTReVa mechanism for the
automatic generation of multirobot coalitions in groups of
heterogeneous robots. Built upon schema and information
invariants theories, our approach enables the robot coa-
lition to dynamically connect schemas within and across

robots to accomplish a single-robot task using coalitions of
multiple robots. We have shown that the centralized
ASyMTRe configuration algorithm is sound, complete and
optimal given enough time. In addition, we have also
presented the ASyMTRe-D negotiation protocol that forms
multirobot coalitions through a negotiation process. The
distributed negotiation process enables each robot to find
the best solution locally by maximizing the utility for exe-
cuting the task. Compared with the centralized ASyMTRe,
distributed ASyMTRe-D provides a more robust and
flexible method for forming coalitions. However, it also
presents a tradeoff between solution quality and robust-
ness. We presented physical and simulated robot imple-
mentations and analytical studies of both of these
approaches.

In broader application, we believe that the ASyMTRe
approach can interface with existing approaches for task
allocation and task planning that have traditionally dealt
with assigning single-robot tasks (or hierarchical task
trees) to the appropriate robot (i.e., the ST-SR-IA prob-
lem). In combining these approaches, we envision
ASyMTRe being used at the lower level to form a set of
possible coalitions that can address multirobot tasks. These
coalitions would then compete (with other coalitions or
with single robots) for the assignment of tasks at a higher
level. Note that in this combined approach, it would be
misleading to independently categorize a task as either a
Bsingle-robot[ task or a Bmultirobot[ task (i.e., SR or MR,
using the taxonomy of [14]), without taking into account
the robot team capabilities. In reality, the number of
robots required to perform a task is dependent on the mix
of capabilities of the available robots, even in the same
application. So, by combining ASyMTRe for coalition for-
mation at the lower level with Btraditional[ task allocation
and task planning approaches at the higher level, both
single robots and coalitions can be assigned tasks for the
benefit of the entire team of robots within the same large-
scale application.

Our ongoing work on ASyMTRe includes incorporat-
ing the learning of new semantic information labels,
hierarchically and autonomously Bchunking[ schemas
into higher level capabilities, addressing issues of in-
formation quality, developing formal methods for incor-
porating motion constraints in the physical applications,
exploring alternative configuration search techniques,
interfacing ASyMTRe with more expressive goal specifi-
cations, and extending ASyMTRe to enable human–robot
coalitions. h
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