Distributed Mobile Robotics by the Method of
Dynamic Teams

James Jennings and Chris Kirkwood-Watts*

*Department of Electrical Engineering and Computer Science, Tulane University, New
Orleans, Louisiana (LA) USA 70118, {jennings|kirkwood}@eecs.tulane.edu

Abstract. Distributed teams of agents (robots and workstations) hold great
promise for solving complex tasks efficiently, reliably, and automatically. But
automatic coordination of the actions of the autonomous agents within a
team remains a difficult problem. We suggest that, in order to engender
cooperation and to avoid interference among the agents in a team, the general
organization of the team reflect the structure of the task. Moreover, the team
itself may be a dynamic, fluid entity whose logical structure is maintained by a
run-time system, even in the face of attrition, substitution of team members,
and explicit recruitment of new members. The Method of Dynamic Teams
is based on this principle of fluidity.

Key Words. Distributed autonomous robots; cooperative tasks; agent
teams; dynamic teams; programming systems

1 Introduction

A distributed team (of agents) is a logical association of autonomous agents.
For our purposes, an agent is a robot or a general-purpose workstation (com-
puter). Distributed teams (of robots and workstations) hold great promise
for solving complex tasks efficiently, reliably, and automatically. But auto-
matic coordination of the actions of the agents in a team of autonomous
agents remains a difficult problem. For some tasks, such as “foraging”, the
team may be very loosely coupled, executing an algorithm which does not
even require communication among the agents. For other tasks, such as
“search and rescue”, communication appears to be required, and for coop-
erative manipulation tasks, close coordination of the actions of agents in
the team is essential, e.g. in the Pusher/Steerer manipulation system of [5].
Working cooperatively, our small collection of mobile robots (two of which
are shown in Figure 1) are able to explore and map large areas [7], intel-
ligently resolve robot-robot collisions [14], and perform complex large-scale
manipulation tasks, such as locating and moving furniture [8]. They do so by
forming dynamic teams which grow, shrink, and change in membership auto-



matically during task execution in response to conditions in the environment
and within the team itself.

Figure 1 Two of our mobile robots, Ernst and Moseley, near a large box
which might be the object for which they are searching and
which they would then retrieve. There are two other mobile
robots in our laboratory, Elvis and Stella.

1.1 Problem Statement

We wish to allow teams of small mobile robots (mobots) to cooperate to solve
tasks too difficult for a single robot to achieve or to solve tasks more efficiently
than could a single robot working alone.

Cooperation implies at least non-interference; that is, agents should not
interfere with other agents’ abilities to accomplish their goals. Cooperation
also means that agents can (and may be required to) help each other by
collaborating on a task, i.e. coordinating their actions. Because robot tasks
vary so widely (e.g. from exploration to map-making to assembly operations
to large-scale manipulation) and robot teams vary so widely (e.g. from an
array of thousands of nano-robots to a heterogenous collection of a just a few
large robots), it appears impossible to design a set of enforceable constraints
on robot programs which promotes collaboration and avoids interference for
all tasks.

We believe the key to enabling cooperation lies in the structure of the task
itself: the specification of the robots’ (generally, agents’) program should
encode, however loosely, the desired form of cooperation for that particular
task. The role of the agent architecture, or programming environment, is then
to support as wide a variety of team organizations and activities as possible.
The MOVER system is an attempt at constructing such an architecture.



1.2 Dynamic Teams

In our architecture MOVER, enhanced since [8], tasks are specified proce-
durally, but at a high level of abstraction. Selection of the agents which
participate in a team is automatic, as is substitution for agents in the team
by agents outside of the team. For example, if the battery voltage of a robot
participating in a team task falls too low, that robot can migrate its task
(its computational state) to another robot whose batteries are fully charged.
This is accomplished without human intervention. Similarly, due to failures
or the intervention of higher priority tasks, teams may experience attrition.
Finally, any agent in the collective may be a member of an arbitrary number
of teams simultaneously.

2 Tasks and Teams to Solve Them
2.1 Properties of Association

In the field of autonomous mobile robotics, many tasks involve one or more
forms of association of agents. Key issues in cooperative mobile robotics
may be termed “properties of association” because they describe the ways in
which agents are associated with one another. Questions about association
properties include:

. Can the agents sense each other?

. Can the agents sense the effects of the actions of other agents?

1
2
3. Can the agents communicate with each other?
4. Can several agents act in synchrony?

5

. How the agents organized?

Questions 4 and 5 are the subject of this report. In our current work, we
answer the other questions as follows: Our mobots sense each other and the
world only through sonar and bumper contact, but they can communicate
via wireless ethernet.

Answering question 4 invariably exposes limitations in robotic hardware
and software systems. Two robots which are slaves to a central controller
can clearly act in synchrony, but at the expense of their autonomy. But can
two autonomous robots perform synchronous actions? The answer appears
to be yes, up to the limits of their ability to communicate. In this paper, we
use the following definition:

Definition 2.1 A set of agents perform action B synchronously in the se-
quential task {A; B; C} if (i) no agent starts B until all agents have finished
A, and (i7) no agent starts C until all agents have completed B.

Finally, question 5, “How are the agents organized?”, is the chief concern of
our current work. First we note that many types of organization are possible,



including a single set of peers, distinct groups of peers, groups with leaders,
hierarchies, etc. Which is best? One cannot answer this question without
knowledge of the problem that the agents are trying to solve. Foraging,
for example, appears to be performed very successfully by a single group of
peers [2]. Following, on the other hand, appears to require a leader, but the
leader may be elected dynamically and may change frequently. Cooperative
manipulation often requires very close coordination, e.g. between a leader
and a follower, and still other tasks may be naturally specified in terms of
hierarchies.

Varying the answers to questions 1-5 above yields teams of agents with
different abilities, from reticent, asynchronous, and unorganized teams, to
extremely communicative, highly synchronized teams, organized in complex
ways. A framework for programming teams of agents should embrace a wide
variety of association properties, and thus enable more creative, powerful,
and efficient solutions to many tasks. The Method of Dynamic Teams is an
attempt at forging such a framework.

2.2 The Method of Dynamic Teams

We begin by defining team and dynamic team more precisely.

Definition 2.2 A team of agents is a logical association of members of a
(possibly larger, possibly unorganized) set of agents.

Definition 2.3 A dynamic team of agents is a temporary and fluid team
whose association properties are allowed to vary over time. That is, teams
dynamically and automatically grow and shrink, and members may be substi-
tuted. Also, an agent may be a member of more than one team at a time.

Definition 2.4 The Method of Dynamic Teams (MDT) is a programming
model which addresses the mapping of a task into dynamic teams of agents
such that the structure of the teams is consistent with that of the task.

A team 7 of agents is created for the purpose of performing some task. In
this way, the team is “temporary”, for its dissolution will be contemporaneous
with the completion of the task. If 7 has the duration of some task 7', then
the decomposition of T' into two less complex subtasks, 77 and T5, begs the
ability to form subteams 7 and 7 from 7.

The team 7 is said to be “fluid” with respect to the task T'. Members of
the team may be added (recruited), swapped with members of other teams
(substituted), or the team may lose members (attrition), without the need
for another team to be explicitly formed. In this manner, teams of agents
may be adjusted dynamically and automatically to increase performance or
to account for unforseen changes in the task structure.

Another critical aspect of MDT is that an agent may belong to more than
one team at once. However, some care must be taken to ensure that the



non-sharable nature of some resources is not compromised (the wheelbase
motors of a mobile robot, for example). Certain resources (such as a mobot’s
wheelbase) are managed automatically by the MOVER system.

2.3 Specifying Dynamic Team Structure

In the MDT approach, the desired type of agent organization is part of the
task description given to the agents. Whether a task solution (program) is
designed by a user, by a planning system, or by another agent, the general
type of organization dervies from the task solution itself. For example, in
a search and rescue task (see Figure 2), a team of robots might search a
building in parallel for some object (as a group of peers). Upon finding the
object, a subset of those robots might bring the object back (as a separate
group from the group of robots whose services are no longer needed). This
“rescue” of the object may require coordinated manipulation (implemented,
e.g. using a leader and a follower).

Which agents participate in the task and in what capacities is determined
at run-time and is mostly automatic. That is, how the desired form of or-
ganization is achieved is separate from its specification. For example, in the
MOVER system, teams are assembled automatically from a pool of available
agents using the with-team construct.! New agents are explicitly recruited
when needed using recruit. Agents which experience a hardware failure, low
battery voltage, or some other condition may allow another agent to substi-
tute for them using substitute. In the event no substitute can be found, or
is not desired, an agent can bail out of a task using bailout, and the team
experiences attrition. If attrition is too great, a team exception is raised, the
entire distributed task is stopped, and an operator is alerted. (See Section
4.2.)

2.4 Implementation

The MOVER system provides with-team, recruit, and the other dynamic
team constructs within a novel distributed implementation of the Scheme
programming language called Kali-Scheme [6]. Because of MOVER’s archi-
tecture, with-team programs can and do re-use pre-existing single-agent code
without modification.

Using a collection of Sun SPARC workstations running Solaris, Intel x86-
based computers running Linux, and RWI B13 and B14 mobile robots (also
running Linux), MOVER is used in our laboratory for multi-agent tasks [8]

ul

1The with-team construct and the others mentioned here are explained in Section 4.2.




3 Previous Work

Due to space limitations, we are forced to focus our attention narrowly on
architectures for multi-robot cooperation. We start with behavior-based ap-
proaches.

Behavior-based robot programming lends itself naturally to multi-robot
tasks because each robot is programmed (given a set of behaviors) and then
set out in the world, and from the interaction of the robots a group behavior
emerges. If the emergent behavior helps accomplish the task, the behavior is
said to be cooperative. A great deal of effort is expended designing coopera-
tive behaviors, e.g. [4] [11] [10], and classifying them [2]. In this work there
is typically no formal notion of a team, nor of subteams, contemporaneous
teams, etc. Even with direct communication, it is difficult to envision how
one might craft sets of behaviors from which would emerge teams (logical
associations) that would be capable of attaining structured goals. (This may
largely be due to the fact that structured tasks are often not the goal of such
work.)

Some recent work [12] [9] models reactive robot behaviors using dynamical
systems, in an attempt to define and then synthesize cooperation at the sys-
tems level. The idea is appealing, but it is uncertain how it might be applied
to real robots in complex environments which need to perform structured
tasks.

Other recent work presents a variety of multi-agent protocols designed to
engender cooperation, e.g. using plan-merging [1]. In a system in which
individual robots are controlled by planning systems which are amenable to
the approach, the idea of cooperative plan merging is appealing. In a more
general scenario, in which individual robots are controlled using a variety of
paradigms, the negotiation method of [3] shares more with our approach.

Similarly, the architecture of [13] allows hierarchical organizations to form
as needed in support of a “global mission plan.” Dynamic teams for accom-
plishing cooperative tasks are similar in spirit to the presence of a “mission
plan” which is global only to the robots involved in the team. The idea of
organizations of agents emerging dynamically as needed is common to this
work and ours.

4 An Example Task: Search and Rescue

We now examine an implemented distributed robot task with several steps,
each requiring a slightly different organization of a set of mobile robot agents.?
The goal of a search and rescue task is to search for an object, and upon
finding it, to retrieve it. We desire the search phase to exploit parallelism,
with many robots searching at once. On the other hand, our manipulation

2In our implementation, three of our mobile robots search the lab in parallel, using a
random walk, looking for a large box of a particular shape. When one robot finds it, two
robots manipulate it to a specified goal in the room.



(with-team (all-available ’mobots)
(let* ((location
(on ((all)
(collect or-collector)
(on-error substitute-if-possible))
(lambda () (search-for *object*))))
(first-to-arrive
(on ((all)
(collect (make-n-collector 2))
(on-error substitute-if-possible))
(navigate-to (success-data location)))))
(subteam (success-agents first-to-arrive)
(on ((all))
(lambda () (push-to *goalx*))
(lambda () (steer-to *goal*))))))

Figure 2 The search and rescue program. In Scheme, the keyword lambda

indicates a procedure. The with—team construct assembles a
team and then distributes its body (which begins with let*) to
each member of the team for autonomous execution.

primitives require exactly two robots to move a large object in the retrieval
(“rescue”) phase. A task solution, shown in Figure 2, demonstrates the
following attributes of the system:

All available mobile robots are selected to participate in the search
phase of the task. A simple classification mechanism serves to remove
workstations and non-mobile robots from the search team.

A step marked on is a synchronous step. The result of an on step is a
structure containing the values returned from each robot participating
in the step. The keyword (all) selects for participation all members
of the current team.

The results of the first on step (the search step) are collected using the
or-collector, which terminates the on step when the first successful
result is returned from any participating robot.

During the search step, substitute-if-possibleis the error handling
procedure which attempts to migrate the task of a robot which experi-
ences an error to another robot if possible.

When the search step is done, two robots navigate-to the object in
order to manipulate it. Because it does not matter to the operator
which robots perform the manipulation, all robots are instructed to
navigate to the object synchronously, with (make-n-collector 2), the
result collector, terminating the step when two robots have completed
it. Thus, the first two robots to arrive will perform the manipulation.



e The subteam construct narrows the team. Here, a subteam composed
of the first two members of the search team to arrive at the object
will perform the manipulation task. Note that the default collector of
results is the and-collector, which terminates the synchronous step
when all agents have completed their task.

The meaning of other forms appearing in Figure 2 may be summarized
as follows. The success-data operator selects the data returned by a suc-
cessful agent in a synchronous sub-task. (Unsuccessful agents return errors,
or indicate that they are leaving the team.) The success-agents operator
performs a similar extraction by selecting the agents which succeeded from
the result of a synchronous sub-task. Finally, push-to and steer-to are
manipulation primitives designed to work together (when each is executed
by a different robot) to move a large object to a specified goal location [5].

4.1 Some Features of with-team

The search and rescue example illustrates many features of the with-team
construct. The body of the with-team form is a sequence of Scheme forms
which are sub-tasks, executed in order by all agents in the team. Every sub-
task which is wrapped in an on form is executed synchronously, and sub-tasks
outside on forms are performed asynchronously by all agents.?

At times it is desirable to specify restrictions on how MOVER selects agents
for team tasks. In Figure 2, the keyword all is used in every step to
select all robots in the current team. The on construct permits options
such as (arbitrary 2) and (fixed (list ernst)) in place of (all). The
(arbitrary n) option automatically and arbitrarily chooses n agents, and
the (fixed list) option selects exactly the agents in list.

Finally, a task’s structure may allow opportunities to recruit new members
into existing teams. A recruit construct is provided in MOVER for this
purpose, and it is a synchronous operation much like on, but which has the
sole effect of possibly enlarging the team. A forthcoming report will describe
recruitment, attrition, and substitution in more detail than space permits in
this report.

4.2 Specification of Concurrency

It is beyond the scope of this paper to do more than state the following
properties of our implementation of MDT.

MOVER’s with-team is a high-level concurrency specification mechanism
which abstracts away from: choosing among equivalent agents; selecting
the “closest”, “strongest”, or “least-loaded” agent; innocuous substitution
of agents; and lower level issues such as synchronization and communication.

3Note that there is no restriction on the tasks which might appear inside with-team, or
on their number. For example, with-team tasks may be nested.



The agents’ operator retains control over: the amount of parallelism used
in the task; the level of coordination required among team members; which
errors require aborting the task; and identifying opportunities for recruiting
new members smoothly into the task.

Substitution in MOVER is implemented with true task migration. The
thread (a form of lightweight process) which executes on agent A is actually
migrated to agent B when B substitutes for A. This disassociates agent A
completely from the task. Note, however, that for a robot, an important part
of its state is not computational but physical. In some tasks, such as general
navigation (implemented in MOVER as navigate-to), it may be possible for
a robot to substitute for another without physically changing places, because
the task goal is simply for a robot to arrive at a location.

In addition to error handling at the individual agent level, MOVER has
team exceptions which are processed synchronously by every agent in the
team. This allows the team to respond as a whole to unexpected events.

5 Conclusion and Future Work

We have presented a general framework for distributed robot (agent) pro-
gramming by the Method of Dynamic Teams, which suggests that the general
structure of a team of agents should mirror the structure of the task they
must perform. When teams are dynamic, they can automatically respond to
conditions in the environment and within the agents themselves. In other
words, a system implementing MDT gives the robot “operator” the abil-
ity to combine reactive agent primitives with adaptive execution strategies,
in the context of a user-specified task structure. Future work includes the
design of algorithms for mapping well-defined classes of tasks directly and
automatically into dynamic teams.

6 Acknowledgements

We are grateful to the developers of Kali-Scheme, and especially to Richard Kelsey
for much assistance. We thank Eric Beuscher, Matt Bosworth, and Craig Tanis for
much coding and decoding.

This paper describes research done in the Robotics Laboratory of the Department
of Electrical Engineering and Computer Science at Tulane University. Support for
our robotics research was provided in part by the Louisiana Education Quality
Support Fund under Contract Number LEQSF-RD-A-27.

7 REFERENCES

[1] R. Alami, F. Ingrand, and S. Qutub. Planning coordination and execution
in multi-robots environment. In 8" International Conference on Advanced
Robotics, Monterey, CA, 1997.



[2]

[3]

[4]

[5]

[9]

[10]

[11]

R. Arkin, T. Balch, and E. Nitz. Communication of behavioral state in multi-
agent retrieval tasks. In Proc. of the 1998 IEEE International Conference on
Robotics and Automation, volume 2, pages 588-594, Atlanta, Ga, 1993.

K. Azarm and G. Schmidt. Conflict-free motion of multiple mobile robots
based on decentralized motion planning and negotiation. In Proc. IEEE Int.
Conf. on Robotics and Automation, Albuquerque, NM, 1997.

D. Barnes, R. Aylett, A. Coddington, and R. Ghanea-Hercock. A hybrid
approach to supervising multiple co-operant autonomous mobile robots. In
8" TInternational Conference on Advanced Robotics, Monterey, CA, 1997.

R. Brown and J. Jennings. Manipulation by a pusher/steerer. In Proc. of
IEEE Conf. on Intelligent Robot Systems, Pittsburgh, PA, August 1995.

H. Cejtin, S. Jagannathan, and R. Kelsey. Higher-order distributed objects.
ACM Transactions on Programming Languages and Systems, September 1995.

J. Jennings, C. Kirkwood-Watts, and C. Tanis. Distributed map-making using
online generalized voronoi graphs. In submitted to IEEE ICRA, Brussels,
Belgium, 1998.

J. Jennings, G. Whelan, and W. Evans. Cooperative search and rescue with
mobile robots. In IEEE International Conference on Advanced Robotics, Mon-
terey, CA, 1997.

E. Large, H. Christensen, and R. Bajcsy. Dynamic robot planning: Coopera-
tion through competition. In Proc. IEEE Int. Conf. on Robotics and Automa-
tion, Albuquerque, NM, 1997.

M.J. Mataric, M. Nilsson, and K.T. Simsarian. Cooperative multi-robot box-
pushing. In Proc. of IEEE Conf. on Intelligent Robot Systems, Pittsburgh,
PA, 1995.

L. Parker and B. Emmons. Cooperative multi-robot observation of multiple
moving targets. In Proc. IEEE Int. Conf. on Robotics and Automation, Albu-
querque, NM, 1997.

K. Sekiyama and T. Fukuda. Modeling and controlling of group behaviour
based on self-organizing principle. In Proc. IEEE Int. Conf. on Robotics and
Automation, Minneapolis, MN, 1996.

J. Sousa and F. Pereira. A general control architecture for multiple vehicles. In
Proc. IEEE Int. Conf. on Robotics and Automation, Minneapolis, MN, 1996.

C. Tanis. Cooperative localization and mapmaking for mobile robots. Depart-
ment of electrical engineering and computer science technical report, Tulane
University, 1997.



