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tIn several spe
ies of ants, workers 
ooperate to retrieve large prey. Usually, one ant�nds a prey item, tries to move it, and, when unsu

essful for some time, re
ruitsnestmates through dire
t 
onta
t or 
hemi
al marking. When a group of ants triesto move large prey, the ants 
hange position and alignment until the prey 
an bemoved toward the nest. A roboti
 implementation of this phenomenon is des
ribed.Although the roboti
 system may not appear to be very eÆ
ient, it is an interestingexample of de
entralized problem-solving by a group of robots, and it provides the�rst formalized model of 
ooperative transport in ants.
1 Introdu
tionSo
ial inse
t so
ieties �ants, bees, termites and wasps� are distributed sys-tems in whi
h 
olony-level behavior emerges out of intera
tions among individ-ual inse
ts [4℄. In addition to being a de
entralized system, a 
olony of inse
tsexhibits 
exibility and robustness, two features that would be desirable in anarti�
ial system. A re
ent trend in both Arti�
ial Intelligen
e and OperationsResear
h 
onsists of viewing the so
ial inse
t metaphor as a new paradigm fordesigning arti�
ial problem-solving devi
es and optimization algorithms [3℄.In Autonomous Roboti
s, swarm-based roboti
s relies on the same metaphorfor the design of distributed 
ontrol algorithms for swarms of robots.There has been an upsurge of interest in swarm-based roboti
s in re
ent years[9℄ as it provides an interesting alternative to more 
lassi
al approa
hes inroboti
s. Some tasks may be inherently too 
omplex or impossible for a sin-gle robot to perform. For example, in the 
ase study des
ribed in this paper,1 email: kube�
s.ualberta.
a2 email: bonabeau�santafe.eduPreprint submitted to Roboti
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pushing a box requires the \
oordinated" e�orts of at least two individuals.Speed up 
an result from using several robots. Designing, building, and us-ing several simple robots may be easier than designing, building and usinga single 
omplex robot. It may also be 
heaper be
ause of the robots' sim-pli
ity. A swarm of simple robots may also be more 
exible without the needto reprogram the robots, and more reliable and fault-tolerant be
ause oneor several robots may fail without a�e
ting task 
ompletion. Furthermore,theories of self-organization tea
h us that randomness or 
u
tuations in in-dividual behavior, far from being harmful, may in fa
t greatly enhan
e thesystem's ability to explore new behaviors and �nd new solutions. In addition,self-organization and de
entralization, together with the idea that intera
tionsamong agents need not be dire
t but 
an rather take pla
e through the en-vironment, point to the possibility of signi�
antly redu
ing 
ommuni
ationsbetween robots: expli
it robot-to-robot 
ommuni
ations rapidly be
ome a bigissue when the number of robots in
reases; this issue 
an be to a large extenteliminated by suppressing su
h 
ommuni
ations! Also, 
entral 
ontrol is usu-ally not well suited to dealing with a large number of agents, not only be
auseof the need for robot-to-
ontroller-and-ba
k 
ommuni
ations, but also be
ausefailure of the 
ontroller implies failure of the whole system.The 
urrent su

ess of 
olle
tive roboti
s is the result of several fa
tors:(1) The relative failure of the Arti�
ial Intelligen
e program, whi
h 
lassi-
al roboti
s relied upon, has for
ed many 
omputer s
ientists and roboti
iststo re
onsider their fundamental paradigm. This paradigm shift has led tothe advent of 
onne
tionism, and to the view that sensori-motor intelligen
eis as important as reasoning and other higher-level 
omponents of 
ognition.Swarm-based roboti
s relies on the anti-
lassi
al-AI idea that a group of robotsmay be able to perform tasks without expli
it representations of the environ-ment and of the other robots and that planning may be repla
ed by rea
tivity.(2) The remarkable progress of mobile roboti
s during the last de
ade hasallowed many resear
hers to experiment with mobile robots, whi
h have notonly be
ome more eÆ
ient and 
apable of performing many di�erent tasks,but also 
heap(er).(3) The �eld of Arti�
ial Life, where the 
on
ept of emergent behavior isemphasized as being essential to the understanding fundamental propertiesof the living, has done mu
h to propagate ideas about 
olle
tive behaviorin biologi
al systems, parti
ularly so
ial inse
ts; fa
ts and theories that wereunknown to roboti
ists rea
hed them.Using a swarm of robots has some drawba
ks. For example, stagnation isone: be
ause of the la
k of a global knowledge, a group of robots may �nditself in a deadlo
k, where it 
annot make any progress. Another problem is2



to determine how these so-
alled \simple" robots should be programmed toperform user-designed tasks. The pathways to solutions are usually not pre-de�ned but emergent, and solving a problem amounts to �nding a traje
toryfor the system and its environment so that the states of both the system andthe environment 
onstitute the solution to the problem: although appealing,this formulation does not lend itself to easy programming. Until now, we im-pli
itly assumed that all robots were identi
al units: the situation be
omesmore 
ompli
ated when the robots have di�erent 
hara
teristi
s, respond todi�erent stimuli, or respond di�erently to the same stimuli, and so forth; ifthe body of theory that roboti
ists 
an use for homogeneous groups of robotsis limited, there is virtually no theoreti
al guideline for the emergent designand 
ontrol of heterogeneous swarms.Many potential appli
ations of swarm-based roboti
s require miniaturization.Very small robots, mi
ro- and nano-robots, whi
h will by 
onstru
tion haveseverely limited sensing and 
omputation, may need to operate in very largegroups or swarms to a�e
t the ma
roworld [34℄. Approa
hes dire
tly inspiredor derived from swarm intelligen
e may be the only way to 
ontrol and managesu
h groups of small robots. As the reader will perhaps be disappointed bythe simpli
ity of the tasks performed by state-of-the-art swarm-based roboti
systems su
h as the one presented in this paper, let us remind her that itis in the perspe
tive of miniaturization that swarm-based roboti
s be
omesmeaningful. In view of the great many potential appli
ations of swarm-basedroboti
s, it seems urgent to work at the fundamental level of what algorithmsshould be put into these robots: understanding the nature of 
oordination ingroups of simple agents is a �rst step toward implementing useful multirobotsystems.In swarm-based roboti
s, 
ooperative transport|parti
ularly 
ooperative box-pushing|has been an important ben
hmark for testing new types of roboti
ar
hite
ture. One of the swarm-based roboti
 implementations of 
ooperativetransport is so 
losely inspired by 
ooperative prey retrieval in so
ial inse
tsthat it is a genuine model of the phenomenon, thereby providing a uniqueexample of a truly bidire
tional ex
hange between biology and roboti
s. Antsof various spe
ies are 
apable of 
olle
tively retrieving large prey that are im-possible for a single ant to retrieve. Usually, a single ant �nds a prey itemand tries to move it alone; when su

essful, the ant moves the item ba
k tothe nest. When unsu

essful, the ant re
ruits nestmates through dire
t 
on-ta
t or trail laying. If a group of ants is still unable to move the prey itemfor a 
ertain time, spe
ialized workers with large mandibles may be re
ruitedin some spe
ies to 
ut the prey into smaller pie
es. Although this s
enarioseems to be fairly well understood in the spe
ies where it has been studied,the me
hanisms underlying 
ooperative transport|that is, when and how agroup of ants move a large prey item to the nest|remain un
lear. No formaldes
ription of the biologi
al phenomenon has been developed, and, surpris-3



ingly, roboti
ists went further than biologists in trying to model 
ooperativetransport: perhaps the only 
onvin
ing model so far is one that has been in-trodu
ed and studied by roboti
ists [31℄ and, although this model was notaimed at des
ribing the behavior of real ants, it is biologi
ally plausible. Thispaper �rst des
ribes empiri
al observations of 
ooperative transport in ants,and then des
ribes the work of Kube and Zhang [27{29,31℄.2 Cooperative Prey Retrieval in Ants 3A small prey or food item is easily 
arried by a single ant. But how 
an ants\
ooperate" to 
arry a large item? Cooperative prey (or large food item) re-trieval and transport has been reported in several spe
ies of ants [46,42,50℄:weaver ants Oe
ophylla smaragdina [25℄ and Oe
ophylla longinoda [23,54℄,army ants E
iton bur
helli [18℄ Afri
an driver ants Dorylus [20,36℄, and otherspe
ies su
h as Pheidole 
rassinoda [45℄,Myrmi
a rubra [47℄, Formi
a lugubris[47℄, Lasius neoniger [49℄, the desert ants Aphaenogaster (ex-Novomessor)
o
kerelli and Aphaenogaster albisetosus [24,32℄, Pheidologeton diversus [36℄,Pheidole pallidula [13,14℄, Formi
a poly
tena [10,11,35,51℄, Formi
a s
hau-fussi [42,41,50℄ and the ponerine ants E
tatomma ruidum [39℄ and possiblyParaponera 
lavata [6℄. This 
ooperative behavior 
an be quite impressive. Forexample, Mo�ett [36℄ reports that a group of about 100 ants Pheidologetondiversus was able to transport a 10-
m earthworm weighing 1.92 g (more than5000 times as mu
h as a single 0.3-mg to 0.4-mg minor worker) at 0.41 
m/son level ground. By 
omparison, ants engaged in solitary transport of fooditems on the same trail were 
arrying burdens weighing at most 5 times theirbody weight at about 1 
m/s: this means that ants engaged in the 
ooperativetransport of the earthworm were holding at least 10 times more weight thandid solitary transporters, with only a modest loss in velo
ity [36℄.We believe that the phenomenon of 
ooperative transport is mu
h more 
om-mon in ants than these few studies suggest: to the best of our knowledge, thesestudies are the only ones that report detailed observations of 
ooperative preytransport. This phenomenon involves several di�erent aspe
ts:(1) Is there an advantage to group transport as opposed to solitary transport?Is worker behavior in group transport di�erent than in solitary transport?(2) When and how does an ant know that it 
annot 
arry an item alonebe
ause it is either too large or too heavy?(3) How are nestmates re
ruited when help is needed?(4) How do several ants 
ooperate and 
oordinate their a
tions to a
tuallytransport the item?3 Portions of se
tion 2 have been modi�ed from [3℄.4



(5) How do ants ensure that there is the right number of individuals involvedin 
arrying the item?(6) How does a group of transporting ants handle deadlo
ks and, more gener-ally, situations where the item to be transported is stu
k, either be
auseof antagonisti
 for
es or be
ause of the presen
e of an obsta
le or hetero-geneities in the susbtrate?All these questions, that have been more or less satisfa
torily dealt with inthe above-mentioned studies, are of enormous interest in view of implementinga de
entralized 
ooperative roboti
 system to transport obje
ts the lo
ationsand sizes of whi
h are unknown.2.1 Solitary Transport Versus Group TransportIn Pheidologeton diversus, single worker ants usually 
arry burdens (grasp-ing them between their mandibles, lifting them from the ground and holdingthem ahead as they walk forward) rather than drag them [36℄. By 
ontrast,in 
ooperative transport, one or both forelegs are pla
ed on the burden to aidin lifting it, mandibles are open and usually lay against the burden withoutgrasping it. The movement patterns of group-transporting ants 
orrespondingto their positions around the perimeter of a burden with referen
e to the di-re
tion of transport are also di�erent than those of ants engaged in solitarytransport: workers at the forward margin walk ba
kward, pulling the burden,while those along the trailing margin walk forward, apparently pushing theburden; ants along the sides of the burden shu�e their legs sideways and slanttheir bodies in the dire
tion of transport [36℄.By 
ontrast, Sudd [45,47℄ observes that individual Pheidole 
rassinoda, Myr-mi
a rubra, and Myrmi
a lugubris ants appear to exhibit the same behavioralpatterns in solitary and group transport: in group transport, all three spe
iesused the same method as when they work alone, in
luding realignment andrepositioning. This, however, does not ex
lude 
ooperative behavior: grouptransport in these spe
ies is parti
ularly interesting be
ause the same individ-ual behavior is fun
tional either in isolation or in group, and may even lead toin
reasing returns (up to a maximum group size: see se
tion 2.2) despite thela
k of dire
t response of individuals to the presen
e of their nestmates.In general, whether ants behave similarly or di�erently when engaged in soli-tary and group transport, group transport is more eÆ
ient than solitary trans-port for large prey. Ants 
an dismantle a large food item into small enoughpie
es to be 
arried by individual ant workers. Mo�ett [36℄ observed that alarge pie
e of 
ereal, whi
h would have required 498 solitary Pheidologetondiversus transporters if broken down into small enough pie
es, 
ould be trans-5



ported 
olle
tively by only 14 ants. More generally, he observed that the weight
arried by ant in
reases with group size: the total weight 
arried by a groupof N workers in
reases as W / N2:044, whi
h means that the weight 
arriedby ea
h ant in
reases on average as N1:044. Franks [18℄ made similar observa-tions on E
iton bur
helli : let Wi be the dry weight of transported items andWa the total dry weight of the group of transporting ants, the relationshipbetween both is Wi / W 1:377a , whi
h, assuming that Wa is proportional to N ,implies that the dry weight 
arried by ant in
reases as N0:377. Franks [18℄ alsoobserved that items were always retrieved at a standard speed, relatively inde-pendent of group size: he hypothesized that the in
reased eÆ
ien
y of grouptransport with group size results from the group's ability to over
ome therotational for
es ne
essary to balan
e a food item. Along the same lines, wealready mentioned Mo�ett's [36℄ experiment in whi
h he showed that group-transporting ants 
ould 
arry more than 10 times more weight than did soli-tary transporters at a speed only divided by 2. He found that the velo
ityof transport de
reases as a fun
tion of the number of Pheidologeton diversus
arriers, but de
reases signi�
antly only for large group sizes (>12 
arriers).The transport eÆ
ien
y per ant, measured by the produ
t of burden weightby transport velo
ity divided by the number of 
arriers, in
reases with groupsize up to a maximum for groups of 8 to 10 ants, and then de
lines [36℄.As emphasized by Traniello and Robson [50℄, transport eÆ
ien
y may not bethe only and primary reason for group transport in ants. In Aphaenogaster
o
kerelli group retrieval of prey de
reases interferen
e 
ompetition with sym-patri
 spe
ies [24,32℄, and in Lasius neoniger the rapid formation of a 
ooper-ative retrieval group is 
ru
ial to foraging su

ess [49℄.2.2 From Solitary to Group TransportAll reports of how the de
ision is made to swit
h from solitary to group trans-port des
ribe variants of the same phenomenon. A single ant �rst tries to 
arrythe item, and then, if the item resists motion, to drag it (although draggingis rare in Pheidologeton diversus). Resistan
e to transport seems to determinewhether the item should be 
arried or dragged [13,14,45,47℄. The ant spendsa few se
onds testing the resistan
e of the item to dragging before realigningthe orientation of its body without releasing the item: modifying the dire
-tion of the applied for
e may be suÆ
ient to a
tually move the item. In 
aserealignment is not suÆ
ient, the ant releases the item and �nds another posi-tion to grasp the item. If several repositioning attempts are unsu

essful, theant eventually re
ruits nestmates. Re
ruitment per se is examined in the nextse
tion. Sudd [47℄ reports that the time spent attempting to move the item de-
reases with the item's weight: for example, an ant may spend up to 4 minutesfor items less than 100 mg, but only up to 1 minute for items more than 3006



mg. Detrain and Deneubourg [13,14℄ have shown that in Pheidole pallidula,it is indeed resistan
e to tra
tion, and not dire
tly prey size, that triggersre
ruitment of nestmates, in
luding majors, to 
ut the prey: they studied re-
ruitment through individual trail laying for prey of di�erent sizes (fruit 
iesversus 
o
kroa
hes), or of the same size but with di�erent levels of retrievabil-ity (free fruit 
ies versus fruit 
ies 
overed by a net). A slow re
ruitment tofree fruit 
ies was observed, in 
onne
tion to weak individual trail laying; in
ontrast, strong re
ruitment and intense individual trail laying were observedwhen large prey or small but irretrievable prey were o�ered. It is therefore theability or inability of an individual or a group that governs re
ruitment.2.3 Re
ruitment of NestmatesH�olldobler et al. [23℄ studied re
ruitment in the 
ontext of 
ooperative preyretrieval in two Aphaenogaster (ex-Novomessor) spe
ies: Aphaenogaster al-bisetosus and Aphaenogaster 
o
kerelli. They show that re
ruitment for 
ol-le
tive transport falls within two 
ategories: short-range re
ruitment (SRR)and long-range re
ruitment (LRR). In SRR, a s
out releases a poison glandse
retion in the air immediately after dis
overing a large prey item; nestmatesalready in the vi
inity are attra
ted from up to 2 m. If SRR does not attra
tenough nestmates, a s
out lays a 
hemi
al trail with a poison gland se
retionfrom the prey to the nest: nestmates are stimulated by the pheromone alone(no dire
t stimulation ne
essary) to leave the nest and follow the trail towardthe prey.H�olldobler [25℄ reports short-range, and more rarely long-range (re
tal gland-based), re
ruitment in Oe
ophylla smaragdina in the 
ontext of prey retrieval,during whi
h se
retions from the terminal sternal gland and alarm pheromonesfrom the mandibular glands intera
t. This short-term re
ruitment attra
tsnestmates lo
ated in the vi
inity, whi
h qui
kly 
onverge toward the intruderor prey item, whi
h is retrieved into the nest when dead. In a series of experi-ments with 20 freshly killed 
o
kroa
hes pla
ed at randomly sele
ted lo
ationsin a 
olony's territory, the prey were dis
overed within several minutes (aver-age: 8.05 min.); ants in the vi
inity were attra
ted by short-range re
ruitmentsignals; 5 to 8 ants grasped the prey item and held it on the spot for severalminutes (average: 11.6 min.) before jointly retrieving it to the nest. This lastphase involved 5.3 ants on average. In Oe
ophylla longinoda, even when theprey were pinned to the ground and the ants were unable to retrieve it, long-range re
ruitment was not used [23℄. By 
ontrast, long-range re
ruitment wasobserved in Oe
ophylla smaragdina when the 
o
kroa
hes were pinned to thesubstrate and several workers had attempted without su

ess to remove theprey: re
ruiting ants moved ba
k to the nearest leaf nest (although there wasonly one queen, as is usual in this spe
ies, the nest of the 
onsidered 
olony7



was 
omposed of 19 separate leaf nests, whi
h is also 
ommon in the spe
ies)where they re
ruit nestmates whi
h soon moved out of the leaf nest toward theprey. From 25 to 59 
ould be re
ruited, whereas between 9 and 19 ants wereinvolved in a
tually retrieving the prey to the nest on
e the prey were eventu-ally retrieved. This indi
ates that the ants do not estimate the size or weightof the prey but rather adapt their group sizes to the diÆ
ulty en
ounteredin �rst moving the prey. H�olldobler [25℄ reports that the re
ruited ants weregathering around the prey, seeking to get a

ess, and sometimes grasped nest-mates that were already working at the prey, thereby forming a pulling 
hain,a 
ommon behavior in weaver ants. The prey were usually �rst transported tothe leaf nest from whi
h helpers had been re
ruited.2.4 Coordination in Colle
tive TransportCoordination in 
olle
tive transport seems to o

ur through the item beingtransported: a movement of one ant engaged in group transport is likely tomodify the stimuli per
eived by the other group members, possibly produ
ing,in turn, orientational or positional 
hanges in these ants. This is an exampleof stigmergy [22℄, the 
oordination of a
tivities through indire
t intera
tions.Here, stigmergy is a promising step toward a roboti
 implementation, be
auseit suggests that a group of robots 
an 
ooperate in group transport withoutdire
t 
ommuni
ation among robots; moreover, robots do not have to 
hangetheir behaviors depending on whether or not other robots are engaged in thetask of 
arrying (or dragging, or pulling, or pushing) the item. The 
oordina-tion me
hanism used by ants in 
ooperative transport is not well understood,and has never really been modeled. The swarm of robots des
ribed in se
tion3 is just su
h a model, whi
h shows that the biology of so
ial inse
ts andswarm-based roboti
s 
an both bene�t from ea
h other.2.5 Number of Ants Engaged in Group TransportApparently, the number of ants engaged in transporting an item is an in
reas-ing fun
tion of the item's weight, whi
h indi
ates that group size is adapted tothe item's 
hara
teristi
s. For example, Mo�et [36℄ reports how the number ofPheidologeton diversus 
arriers varies with burden weight. Inverting the rela-tionship des
ribed in se
tion 2.1, we obtain N / W 0:489. The �t to the data isremarkable, suggesting that the adaptation of group size is a

urate. Using thesame notations as in se
tion 2.1, Franks [18℄ �nds thatWa / W 0:726i for E
itonbur
helli. However, as mentioned in the previous se
tion, H�olldobler's [25℄ ob-servations suggest that the ants adapt group size to the diÆ
ulty en
ounteredin �rst moving prey: de
isions rely on how diÆ
ult it is to 
arry the prey, and8



not simply on weight. A prey item that resists (either a
tively or passively)stimulates the ant(s) to re
ruit other ants. Su

ess in 
arrying a prey item inone dire
tion is followed by another attempt in the same dire
tion. Finally, re-
ruitment 
eases as soon as a group of ants 
an 
arry the prey in a well-de�neddire
tion: in that way, group size is adapted to prey size.In addition to the size of the 
ooperative transport group, it seems that the
omposition of the group is not random: for example, in army ants (E
itonbur
helli), groups have a spe
i�
 distribution of submajors that 
omprise a spe-
ialized transport 
aste [18℄. Of 
ourse the situation is less 
lear in monomor-phi
 spe
ies, that is, spe
ies in whi
h there is a single physi
al worker 
aste,but some individuals may be spe
ialized in group transport.2.6 Deadlo
k and Stagnation Re
overySometimes, the item's motion 
an no longer progress either be
ause for
esare applied by ants in opposite dire
tions and 
an
el one another, or be
ausethe group has en
ountered an obsta
le or any signi�
ant heterogeneity on thesubstrate. We have already mentioned that a single ant, who �rst dis
overs afood item, tries to transport it alone: the ant �rst tries to 
arry it, then todrag it; an unsu

essful ant tries another dire
tion and/or another position andthen, if still unsu

essful, gives up the prey temporarily to re
ruit nestmates.The same phenomenon o

urs when ants are engaged in group transport: if,for any reason, the item is stu
k, ants exhibit realigning and repositioningbehaviors [45,47℄. The frequen
y of spatial rearrangements, whi
h may resultfrom the ants' response to the rea
tive for
es 
ommuni
ated through the itembeing transported [47℄, in
reases with time, and so does the rate of transport.As is the 
ase for solitary transporters, realignments tend to o

ur before, andare mu
h frequent than, repositionings: only when realignment is not suÆ
ientdo ants try to �nd other slots around the prey.Along the same lines, Mo�ett [36℄ reports that ants (Pheidologeton diversus)gather around food items at the site of their dis
overy, gnawing on them andpulling them; during the �rst ten minutes or so, the item is moved aboutslowly in shifting dire
tions, before ants \sort out" their a
tions and a
tualtransport 
an begin. During these ten minutes, a lot of spatial rearrangementstake pla
e.Personal observations of weaver ants Oe
ophylla longinoda 
on�rm the exis-ten
e of su
h spatial rearrangements in this spe
ies too.Van Damme and Deneubourg [51℄ studied 
ooperative transport of Tenebriomolitor 's larvae (a worm) in the ant Formi
a poly
tena, and found that aftera period of unsu

essful attempts to transport the larvae individually or in9



Fig. 1. Distan
e over whi
h a larva of Tenebrio molitor has been transported byFormi
a poly
tena ants as a fun
tion of time. Eight experiments are shown. AfterVan Damme and Deneubourg [51℄, reprinted by permission.group, transport suddenly be
omes su

essful, one possible reason being thatthe for
es applied by the various individuals engaged in 
ooperative trans-port be
ome aligned. Figure 1 shows the distan
e over whi
h a larva has beentransported as a fun
tion of the time elapsed sin
e the larva was dis
overed.Distan
e is positive when progress has been made toward the nest and neg-ative otherwise. It 
an be 
learly seen that a \phase transition" o

urs atsome point (whi
h, however, 
annot be predi
ted: it varies from experimentto experiment), when group transport suddenly be
omes su

essful. After thattransition, transport pro
eeds smoothly until the larva rea
hes the nest.3 Cooperative Transport by RobotsFrom the previous se
tion, we understand better, although not perfe
tly, howants 
ooperate in 
olle
tive prey transport. In this se
tion we introdu
e 
o-operative transport by robots, more pre
isely 
ooperative box-pushing. Box-pushing requires a 
ooperative e�ort from at least two robots to move a boxalong some traje
tory [8,37,15,27,38,44,33℄. Of the multi-robot tasks in
ludingforaging and formation mar
hing, box-pushing has generally used a 
ombina-tion of 
entralized planning and 
on
i
t resolution with expli
it 
ommuni
a-tion between robots to 
oordinate their a
tions.In the following se
tions we des
ribe a series of work, by Kube and Zhang[27{29,31℄ and Kube [30℄, 
onsistent in its ant-based approa
h to the problemof 
ooperative transport by a group of robots. The initial task under studywas undire
ted box-pushing, in whi
h a group of robots found a box and10



pushed it in a dire
tion that was dependent upon the initial 
on�guration.The task evolved into dire
ted box-pushing, with the robots pushing the boxfrom an initial position towards a �xed goal position. Finally, the transporttask, a variant of the dire
ted box-pushing task in whi
h multiple goals weresequen
ed, is presented in whi
h the robots to push the box from one lo
ationto the next.The initial simulation model was implemented in a group of �ve physi
alrobots [27℄. Then, inspired by Sudd's observations of group prey retrieval [45,47℄,stagnation re
overy behaviors were added [29℄ and an approa
h to task mod-eling [31℄. Currently the system 
onsists of a group of homogeneous robots
apable of transporting large boxes between arbitrary goal positions.3.1 From So
ial Inse
ts to RobotsSo
ial inse
ts are nature's proof-by-example of a de
entralized multiagent sys-tem whose 
ontrol is a
hieved through lo
ally sensed information, as Se
tion2 
learly suggests. In earlier work, we began with a simple simulation of aswarm of robots designed to lo
ate and push a box and then implemented asubset of the behaviors in �ve physi
al robots [27,28℄.A robot's box-pushing 
ontroller was modeled as three sensors 
onne
ted totwo a
tuators through a set of �ve behaviors. A goal sensor was used to lo
atethe box while a robot sensor provided information on the 
losest robot andan obsta
le sensor warned of obje
ts in 
lose proximity. Left and right wheelmotors used for steering were the two a
tuators. A modi�ed �xed prioritysubsumption ar
hite
ture [7℄ for behavior arbitration was used with the �vebehaviors, listed in as
ending order:(1) Find is the default motion behavior moving the robot forward along agradual ar
.(2) Follow 
auses the robot to follow the 
losest robot within view.(3) Slow swit
hes the two speed wheel motors from medium to low.(4) Goal moves the robot towards the box.(5) Avoid moves the robot away from an obsta
le.A simple taxis-based stimulus-response me
hanism maps sensors to a
tuators.Inspired by Braitenberg's Vehi
les [5℄ and observations of so
ial inse
ts, sensorsprovide input to behaviors whi
h map primitive dis
rete motion 
ommands toleft and right wheel motors.In a single simulation timestep, ea
h behavior takes its 
onne
ted sensors and
al
ulates an appropriate motor response with the highest priority behaviortaking e�e
t. The result is a 
ontroller with the Follow and Goal behaviors11
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A
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Fig. 2. A Follow and Goal behavior produ
e 
oordinated motion towards a box.While the Avoid behaviour 
auses robot \A" to disperse around the box until anempty spot is found.produ
ing 
oordinated motion toward the box and theAvoid behavior 
ausingrobots to disperse around its perimeter (see Figure 2).Keeping robots together using a Follow behavior had an advantage, in thenondire
ted box-pushing task, of distributing the robots around the same halfof the box. Behavior preferen
es allowed a behavior to narrow an atta
hedsensor's �eld-of-view. For example, the initial setting of the robot-sensor al-lowed the robot to see in a forward fa
ing hemisphere. This setting resultedin robots breaking from a swarm when they sensed a 
loser robot who mayhappen to be moving in the opposite dire
tion. By narrowing the view of thesensor while in the following state passing robots are ignored. In this way abehavior 
ould adapt its sensings to suit the immediate purpose.Based on the simulation results �ve physi
al robots were built with 
ontrollers
ontaining two behaviors: Avoid andGoal. The behaviors were implementedas 
ombinational logi
 whi
h mapped a left and right obsta
le sensor to leftand right wheel motors respe
tively, 
ausing the robot to move away from ob-sta
les. Left and right box sensors were mapped to right and left wheel motors
ausing the robot to turn towards a brightly lit box. The resulting 
ontrollersallowed the robots to lo
ate the box, 
onverge and push in a number of di-re
tions depending on the number of robots per side. The box was weightedsu
h that at least two robots were required to move the box as it was pushedtoward the edge of the test area.The 
oordination demonstrated was possible by using a 
ommon goal andbehaving using a simple \noninterferen
e prin
iple" [40℄. The result demon-strated a simple 
ooperation without dire
t 
ommuni
ation, although indire
t
ommuni
ation o

urs through stigmergy (see [21℄).Further simulation results showed that the su

ess rate for nondire
ted box-12



pushing 4 in
reases as a fun
tion of the number of robots up to a point thatappeared dependent on the size of the box. However, the system would stag-nate or deadlo
k when an equal number of pushing robots surrounded the boxresulting in an even distribution of box for
es. To solve the stagnation problemwe turned our attention ba
k to 
ooperative prey retrieval by ants.4 Stagnation Re
overy and Mass E�e
tA detailed study of 
ooperative prey retrieval in ants by Sudd un
overed sev-eral strategies used to 
ombat stagnation [45,47℄. If during transport the fooditem be
omes stu
k ants will realign their body orientation without releasingtheir grasp, as was des
ribed in more detail in Se
tion 2. This has the e�e
tof 
hanging the dire
tion of the pulling or pushing for
es and was often suf-�
ient to resume motion. If after several minutes realignment fails, the antwill release their prey and reposition themselves along the perimeter. Repo-sitioning seems to result in larger 
ummulative 
hanges in the for
es a
tingon the transport item and was often su

essful in resuming motion. Couldrealignment and repositioning behaviors be used for stagnation re
overy inbox-pushing robots?Our simulation experiments 
ompared box-pushing 
ontrollers whi
h in
ludedstagnation re
overy behaviors [29℄. The results demonstrated that the appli-
ation of random pushing motions by either realigning the pushing angle orrepositioning the pushing for
e was an e�e
tive te
hnique against stagnation(see Figures 3 and 4). The results also showed that the task su

ess rate andeÆ
ien
y improved as a fun
tion of the number of robots. However, eÆ
ien
ymeasured as the number of simulation timesteps, improved to a point thatappeared dependent on the number of robots able to �t along the box.The realignment behavior produ
ed a small random 
hange in pushing anglewhile the reposition behavior 
aused the robot to 
hange the point of 
onta
twith the box. The box would translate or rotate if the resultant for
e or torqueex
eeded a threshold. Stagnation was dete
ted by a robot if it was in 
onta
twith the box after an elapsed period without also dete
ting forward motion.Ordering of the realignment and reposition behaviors was a

omplished withtimeout thresholds. For example, realignment be
ame a
tive at t
 +X wheret
 is the time the robot 
onta
ted the box. Reposition be
ame a
tive at t
+4Xwith t
 reset ea
h time the robot moved.4 Where su

ess was de�ned as pushing the box 200 units in 2000 simulatedtimesteps. 13
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Fig. 3. The results 
omparing box-pushing 
ontrollers with and without stagnationre
overy behaviors. Su

ess was de�ned as pushing the box 200 units from an initialposition within 2000 simulation timesteps. Ea
h data point represents the averageof 25 trials with per
entage su

essful shown as a fun
tion of the number of robots.Reprinted with permission 

IEEE.Figure 4 and 3 show the su

ess per
entage (reliability) and exe
ution time(eÆ
ien
y) of the 
ontrollers as a fun
tion of group size for the four di�erentstrategies: (1) Without stagnation re
overy; (2) Realignment only; (3) Reposi-tion only; and (4) Realignment & Reposition behaviors. Controller reliabilitywas improved by in
luding stagnation re
overy. For small group size strategy(2) is best while (3) is more su

essful when the group size is large. Strategy(4) falls between (2) and (3) as expe
ted sin
e (2) then (3) are a
tivated insequen
e. Figure 4 
ompares 
ontroller eÆ
ien
y as a fun
tion of simulatedtime. When the group size is small strategy (1) is best provided it is su

ess-ful. When the group size is large strategy (4) is both the fastest and mostsu

essful with (2) and (3) having intermediate performan
e.What do we learn from these results for real ants, assuming that this is a goodmodel of 
ooperative transport in ants? There are two interesting results forbiologists:1. Although adding one or two me
hanisms for stagnation re
overy in
reasesretrieval time, it also in
reases the probability of su

ess. In spe
ies for whi
h14
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IEEE.
ompetition with other 
olonies or other spe
ies is not a 
riti
al fa
tor, theprobability of su

ess should be favored: we expe
t stagnation re
overy me
h-anisms in su
h spe
ies. On the other hand, if retrieval time is 
ru
ial, forexample be
ause of 
ompetition, then reliability is less 
riti
al but the speedof retrieval is essential: in spe
ies fa
ing strong 
ompetition, we expe
t a lesssophisti
ated or even no stagnation re
overy me
hanism. This predi
tion 
anbe tested.2. The probability of su

ess in retrieving the prey depends on group size,whi
h itself depends on prey size (see Se
tion 2). What the results tell us isthat we might observe realignment only for small prey (small groups) andboth realignment and repositioning for larger prey (larger groups). It is alsopossible that both realignment and repositioning may be observed for all groupsizes, but it is unlikely that repositioning only 
ould be observed be
ause it issigni�
antly less reliable for small group sizes. These predi
tions, again, 
anbe tested. 15



5 A Task Model for Dire
ted Box-PushingThe dire
ted box-pushing task required a new approa
h to task modeling. Inundire
ted box-pushing the state of the robot's 
ontroller was determined bysele
ting the highest priority behavior from a small sele
t set. As a goal dire
-tion to push the box was added, it be
ame apparent that a

omplishing thetask would involve a series of phases or steps often exe
uted in a repetitivemanner. Su

ess would rely on the redundan
y of mass e�e
t. In ea
h step,some of the previous behaviors would not be useful and 
ould 
ause inter-feren
e. For example, if a robot was 
orre
tly positioned for pushing the boxtowards the goal, then obsta
le avoidan
e was not needed and if a

identlytriggered would 
ause the progression to halt.A termites nest, with its well de�ned mushroom shape, is 
onstru
ted througha series of building steps. Ea
h 
onstru
tion phase is thought to be governed bya building program with step transition spe
i�ed as stimulus 
ues. In fa
t, this
ommuni
ation through the environment is the basis of Grass�e's StigmergyTheory [21℄. Thus des
ribing a task as a series of steps with the transitionbetween the steps spe
i�ed as lo
ally sensed 
ues formed the basis of ourapproa
h to task modelling [31℄.In this se
tion we brie
y des
ribe the dire
ted box-pushing model and presentnew results of experiments using four di�erent box types transported betweentwo goal positions.5.1 Coherent BehaviorIn order to get 
oherent behavior from a group a robots ea
h robot has anidenti
al task 
ontroller whi
h is 
omposed of subtask 
ontrollers designed toa

omplish ea
h step of the task. The 
ontrollers are �nite state ma
hines(Q-ma
hines) with state transition spe
i�ed using binary sensing predi
ates,whi
h we 
all per
eptual 
ues.The transport task is de�ned by three states: Find-box, Move-to-box andPush-to-goal. Ea
h state is implemented as a subtask 
ontroller designed toa

omplish a single fun
tion. The two per
eptual 
ues used to determine thestate of the transport system are ?Box-dete
t (BD) and ?Box-
onta
t(BC). The states are shown in Table 1.Ea
h substask 
ontroller is a �nite state ma
hine with states represented asprimitive a
tuation (PA) behaviors. PA behaviors use motion primitives tomove the robot. Ea
h of the three subtask 
ontrollers are spe
i�ed using statesas shown in Tables 2 - 4. 16



Transport ControllerPer
eptual Cue (Input) Task State (Output)BD BC Subtask Controller0 X Find-box1 0 Move-to-box1 1 Push-to-goalTable 1Task exe
ution state is determined by two per
eptual 
ues: ?Box-dete
t (BD)and ?Box-
onta
t (BC).FIND-BOX Subtask ControllerPer
eptual Cue (Input) Behavior State (Output)?TOUCH ?CONTACT- ?AVOID- PA Behavior0 0 0 random-walk0 0 1 avoid0 1 X 
onta
t1 X X ba
k-offTable 2The FIND-BOX Q-ma
hine is the subtask 
ontroller used to lo 
ate the box tobe manipulated. Input is from the listed per
eptual 
ues whi
h de�ne the outputbehaviour state spe
i�ed as a primitive a
tuation (PA) behaviour. The \X" in theinput table indi
ates a don't 
are term. The per
eptual 
ues 
orresponding to thedashed labels are: ?
onta
t-dete
t; ?avoid-dete
t.5.2 Per
eptual Cues for Box-PushingTransporting a box from an unknown initial position towards a �nal goal des-tination was modeled using three types of per
eptual 
ues. Obsta
le avoidan
e
ues were used to dete
t an obsta
le and trigger avoidan
e behaviors. Box de-te
tion 
ues were used to lo
ate and tra
k a moving box, as well as, to 
ontrolstate transitions among the task step 
ontrollers. And a goal dete
tion 
uewas used to indi
ate proper robot orientation, with respe
t to the goal, fora pushing behavior. The 
ues are designed with a given set of motor a
tionsin mind. The design and implementation of ea
h per
eptual 
ue involve thefollowing steps:(1) Sensor Pla
ement Given a sensor type, determine the position, orien-tation and number of sensors to be used in the sensor system.(2) Data Colle
tion For a given environment, 
olle
t data from the sensorthat represents the 
ondition under whi
h the task is performed.17



MOVE-TO-BOX Subtask ControllerPer
eptual Cue (Input) Behavior State (Output)?TOUCH ?CONTACT- ?AVOID- ?BOX- PA Behavior0 0 0 1 seek-box0 0 1 X avoid0 1 X X 
onta
t1 X X X ba
k-offTable 3The MOVE-TO-BOX Q-ma
hine is the subtask 
ontroller that moves the robottowards any side of the brightly lit box to be manipulated. Input is from the listedper
eptual 
ues whi
h de�ne the output behavior state spe
i�ed as a primitivea
tuation (PA) behavior. The \X" in the input table indi
ates a don't 
are term.The per
eptual 
ues 
orresponding to the dashed labels are: ?
onta
t-dete
t;?avoid-dete
t; and ?box-dete
t.PUSH-TO-GOAL Subtask ControllerPer
eptual Cue (Input) Behavior State (Output)?SEE-GOAL PA Behavior0 reposition1 push-boxTable 4The PUSH-TO-GOAL Q-ma
hine is the subtask 
ontroller that either pushes thebox towards a goal destination or repositions the robot on another position of thebox to be manipulated. Input from the ?see-goal per
eptual 
ue, whi
h determinespushing angles, 
an vary the a

eptable pushing angles.(3) Data Analysis Determine what features of the data may be used tomeet the per
eptual 
ue's spe
i�
ation.(4) Algorithm Design Design an algorithm to extra
t the desired feature.(5) AlgorithmVeri�
ation Spe
ify the tests to verify that the 
ue performsas designed.5.2.1 Obsta
le Dete
tion CuesThe purpose of the obsta
le dete
tion 
ues are to provide obsta
le distan
einformation to the robot. Three dis
rete thresholds are used 
orresponding tothe distan
es of: less than 25 
m, less than 12.5 
m, and in physi
al 
onta
twith the robot. A
tive infrared emitter/dete
tor pairs are used to provide non-
onta
t obsta
le information for the left and right front of the robot. Conta
tobsta
le dete
tion is determined using a single bit 
onta
t swit
h. The obsta
le18



dete
tion 
ues are de�ned as: 5?obsta
le Return right and left true 
ags indi
ating the 
orresponding ob-sta
le sensor has ex
eeded the input threshold.?tou
h Return a true 
ag if the front 
onta
t swit
h is pressed.5.2.2 Box Dete
tion CuesThree per
eptual 
ues are used for box dete
tion:?box-dire
tion Return right and left true 
ags indi
ating the 
orrespondingbox sensor has ex
eeded the input threshold.?box-dete
t Return a true 
ag if either left or right box sensors ex
eed agiven input threshold.?box-
onta
t Return a true 
ag if ?tou
h is true and either right or leftbox sensors ex
eed a given input threshold.Box dete
tion is simpli�ed by using a bright light pla
ed at the 
enter ofthe box. The box dete
tion 
ue asks the question: Can the robot see thebox-light? The answer depends on the robot's distan
e from the box andthe orientation of its two forward pointing sensors with respe
t to the box.An adjustable threshold varies the range at whi
h the box-light is dete
tableand is dynami
ally determined as a fun
tion of ambient light. Re
ognizingphysi
al 
onta
t with the box is a 
ombination of two di�erent types of sensing,tou
h and light intensity. This 
ombination of stimulus is unique in the task'senvironment simplifying box re
ognition.5.2.3 Goal Dete
tion CueThe goal dete
tion 
ue asks the question: Can the robot see the goal? Theanswer is a fun
tion of the robot's orientation with respe
t to the goal indi-
ator, whi
h in this instan
e is a spotlight pla
ed near the 
eiling. The goaldete
tion 
ue is de�ned as:?see-goal Return a true 
ag if a signal peak greater than the input thresholdis dete
ted within the user de�ned �eld-of-view.The �nal design 
onsists of a narrow �eld-of-view sensor whi
h is swept bya motor in an upward pointing ar
. If a signal peak o

urs, 
aused by thespotlight, within an adjustable window the goal is dete
ted. The box dete
tionsensors whi
h fa
e horizontally are shielded from light sour
es above the robot,5 Per
eptual 
ues will be identi�ed by their leading question mark.19



while the goal dete
tion sensors fa
e upward and therefore the goal-light doesnot interfere with the box-light.At any given moment a robot is 
ontrolled by a single PA behavior. Thesebehaviors issue dis
rete a
tions whi
h a�e
ts the robot's orientation. As inthe simulated robots, orientation is based on a taxis me
hanism.5.3 Taxis-based Dis
rete A
tionJander de�nes inse
t orientation as \the 
apa
ity and a
tivity of 
ontrolinglo
ation and attitude in spa
e and time with the help of external and internalreferen
es i.e. stimuli." [26℄. In inse
ts the behavioral a
t of orientation is 
on-trolled either externally, and results in a dire
tional orientation using a taxisme
hanism, or internally under kinestheti
 
ontrol. Taxis is de�ned by Web-ster's as a re
ex translational or orientational movement by a freely motileorganism in relation to a sour
e of stimulation [52℄. Inspired by Braitenberg'sVehi
les [5℄ robot a
tions are based on taxis orientation or kinestheti
 orien-tation as �xed motion patterns. The resulting a
tion is used to 
reate motorbehaviors used in a rea
tive 
ontroller. The only required knowledge about theper
eption side of the robot is that it 
orresponds to a left and right divisionof the mobility system used to produ
e the a
tions. In other words, the inputto the a
tion model is a stimulus as measured by a sensor and does not dependon either the stimuli's modality or magnitude.In box-pushing motion is restri
ted to translation and rotation in two dimen-sions. All robot motor a
tions, therefore, result in 
hanges in position andorientation with respe
t to a given 
oordinate frame. To fa
ilitate a qui
k re-sponse to 
hanges in sensor data, a rea
tive 
ontrol system is used for motora
tions.A mobility base was built and used di�erential steering as its means for a
hiev-ing 
hanges in translation and rotation. Dis
rete motion primitives were de-veloped to be used as the underlying me
hanism for all a
tions taken by thesystem. Per
eptual pro
esses are designed independently, but rely on the taxismodel and its di�erential steering method for mobility.Primitive a
tuation behaviors are 
lassi�ed into three groups: positive taxisor goal driven, whi
h provide a 
hange in orientation or translation towards astimulus; negative taxis or avoidan
e driven, whi
h e�e
t a 
hange in orien-tation or translation away from a stimulus; and kinestheti
ally driven, whi
hexe
ute a �xed a
tion sequen
e in response to stagnating or deadlo
k 
ondi-tions.A wheel motor is 
ontrolled using two parameters: speed and dire
tion of ro-20



Positive and Negative Taxis MappingsStimulus Negative Taxis Positive TaxisL R avoid 
onta
t seek-box0 0 null null null0 1 left-turn left-rotate right-turn1 0 right-turn right-rotate left-turn1 1 right-turn right-rotate forwardTable 5The positive and negative taxis behavior mappings. Behaviors that 
ause dire
tional
hanges based on external stimuli expe
t a stimulus from the left and right sides ofthe robot similar to stimulus sensing found in inse
ts. The \null" output means thebehavior doesn't produ
e a motion 
ommand.tation. Speed is proportional to the applied input voltage and a �xed speedsetting is used in all motion 
ommands ex
ept while applying a pushing for
e.Continuous motion is a

omplished by issuing a series of dis
rete motion 
om-mands, ea
h of whi
h moves the robot a small in
remental amount. The 
om-mands have the general form: begin(a
tion), wait �t, end(a
tion).A positive taxis or goal driven behavior moves the robot towards a given exter-nal stimulus. Input to the behavior takes the form of a left and right dividedstimulus pair whi
h may 
orrespond to left and right sensors on the robot.The input variables to the behavior are boolean and indi
ate the presen
e orabsen
e of the stimulus within a given range and �eld-of-view. Output fromthe behavior is a motion 
ommand sele
ted from a set of four 
ommands rep-resenting the possible number of input 
ombinations. In the 
ase of a behaviorwith a single input variable, 0 is mapped to the null motion 
ommand and 1is mapped to the forward 
ommand. For the box-pushing task two goal drivenbehaviours are:� seek-box - moves the robot towards a box.� push-box - pushes the box by in
reasing motor voltage.In the same manner negative taxis or avoidan
e driven behavior repels a robotfrom a given stimulus. For the box-pushing task the two avoidan
e drivenbehaviors are:� avoid - turns the robot away from obsta
les.� 
onta
t - rotates the robot away from obsta
les.The motor behaviours whi
h 
ause 
hanges in orientation are summarized inTable 5. 21



Kinestheti
 orientation is used to produ
e motion in the absen
e of externalstimuli and for stagnation re
overy movements. In the 
ase of both positive andnegative taxis, orientation of the robot is under 
ontrol of external stimuli. Atany time the motor behavior relies on an external stimulus to de
ide the 
orre
tresponse in orientation. However, many behavioral a
ts in both inse
ts androbots la
k the external stimulus needed to guide the orientation me
hanism.Rather a 
orre
t behavioral response might simply be a �xed pattern of motora
tivity stored in memory and released under suitable 
onditions. For example,a spider 
an return to a given lo
ation by \remembering and kinestheti
ally
ontrolling its movements," a skill also found in bees and ants [26℄.In the absen
e of stimuli, a �xed pattern of motor a
tivity 
an serve as astrategy while foraging for food or sear
hing for a goal. For instan
e, whenan ant leaves its nest to sear
h for food it leaves in a straight line until iten
ounters either food or an odor trail whi
h it then follows using a positiveodor-taxis me
hanism [53℄. In box-pushing, a sear
h strategy 
alled random-walk is used whi
h keeps the robot moving in a forward dire
tion by issuing asequen
e of motion primitives Continuous motion by the robot in the absen
eof any external stimulus is thus a

omplished.Re
overy from deadlo
k or stagnation is the se
ond use of kinestheti
 orienta-tion. During the exe
ution of a task by robots using rea
tive 
ontrol strategies,the absen
e of a plan 
an result in a 
ondition in whi
h the exe
ution of thetask gets stu
k or is said to stagnate. For example, a dead end is rea
hedby a robot trying to navigate to a given goal as in Arkin's box 
anyon prob-lem [12℄. The problem is similar to �nding a lo
al maximum, en
ounteredby hill-
limbing algorithms, when the goal is to �nd the global maximum. Innondire
ted box-pushing the net for
e applied by the robots may equal zero ifthe robots are evenly distributed around the perimeter of the box. In su
h a
ase, a robot might attempt inde�nitely to push the box unsu

essfully. Kines-theti
 orientation, in the form of �xed a
tion sequen
es and triggered by eitherthe presen
e or absen
e of a 
ontrolling stimulus, is one solution suitable tothe stagnating 
onditions in the box-pushing task.6 Group Size in Cooperative TransportStigmergy, a term 
oined by Fren
h biologist P. Grass�e, whi
h means to in
itework by the e�e
t of previous work [21℄ is a prin
iple �nding its way from the�eld of so
ial inse
ts to 
olle
tive roboti
s [2,48℄. With their limited repertoireof behavioral a
ts so
ial inse
ts display an amazing 
ompeten
e in buildingnest stru
tures. >From the simple nests produ
ed by the blind bulldozing ofants [19℄ to the termite homes that stand over a meter tall [46℄ all of whi
hresult from 
ommon task 
oordination that does not appear to depend on22



intera
tion between the agents, but rather on the obje
t they a
t upon. Inthis se
tion, the results are presented for the integrated models of the previousse
tions. This global a
tion is demonstrated in the 
olle
tive transport task.Global a
tion is the e�e
t produ
ed when a set of identi
al mobile robotsexe
ute the 
ommon task of pushing an obje
t towards an arbitrarily spe
i-�ed goal position. Coordination is a
hieved without resort to dire
t inter-robot
ommuni
ation or robot di�erentiation. Instead, 
ontext sensitive subtask 
on-trollers de
ompose the box transport task into three phases. The phases de-s
ribe what is to be a
hieved, in terms of the externally observable eventsdes
ribed by box position, without spe
ifying how the task is to be a

om-plished by way of a unique path.6.1 Experimental SystemThe experimental setup used to gather the data presented in the sequel 
on-sisted of a robot environment, in whi
h various boxes were pla
ed along withtwo spotlights used to indi
ate �nal goal positions, and a set of identi
al mo-bile robots 
omplete with sensors and Q-ma
hine task 
ontrollers. In total over100 box-pushing trials were run using from one to 11 robots, four di�erent boxtypes and in three di�erent venues. The �nal set of experiments were re
ordedon over four hours of video tape with an individual trial lasting between 30se
onds and �ve minutes. Des
ribed brie
y is both the robot environment andhardware used.6.1.1 Robot EnvironmentThe ideal test environment would be a large open spa
e without walls leavingthe robots free to push the box along any desired path. Sin
e this environmentwas not available a smaller and more restri
tive area de�ned by walls was used.A permanent spa
e large enough in whi
h to 
ondu
t experiments was oftendiÆ
ult to �nd, resulting in the 
reation of a portable testing environment
onsisting of: 11 robots, two spotlights on stands for goal position indi
ators,the box to be manipulated, and a video 
amera to re
ord the results. How-ever, the majority of the experiments were 
ondu
ted in the area depi
ted inFigure 5 whi
h be
ame available towards the end of this study.6.2 Robot HardwareThe system is 
omposed of a set of homogeneous two-wheeled robots, ea
hweighing 1.3 kilograms and measuring approximately 18 
entimeters in height23
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Fig. 5. In ea
h trial the box was pla
ed at initial position three meters from the goalline and the robots were pla
ed at one of the indi
ated starting positions labelledP1 - P5. After Kube and Zhang [31℄. Reprinted by permission 

Kluwer A
ademi
Publishers.and diameter as shown in Figure 6. A battery allows for 45 minutes of op-eration with a 10 minute re
harge time. A Motorola 68HC11 mi
ro
ontrollerwith 8K of RAM and programmed in Forth is used to map sensor output toone of nine motion primitives. A minimum number of sensors (6) was soughtin implementing the per
eptual 
ues. Additional sensors would allow a moreomnidire
tional �eld-of-view in the 
ase of obsta
le and box sensing and betterpushing orientation in the 
ase of box 
onta
t sensing, but the obje
tive wasto determine what 
ould be a

omplished with the minimal number of sensingbits. The hardware proved to be robust with few breakdowns.6.2.1 Dire
ted Box-PushingIn
reasing the number of robots from two to six did not a�e
t the su

ess-ful out
ome of the transport experiments. This is an analogous result to thesimulation results (shown in Figure 10) in whi
h su

essful task 
ompletionremained high despite an in
rease in the number of robots. However, no 
laimis being made that task 
ompletion time is not a�e
ted, sin
e 
ompletion timeswere found to vary as the number of robots in
reased and were dependent onavailable resour
es. In ea
h of the 58 su

essful trials re
orded the box waspushed from an initial starting position, lo
ated approximately in the 
enter ofa �ve by four meter area, towards the goal area indi
ated in Figure 5 and end-ing in quadrant I at a distan
e of at least 2.5 meters. The robots were startedin ea
h trial from positions P1 to P5in quadrants II-IV shown in Figure 5.Su

essful trials would run between 32 and 214 se
onds and were exe
uted inthree phases. 24



Fig. 6. Ea
h of the robots are equipped with two forward pointing infrared obsta
lesensors, one tou
h sensor, two CdS box-tra
king photo
ells, and a destination sensor,all mounted on a di�erentially steered base.The �rst phase began when the robots were powered on, the box-light was o�and the goal-light was on. System initialization 
onsists of taking ambient lightreadings used to set the box-dete
tion threshold. The robots began exe
utingFIND-BOX and qui
kly dispersed themselves in the area. Shortly thereafter,the box-light was turned on and those robots that were fa
ing the box andsuÆ
iently 
lose would move towards and make 
onta
t with a boxside usingthe MOVE-TO-BOX 
ontroller. Depending on an individual robot's posi-tion, with respe
t to the box when box-dete
tion o

urred, the distributionof robots around the box would vary and mark the beginning of the se
ondphase.In the se
ond phase, some of the robots in
orre
tly positioned for pushing,as determined by the PUSH-TO-GOAL 
ontroller, began moving 
ounter-
lo
kwise around the box perimeter sear
hing for an open spot on a 
orre
tside. This behavior is the result of several 
y
les through the transport Q-ma
hine 
onsisting of in turn FIND-BOX, MOVE-TO-BOX and PUSH-TO-GOAL subtask 
ontrollers and 
an be explained as follows. On
e 
onta
tis made with a boxside the ?see-goal per
eptual 
ue determines that therobot is on the wrong side for pushing. The PUSH-TO-GOAL 
ontrollerthen exe
utes the reposition behavior whi
h moves the robot away fromthe box in a 
ounter
lo
kwise dire
tion. If the box is within view, determinedby the ?box-dete
t 
ue, MOVE-TO-BOX brings the robot into 
onta
twith a new position on the box providing it is uno

upied. The obsta
le avoid-an
e behaviors keep a robot away from o

upied positions on a boxside. If thebox is not within view then FIND-BOX exe
utes and sear
hes for the box.25



The PUSH-TO-GOAL 
ontroller evaluates the new position and the 
y
lerepeats.The third and �nal phase is 
hara
terized by the box moving towards the goalposition. On
e a net for
e suÆ
ient to move the box o

urs the box beginsto translate and possibly rotate. During the box movement phase a robot
ontinuously determines if it remains on the 
orre
t side for pushing usingthe ?see-goal 
ue. A robot lo
ated at the edge of the pushing swarm maysuddenly lose site of the goal and begin repositioning. The resulting drop inpushing for
e may be suÆ
ient to halt the box movement until another robotjoins the group e�ort. The dynami
s of both the box and robots is su
h thatthe path taken by the box towards the goal is seldom straight. Rather, boxmovement 
an be said to 
onverge towards the goal sin
e its traje
tory is thenet result of several for
e ve
tors applied by individual robots. A typi
al boxpath might begin at position P0 pro
eed towards P6 and then move to P7 asillustrated in Figure 5.6.2.2 Pushing Di�erent Box TypesTo evaluate the 
ontroller's sensitivity to obje
t geometry, 38 su

essful tri-als were performed using six robots and four di�erent box types. The initialbox, box a, tested was 42 
entimeters square and large enough for two 18
entimeter robots on a side. A se
ond 84 
entimeter square box, box 
, wasbuilt by extending the initial box with a se
ond frame. This in
reased the boxdimensions, but used the same base on whi
h the box slid along the 
oor. Athird 84 
entimeter box, box b, was built on a new base whi
h in
reased thenumber of points in 
onta
t with the 
oor and therefore its sliding fri
tion.The fourth box, box d, was round with a diameter of 84 
entimeters and theresults of the 39 trials 
an be summarized as follows:� box a. A total of 10 trials were su

essful in pushing box a from the initialposition to the goal positions in quadrant I (see Figure 9). The robots startedfrom positions P1�5. In general as the number of robots in
reased the tasktook longer to 
omplete as the robot interferen
e was high sin
e the limitedbox side spa
e 
reated 
ompetition among the robots.� box b. A total of eight trials were su

essful in transporting box b fromits initial position using 6 robots starting from position P4 and ending atpositions P5�7.� box 
. A total of seven su

essful trials were re
orded in whi
h box 
 wasmoved to the goal area by six robots starting from positions P2�4. This boxhad the highest failure rate among the four boxes used and was due to arobot getting 
aught on the frame.� box d. A total of 14 trials using a round box, box d, and four to sixrobots were su

essful in moving the box between two goal positions. The26



round box was the last box built and experien
ed the most su

ess of thefour types tested. The la
k of 
orners provided the robots with a uniform
onta
t surfa
e to push against unlike the square boxes whi
h had sharppoints at its 
orners.6.2.3 Changes in Goal PositionThe initial su

ess of the dire
ted box-pushing task led to the following ex-tension whi
h in
reased the task diÆ
ulty. Pi
tured in Figure 7 are two goalpositions labelled PA and PB. The robots begin from position P4 and a goal-light at position PA is illuminated 
ausing the robots to push the box towardsPA. On
e rea
hed the goal-light at PA is turned o� and the goal-light at PBis swit
hed on. The robots reposition around the box and begin pushing to-wards the goal at PB. Figure 8 is a sequen
e of three images taken from avideo segment in whi
h two goals were used. A total of eight su

essful trialsusing three di�erent goal positions were re
orded using a single box.
4 m
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Transport TaskFig. 7. A s
hemati
 of the lab environment used to test the transport of a roundbox between two goal positions. Shown are the initial positions of the �ve robotsand the box. The �rst step is to move the box from its initial position to the goallo
ated at PA. The se
ond step moves the box from PA to position PB . The goalpositions are indi
ated with a bright spotlight positioned at a height of 2.5 meters.To sequen
e the task steps the spotlight at position PA is turned o� and the lightat PB is turn on when the box rea
hes PA.In the following dis
ussion some interesting se
ondary results are presentedwhi
h 
ompare exe
ution times as a fun
tion of system size in the �rst exper-iment and as a fun
tion of obje
t geometry in the se
ond experiment alongwith the following 
aveat. In experiments involving physi
al mobile robots,holding the many system variables invariant is near impossible making 
om-parisons based on exe
ution runtimes tenuous at best. In this experimental-27



Fig. 8. Shown are �ve robots pushing a round box from its initial position �rsttowards a goal-light in the right of the pi
ture and then towards a goal-light on theleft of the pi
ture. The mpeg video from whi
h this sequen
e was taken is availableat http://www.
s.ualberta.
a/�kube/ist approa
h to roboti
s \things 
hange" is axiomati
. CoeÆ
ients of fri
tion
hange be
ause the 
oor gets dusty, for
e is redu
ed be
ause batteries rundown, motors wear redu
ing repeatability, wheels slip in response to 
hangesin load and the list goes on. However, in general there still seems to be a trendin the data making it worth presenting.6.2.4 System SizeThe mean exe
ution time for moving the smaller 42 
entimeter square boxfrom its initial position to the goal positions were 
ompared for two to sixrobots as shown in Figure 9. Starting positions for the robots were varied andin
luded P1;3�5 with the �nal end position of the box re
orded for timing tobe P5;7. Indi
ated in ea
h plot are the number of trials used to 
ompute themean. The large varian
e in runtimes was due to robot start positions P1;5whi
h 
ould result in long repositioning phases 6 . In general, exe
ution timesin
reased as a fun
tion of the number of robots due to the in
rease in robotinterferen
e 
ompeting for the limited box spa
e. A mu
h larger number oftrials is needed for any statisti
al 
on
lusions.6.2.5 Convex Obje
t GeometryOur previous simulation study had shown that in a box-pushing task perfor-man
e, as measured by 
ompletion time or su

ess rate, 7 
ould be improvedif stagnation re
overy behaviors were added to the 
ontroller to avoid deadlo
kfrom o

urring when the robots applied an equal distribution of for
es to thebox [29℄. What was also noted was the sudden drop in performan
e as the6 Both the maximums indi
ated in the 
ase of three and �ve robots o

urred fromP5.7 Su

ess was de�ned to be the movement of the box by 200 units in under 2000simulation timesteps. 28
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ution time of moving a 422 
entimeter box 2.5 meters towardsa goal position (P5, P6, P7) as a fun
tion of the number of robots. For ea
h plotthe number of trials as well as the minimum and maximum run times are indi
ated.A boxside is approximately twi
e the robot's diameter and in
reasing the numberof robots in
reases the robot interferen
e as they 
ompete for the limited spa
eavailable.
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Fig. 10. The e�e
ts of doubling box 
onta
t spa
e on the task su

ess rate. Theresults from two simulation experiments in whi
h the only parameter 
hanged wasthe robot's diameter, with the size of the box side �xed at 90 units. Robot diametersof 20 and 10 were 
ompared for a task in whi
h a box was moved 200 units fromits initial position. Ea
h data point is the average of 25 simulation runs ea
h witha di�erent random initial 
on�guration.size of the system grew for 
ontrollers without stagnation re
overy. This was
onje
tured to be due to the number of robots able to �t on a box side. To testthis hypothesis, simulations were run for the same behavior 
ontroller and the29
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Fig. 11. The e�e
ts of doubling box 
onta
t spa
e on exe
ution time. The resultsfrom two simulation experiments showing exe
ution time versus system size. Theonly parameter varied was the size of the robot; the size of the box side was held
onstant at 90 units.robot diameter (RD) was tested for RD = 10 and 
ompared with the resultsusing RD = 20. The results are shown in Figures 10 and 11. If the diameterof the robots were redu
ed, for a �xed box side, the performan
e in
reases,whi
h leads to the 
onje
ture that for a given task, performan
e is dependenton some yet to be determined task density fun
tion.In Figure 12 the mean exe
ution times were 
ompared for the four box typesand six robots starting from the same initial position. In general, it appearsthat as the available 
onta
t spa
e in
reases more robots are able to parti
ipatein pushing at the same time redu
ing the time taken to 
omplete the task.However, due to the sparseness of the data additional experiments would allowstatisti
al 
on
lusions.7 Dis
ussion: From Ants to Robots and Ba
kVisualize a room in whi
h a group of robots sit in one 
orner and a large boxsits approximately 
enter with a spotlight pla
ed in another 
orner. The robotsbegin moving and soon disperse into the room. Soon after the box-light 
omeson the robots begin moving towards it and eventually 
ome into 
onta
t witha side. Then some of the robots beginning to reposition themselves by movingaround the box in a 
ounter
lo
kwise fashion, while others whi
h are 
orre
tlypositioned begin to push the box towards the spotlight. The box begins tomove in the dire
tion of the lit 
orner of the room, but the path is not quitestraight and veers to the right and the box movement stops. Again some of the30
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ution time of moving a box towards the goal as a fun
tionof box type. Box A is a 42 
entimeter square box, Box B and C are 84 
entimetersquare boxes with B having a higher sliding fri
tion than Box C, Box D is an 84
entimeter diameter round box. All box types are approximately the same weightand 
an be pushed by at least two robots. For ea
h plot the number of trials as wellas the minimum and maximum run times are indi
ated. All trials used six robots.Robot interferen
e is minimized by in
reasing the available 
onta
t spa
e aroundthe box.robots begin their 
ounter
lo
kwise repositioning and assume a new positionmore 
orre
tly oriented for pushing. Finally, the box begins to move in anew dire
tion towards the goal-light. The dynami
s of the swarm of robots isvery reminis
ent of the dynami
s of ants represented in Figure 1: given thatthe implementation of individual robot behavior is based on ant behavior, itis en
ouraging that the roboti
 model produ
es the same kind of emergent
olle
tive behavior as ants, and it suggests that the roboti
 implementation
onstitutes a plausible model of 
ooperative transport in (some spe
ies of)ants.On
e the box rea
hes the goal position the spotlight turns o� and a se
ondgoal light on the opposite 
orner of the room is illuminated. Now all the robotsbegin repositioning, eventually making it to the opposite side and begin toon
e again push the box towards the new goal destination. Robots leave thetask, seemingly at random, and wander o� only to return and join the groupe�ort in transporting the box towards its goal. The experiments are repeated,this time with boxes of di�erent shapes and sizes and the number of robotsin a group are varied. Our video re
ordings shows, and those that have seenthem agree, that the robots make a 
oordinated e�ort in pushing the box ina dire
tion that 
onverges towards the indi
ated goal position.The results show in the many su

essful trials of dire
ted box-pushing that31



a 
oordinated group e�ort is possible without use of dire
t 
ommuni
ation orrobot di�erentiation. Rather a form of indire
t 
ommuni
ation takes pla
ethrough the environment by way of the obje
t being manipulated. For di-re
ted box-pushing, the 
ontrol strategy was shown to be insensitive to systemsize, some 
onvex obje
t geometries and 
hanging goal positions. The resultsof experiments with physi
al robots presented here, adds support to Arkin'ssimulation studies whi
h showed that 
ooperation in some tasks are possiblewithout dire
t 
ommuni
ation [1℄.The data presented here also agrees in 
ertain aspe
ts with other studies inwhi
h stigmergy is used as the task 
oordinating me
hanism. Stigmergy as pro-posed by Grass�e is a model used to explain the regulation of building behaviorin termites [21℄. Stigmergy theory holds that transitions between a sequen
eof 
onstru
tion steps is regulated by the e�e
t of previous steps. In more gen-eral terms, the theory has been used to explain and des
ribe the pro
ess bywhi
h task a
tivity 
an be regulated using only lo
al per
eption and indire
t
ommuni
ation through the environment as applied to algorithms for 
oordi-nating distributed building behaviour [48℄ and foraging tasks by multi-robotsystems [2℄. In the box-pushing task the results support the use of indire
t
ommuni
ation through the environment as proposed by stigmergy theory.However, Downing and Jeanne found that stigmergy theory does not explainthe use of additional 
ues, not dependent on previous steps, in regulating taskexe
ution in nest 
onstru
tion by paper wasps [16℄. For 
olle
tive roboti
s thismeans that per
eptual 
ues 
an also be formed from stimuli other than thatwhi
h are immediately available from the task itself. For example, in dire
tedbox-pushing the box-dete
tion 
ues are adaptive to the ambient light level ofthe environment by spe
ifying box-dete
tion as a multiple of the ambient lightlevel.Coherent behavior from a 
olle
tive system of robots must also a

ount fortask resour
e management. Coordination improves by minimizing antagonisti
a
tions that 
an result from 
on
i
ts over limited resour
es. In box-pushing an-tagonisti
 for
es are mitigated by in
reasing the available boxside spa
e whileenfor
ing a noninterferen
e behavior. The data on transporting small boxesversus large boxes by the same number of robots 
on�rms the observationsmade during task exe
ution. For box-pushing, this result implies that groupsize is important for a �xed resour
e size in a given task and agrees with theresult obtained by Be
kers et al. [2℄ for a foraging task in whi
h one to �verobots were used to gather 81 obje
ts randomly distributed in their environ-ment then pla
ing them into one large pile. Their study showed that group sizewas a 
riti
al fa
tor in determining task eÆ
ien
y and that in
reasing the num-ber of robots used without in
reasing the available task resour
es in
reasedtask exe
ution time due to the in
rease in inter-robot interferen
e. In general,in
reasing task resour
es minimizes inter-robot interferen
e. Thus, redu
ingrobot interferen
e in
reases group 
oordination and 
onsequently leads to a32



more eÆ
ient 
oheren
e as demonstrated by the de
reasing exe
ution times.The 
oherent behavior displayed for the transport task 
an also be attributedto the 
ommon goal shared by the individual robots along with an identi
al setof intera
tion rules. This is the same e�e
t noted by Seeley while 
onsideringthe 
olle
tive de
ision making in honey bees [43℄. As an explanation for howa swarm of honey bees 
ould rea
h the same de
ision on the pro�tability ofseveral food sour
es, Seeley hypothesized that ea
h bee's nervous system was
alibrated in a similar manner. Sin
e all members of the 
olony share the samerules for adjusting response thresholds, the bees 
an operate independentlyyet generate a 
olle
tive response to various ne
tar sour
es. Thus 
ommongoals and 
ommon rules of intera
tion allow a de
entralized de
ision makingpro
ess to produ
e a 
oherent global response. By way of the so
ial inse
ts,nature is showing us how to build de
entralized and distributed systems thatare autonomous and 
apable of a

omplishing tasks through the intera
tionof many simple and highly redundant agents. From their lo
al per
eption tothe mass e�e
t that results in a global a
tion these biologi
al systems serveto elu
idate the me
hanisms thought to be at the heart of self-organizingbehavior.In return, the roboti
 system des
ribed in this paper tells us a lot about
ooperative transport in ants. We have seen that the model makes predi
tionsabout the kind of stagnation re
overy me
hanism (if any) to be expe
teddepending on e
ologi
al 
onditions. At a more fundamental level, be
ausethe model is able to reprodu
e many of the 
olle
tive features of 
ooperativetransport in ants and be
ause it is based on plausible assumptions, it suggeststhat these assumptions may be suÆ
ient to explain the behavior observed inants. Many of the predi
tions of the model 
an now be tested empiri
ally.Of 
ourse it 
an be argued that the a
tual roboti
 implementation was notneeded: simulations were just as good. This is only partially true be
ause theroboti
 implementation shows that the assumptions the model is based on 
anprodu
e the expe
ted behavior in the real world, that is, with real 
onstraints,a result that is far from obvious as many fa
tors (fri
tion, heterogeneity, et
.)play a role in 
ooperative transport.A
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he 
olle
tive
omplexe 
hez Formi
a poly
tena. Compte Rendus de l'A
ademie des S
ien
esParis D 270 (1970): 2111{2114.[36℄ Mo�ett, M. W. Cooperative food transport by an Asiati
 ant. National Geog.Res. 4 (1988): 386{394.[37℄ Noreils, F.R. An Ar
hite
ture for Cooperative and Autonomous Mobile Robots.IEEE International Conferen
e on Roboti
s and Automation (1992): 2703{2710.[38℄ Parker, L.E. ALLIANCE: An ar
hite
ture for fault tolerant, 
ooperative 
ontrolof heterogeneous mobile robots. IEEE/RSJ/GI International Conferen
e onIntelligent Robots and Systems (1994): 776{783.[39℄ Pratt, S. C. Re
ruitment and other 
ommuni
ation behavior in the ponerineant E
tatomma ruidum. Ethology 81 (1989): 313{331.[40℄ Premvuti, S. and Yuta, S. Consideration on the Cooperation of MultipleAutonomous Mobile Robots. IEEE International Workshop on IntelligentRobots and Systems (1990): 59{63.[41℄ Robson, S. K., and J. F. A. Traniello. Key individuals and the organisation oflabor in ants. In Information Pro
essing in the So
ial Inse
ts (Detrain, C., J.-L.Deneubourg, and J. M. Pasteels). Birkhauser, in press.[42℄ Robson, S. K., and J. F. A. Traniello. Resour
e assesment, re
ruitment behavior,and organization of 
ooperative prey retrieval in the ant Formi
a s
haufussi(Hymenoptera: Formi
idae). J. Inse
t Behav. 11 (1998): 1{22.[43℄ Seeley, T.D., S. Camazine and J. Sneyd. Colle
tive de
ision-making in honeybees: how 
olonies 
hoose among ne
tar sour
es. Behavioral E
ology andSo
iobiology 28 (1991): 277{290.[44℄ Stilwell, D.J. and J. S. Bay. Toward the Development of a Material TransportSystem using Swarms of Ant-like Robots. IEEE International Conferen
e onRoboti
s and Automation (1993): 766{771.[45℄ Sudd, J. H. The transport of prey by an ant Pheidole 
rassinoda. Behaviour 16(1960): 295{308.[46℄ Sudd, J. H. How inse
ts work in groups. Dis
overy 24 (1963): 15-19.[47℄ Sudd, J. H. The transport of prey by ant. Behaviour 25 (1965): 234{271.[48℄ Theraulaz, G. and E. Bonabeau. Coordination in Distributed Building. S
ien
e269 (1995): 686{688. 36



[49℄ Traniello, J. F. A. So
ial organization and foraging su

ess in Lasius neoniger(Hymenoptera: Formi
idae): behavioral and e
ologi
al aspe
ts of re
ruitment
ommuni
ation. Oe
ologia 59 (1983): 94{100.[50℄ Traniello, J. F. A., and S. N. Beshers. Maximization of foraging eÆ
ien
y andresour
e defense by group retrieval in the ant Formi
a s
haufussi. Behav. E
ol.So
iobiol. 29 (1991): 283{289.[51℄ Van Damme, T., and J.-L. Deneubourg. Cooperative transport in Formi
apoly
tena. Submitted.[52℄ Webster's Ninth New Collegiate Di
tionary Merriam-Webster In
., 1985.[53℄ Wilson, E.O. and H�olldobler, B. The Ants. The Belkap Press of HarvardUniversity Press, 1990.[54℄ Wojtusiak, J., E. J. Godzinska, and A. Dejean. Capture and retrieval of verylarge prey by workers of the Afri
an weaver ant Oe
ophylla longinoda. Tropi
alZool. 8 (1995): 309{318.

37


