
Noise and The Reality Gap: The Use ofSimulation in Evolutionary RoboticsNick Jakobi and Phil Husbands and Inman HarveySchool of Cognitive and Computing SciencesUniversity of SussexBrighton BN1 9QH, Englandemail: nickja or philh or inmanh@cogs.susx.ac.ukAbstractThe pitfalls of naive robot simulations have been recognised for areassuch as evolutionary robotics. It has been suggested that carefully vali-dated simulations with a proper treatment of noise may overcome theseproblems. This paper reports the results of experiments intended to testsome of these claims. A simulation was constructed of a two-wheeledKhepera robot with IR and ambient light sensors. This included detailedmathematical models of the robot-environment interaction dynamics withempirically determined parameters. Arti�cial evolution was used to de-velop recurrent dynamical network controllers for the simulated robot, forobstacle-avoidance and light-seeking tasks, using di�erent levels of noisein the simulation. The evolved controllers were down-loaded onto the realrobot and the correspondence between behaviour in simulation and in re-ality was tested. The level of correspondence varied according to howmuch noise was used in the simulation, with very good results achievedwhen realistic quantities were applied. It has been demonstrated that itis possible to develop successful robot controllers in simulation that gen-erate almost identical behaviours in reality, at least for a particular classof robot-environment interaction dynamics.Keywords: Evolutionary Robotics, Noise, High Fidelity Simulations, Ar-ti�cial Evolution.1 IntroductionA number of New-Wave roboticists have consistently warned of the dangers ofworking with over-simple unvalidated robot simulations [2, 1, 16]. Indeed, asSmithers has pointed out [16], the word simulation has been somewhat debasedin the �elds of AI, robotics, and animat research. Many so-called simulationsare abstract computer models of imaginary robot-like entities, not carefully



constructed models of real robots. Whereas these abstract models can be veryuseful in exploring some aspects of the problem of control in autonomous agents,great care must be taken in using them to draw conclusions about behaviourin the real world. Unless their limitations are recognised, they can lead to boththe study of problems that do not exist in the real world, and the ignoringof problems that do [1]. Behaviours developed in a simulation worthy of thename must correspond closely to those achieved when the control system isdown-loaded onto the real robot.One area of New-Wave robotics where these issues may be particularly per-tinent is evolutionary robotics [8]. This is the development of control systems(and potentially morphologies) for autonomous robots through the use of arti�-cial evolution. Populations of robots evolve over many generations in an open-ended way under the inuence of behaviour-based selection pressures. Two ofthe earliest papers on this topic both stressed the likelyhood of having to worklargely in simulation to overcome the time consuming nature of doing all theevaluations in the real world [3, 8]. However, both discussed the potential prob-lems with simulations and remarked on the great care that would have to betaken. In [3], Brooks was highly sceptical1:There is a real danger (in fact, a near certainty) that programswhich work well on simulated robots will completely fail on realrobots because of the di�erences in real world sensing and actuation{ it is very hard to simulate the actual dynamics of the real world.and later,. . . [sensors] . . . simply do not return clean accurate readings. Atbest they deliver a fuzzy approximation to what they are apparentlymeasuring, and often they return something completely di�erent.But since the aim of evolutionary robotics is to produce working real robots, ifsimulations are to be used, these problems must be faced. The question is how.In [8] (with further elaborations in [9]) it is argued that:� The simulation should be based on large quantities of carefully collectedempirical data, and should be regularly validated.� Appropriately pro�led noise should be taken into account at all levels.� The use of networks of adaptive noise tolerant units as the key elementsof the control systems will help to `soak up' discrepancies between thesimulation and the real world.1It is likely that these comments were inuenced by experiences with devices rather dif-ferent to the robot used in the experiments described later. This issue is returned to in theConclusions.



� Noise added in addition to the empirically determined stochastic prop-erties of the robot may help to cope with the inevitable de�ciencies ofthe simulation by blurring them. A control system robust enough to copewith such an envelope-of-noise may handle the transfer from simulation toreality better than one that cannot deal with uncertainty over and abovethat inherent in the underlying simulation model.This paper reports the results of experiments that were intended to explorethe validity of some of these assertions and claims. Network-based controlsystems for generating simple behaviours were evolved in simulations of di�erentlevels of �delity and then down-loaded onto the real robot. Comparisons weremade between behaviours in the simulations and in the real world.In [8] it was argued that as the robot's sensory coupling with its environ-ment becomes more complex, simulations would become extremely di�cult toconstruct and would be slower than real time unless highly specialised hard-ware were available. This problem resulted in the development of the Sussexgantry-robot which allows evolution in the real world [7]. This issue is revisitedin the present paper in the light of the experiments outlined above.The next section discusses related work. Following that is a descriptionof the robot simulation and then an outline of the experimental setup. Afterdetailing the evolutionary techniques used, experimental results are presentedand discussed. Finally conclusions are drawn.2 Related WorkRecently there have been a number of reports on experiences with transferringcontrol systems from simulation to reality. These have met with varying degreesof success. Mondada and Verschure [14] describe the development, through theuse of a learning algorithm, of a network-based control system both in simu-lation and in reality. They used the Khepera robot, the same device involvedin the study described later in this paper (see Section 3). Qualitatively similarbehaviours were observed in simulation and in reality. However, behaviour onthe real robot was signi�cantly less robust and a far greater number of learn-ing steps were needed to achieve reasonable results. This appears to be partlydue to the fact that noise was not modelled in the simulation. Miglino, Nafasiand Taylor [13] evolved recurrent network controllers for a very crude computermodel of a simple Lego robot. Not surprisingly the evolved controllers gen-erated signi�cantly di�erent behaviours in the real robot. Nol�, Miglino andParisi evolved network-based controllers for a simulation of the Khepera robot(described in [15]). Behaviours developed in simulation did not transfer at allwell to the robot, but if the GA run was continued for a few generations in thereal world (using techniques similar to those described in [5]) successful robust



controllers were obtained. This was probably due to the fact that the simu-lation was based on empirically sampled sensor readings. Sampling appearsto have been too coarse, and possibly not enough readings were taken at eachpoint to accurately determine the statistical properties of the sensors. We feela better approach is to use large amounts of empirical data to set parametersand mappings in a continuous mathematical model of the robot-environmentinteractions. This technique seems to be vindicated by the results presentedlater in this paper. In [18] Yamauchi and Beer describe an experiment in whichdynamical neural networks were evolved, in a manufacturer supplied simula-tion of a Nomad 200 robot, to solve a landmark recognition task using sonar.When the evolved controllers were used on the real robots, behaviours werevery similar, although not quite as successful, as in the simulation. The simu-lator was probably very accurate and the highly dynamical networks used arelikely to be good at `soaking up' discrepancies between simulation and reality.Thompson had signi�cant success (although there were some discrepancies) intransferring evolved hardware controllers developed in a semi-simulation (therobot's sonar-environment interaction was simulated, the real hardware and ac-tuators were used) [17]. This was despite the fact that the robot involved ismuch more cumbersome and less `clean' than devices such as Khepera, and thesonar simulation was rather crude (although noise was added to the underlyingmodel).3 The Robot Simulation3.1 KheperaThe robot used in this project was the Khepera robot developed at E.P.F.L.in Lausanne, Switzerland. It has been speci�cally designed as a research toolallowing users to run their own programs and control algorithms on the powerful36 MHzMotorola 68331 chip carried on board (see [11]). The robot is cylindricalwith a diameter of 5.8 cm and a height of 3.0 cm. It has eight active IR proximitysensors mounted six on the front and two on the back. The receiver part of thesesensors may also be used in a di�erent mode to passively measure surroundingambient light. The wheels are driven by extremely accurate stepper motorsunder P.I.D. control. Each motor incorporates a position counter and a speedof rotation sensor. It should be noted that it is probably far easier to build anaccurate simulation of this sort of robot than it would be for many others.3.2 The SimulationThe simulation of the Khepera was built using empirical information obtainedfrom various experiments. The simulation is based on a spatially continuous,



two dimensional model of the underlying real world physics and not on a look-up tabl approach as in [15]. This a�ords greater generality with respect tonew environments and unmodelled situations although at some computationalexpense. The simulation is updated once every 100 simulated milliseconds: therate at which the inputs and outputs of the neural network control architecturesare processed. This results in relatively coarse time slicing, some of the e�ectsof which may be moderated by noise.3.2.1 Modelling MethodologyThe decision on which level of detail to pitch the simulation was arrived atintuitively. The idea was to build into the simulation all the important featuresof the Khepera's interaction with its environment without going into so muchdetail that computational requirements became excessive. After initial exper-imentation, it became clear which features were important to model (as �eldsin a state vector) and which could be left out. For example the distance froman IR sensor to the nearest object is an important feature model whereas theheight of objects is not.An idealised mathematical model was constructed by applying elementaryphysics and basic control theory to the interactions between these environmentalvariables. More speci�cally, generalised equations (with unassigned constants)were derived capable of producing values proportional to the ambient lightintensities, the reected infra red intensities and the wheel speeds.After developing these general equations, several sets of experiments wereperformed to �nd actual sensor values and noise levels for speci�c settings ofenvironmental variables. Using curve-�tting techniques it was then possibleto produce mappings from the predictions of light intensities, wheel speedsand so on produced by the model to the actual sensor values observed duringexperimentation. As part of the same process values were also attributed toall unassigned constants to produce the set of equations (given below) that areused by the simulation to calculate speci�c values for the IR sensors, ambientlight sensors and wheel speeds.3.2.2 Modelling the Khepera's Movement, Motors and PID con-trollersAll experiments performed on the Khepera's motors, PID controllers and gen-eral movement were carried out with the aid of the in built position and speedsensors. By connecting the Khepera to a host computer using the supplied se-rial cable, accurate statistics on the Khepera's current speed and position couldbe gathered while the robot was moving. In this way a pro�le of the Khepera'sresponse to motor signals was calculated and mapped onto the model givenbelow.



When one of the motors on the Khepera is set to run at a certain targetspeed V its actual speed, U , will in fact oscillate around this �gure due toaxle noise, irregularities on the ground surface and so on. Khepera uses aPID control algorithm [12] that ensures that U never varies signi�cantly fromV . It also has the important consequence that each wheel, over time, travelsapproximately the correct distance.The PID algorithm changes the motor torque T according to the equation:T / Kp(V � U) +Ki Z V � Udt +Kdd(V � U)dtwhere Kp Ki and Kd are the proportional, integral and derivative constants.In the simulation, the integral and derivative terms could only be approxi-mated due to the relatively coarse time slicing involved. The proportional error,P , at time t is calculated as Pt = (V � U)=0:1 since the simulation is updatedevery 0.1 seconds. The integral term, It, is the sum of the proportional termsover the last �ve time steps. The derivative term, Dt, is proportional to theforce applied to the wheels on the last time step. It is calculated by dividingthe change to the wheel speeds on the last time step, �vt�1, by an empiricallyfound constant of 50000, equivalent to the robot's mass. Once these terms havebeen calculated then the change to the wheel speed at time t, �vt is calculatedas: �vt = Kp � Pt +Ki � It +Kd �DtThe simulated robot's movement was found empirically to best match thatof the Khepera when Kp Ki and Kd were set at 3800, 800 and 100 respectively.These values are, in fact, the same as those used by the PID controller on theKhepera (see [11]).Static friction (the force that has to be overcome to start an object moving)is modelled by noisily thresholding the integral term. The path taken by eachwheel during a simulation update is modelled as an arc of a circle.3.2.3 Modelling the Khepera's Infra Red SensorsRay tracing techniques are used to calculate values for the IR sensors (see [6]).Ten rays are used for each sensor arranged in an arc spanning 180�. If thedistance from a particular sensor along a ray i to an object is di, then thesensor value is calculated asI = 10Xi=1 cos �i(a=d2i + b)where �i is the angle at which the ray i leaves the sensor and a and b were setempirically (see above) to 3515.0 and -91.4 respectively.



3.3 The Ambient Light SensorsIn reality there are many factors that have a measurable e�ect on the ambientlight sensor values. The model used in the simulation is, therefore, correspond-ingly complicated. Ray tracing to a depth of two rays (the IR sensors arecalculated from a depth of one) the intensity of the ambient light at a sensoris calculated as a sum of direct illumination and reection. Experiments usingthe ambient light sensors were carried out in an environment with one majorlight source (see Section 4). The light source (in reality a 60W desk lamp) ismodelled by �ve point sources. For each point at which one of the rays leavingthe sensor hits the wall, �ve lamp-rays are calculated between this point andthe �ve point sources approximating the lamp. The number of unobstructedlamp-rays is used to calculate the brightness of the reection. Similarly direct il-lumination of a sensor is calculated from the number of unobstructed lamp-raysbetween that sensor and the �ve point sources.Because the light source is brighter in the middle than at the edges, lamp-rays originating from the centre play a greater role in determining sensor il-lumination than those at the edges. The direct illumination D of a sensor iscalculated as: D = (�4:15 + 5Xi=1Li � ki)=d2where d is the average of the distances from the sensor to each point source. Liis 0 if the lamp-ray from the sensor to point source number i is occluded and 1otherwise. ki are the empirically derived weights for each point source: 4.19 forthe point source on each edge, 4.24 for the pair inside each of these and 8.24for the point source at the centre.If Di is the direct illumination of ambient sensor i and Dij is the directillumination of the point at which ray j of length dij from sensor i hits anobject, then the total illumination Ai of sensor i is calculated as:Ai = Di + 10Xj=1(Dij � cos2 �ij � 1:5)=d2ijwhere �ij is the angle at which ray j leaves sensor i.Finally the simulated sensor value V is calculated from the total illuminationA according to the empirically determined mapping:V = 55:0 + 1=pA4 The Experimental SetupIn order to test the assertions outlined in the introduction, two sets of evolution-ary runs were carried out, each involving the evolution of a di�erent behaviour.



In the �rst set of experiments, obstacle avoiding behaviours were sought.The task here was to move around the environment covering as much groundas possible without crashing into objects. The environment, shown in �gure 1,consisted of a square arena with sides of length 50cm constructed from yellowpainted wood and four grey cardboard cylinders with a radius of 4cm.Figure 1: The environment used in obstacleavoiding experimentsFigure 2: The environment used in light-seeking ex-perimentsIn the second set of experiments an ordinary sixty watt desk lamp wasplaced at one end of a 110cm by 70cm arena again made from yellow paintedwood (Figure 2). A light seeking behaviour was sought which would enable therobot to move towards the lamp when started from random orientations andpositions at the other end of the arena.Before describing the experiments in detail, the evolutionary techniques willbe explained.5 Evolutionary Machinery5.1 The Genetic AlgorithmIn order to try and avoid some of the problems of premature convergence asso-ciated with more traditional genetic algorithms, a distributed GA was used [4].The population was distributed over a two dimensional grid, and local selectionwas employed. Each member of the population breeds asynchronously witha mate chosen from its eight immediate neighbours on the grid. The mate isselected probabilistically using a linear �tness-rank-based distribution. The o�-spring replaces a member of the neighbourhood (this could potentially be eitherof its two parents) according to a linear inverse �tness-rank-based probabilitydistribution. The genetic operators employed were mutation and crossover at



rates of 0.05 (mutations per piece of information stored on the genotype) and0.8 respectively. Neurons and links were also added and/or deleted from theo�spring genotype (see below) on each breeding with probabilities of 0.05 and0.1 respectively.5.2 The Encoding SchemeThe encoding scheme is the way in which phenotypes (in this case neural nets)are encoded by genotypes (the structure on which the genetic algorithm oper-ates). The most commonly used encoding schemes involve direct one to onemapping between genotype and phenotype. The genotype consists of a series of�elds expressed in bits, real numbers or characters. Separate �elds specify thecharacteristics of each neuron and the connections associated with it. Networksencoded using a direct scheme can su�er gross distortions when their genotypesare allowed to grow or shrink.The encoding scheme used in this research was designed to resolve someof these problems. The size of the phenotype is under genetic control but theaddition or deletion of neurons and connections has minimal e�ect on the struc-ture of the original network. The main di�erence between the encoding schemeused here and more normal direct encoding methods is that while phenotypesize is under evolutionary control genotype size stays �xed. Instead of using aseries of �elds that specify neuronal characteristics, each genotype is made upof a series of `slots', each one of which may or may not de�ne a particular neu-ron on the phenotype and the links associated with that neuron. Connectionsaddress neurons by the absolute address of the slot they are associated with.Provided the genotype does not run out of spare slots to store new neurons in,any addition or deletion of neurons has minimal consequences on the rest ofthe network. In the runs described below there were 30 slots per genotype, ofwhich typically 10{12 were used.Full details of the scheme can be found in [10].5.3 The Neural NetworksA form of arbitrarily recurrent dynamical network was used in this research.The activation function of each neuron is de�ned as a simple linear thresholdunit with �xed slope and a genetically determined lower threshold. Connectionshad genetically set time delays and weights.In general, the smaller the number of parameters there are that need to beset in order to de�ne a particular neural network, the quicker most learningalgorithms or search techniques will be in �nding suitable values for solving aparticular problem. For this reason network parameters were restricted to asmall number of integer values. Connection weights and delays were restrictedto the interval �4, where the unit of time delay is ten milliseconds. Activationthresholds were restricted to the interval �10 and neuron output values to the



interval �10. All inputs and outputs of the network were scaled to the interval�10 in order to maximise network response and were updated every hundredmilliseconds.6 Experimental ResultsOnce a good underlying simulation model had been developed, it was foundthat in general, a neural network evolved in simulation evoked qualitativelysimilar behaviour on the real robot. During the entire period of this researchthere was never a negative instance in the sense of no similarity at all. Thecorrespondence between simulated and situated behaviour turns out to be amatter of degree rather than binary valued. The following experiments weredesigned to inspect two factors that a�ect this correspondence: the nature ofthe behaviour itself and the level of noise present in the simulation.For each of two behaviours, obstacle avoiding and light seeking, three sets of�ve evolutionary runs were performed, one set for each of three di�erent noiselevels. These three noise levels were set at zero noise, observed noise and doubleobserved noise. Observed noise (on sensors, motors etc.) refers to a roughlyGaussian distribution with standard deviation equal to that empirically derivedfrom experiments. Double observed noise refers to the same distribution withdouble the standard deviation.Because of the stochastic nature of the evolutionary process thirty runswere performed in total in order to acquire some statistical support for theconclusions that may be drawn from them. After the runs were complete, theevolved behaviours were subjectively marked by the authors on their optimality(how close they came to the ideal strategy/behaviour) and the correspondencebetween behaviours in simulation and reality2. The results for both behavioursare displayed in Tables 1 and 2.Figure 3 and 5 both contain pictures showing paths taken by the Kheperain the real world. These were made by applying image processing techniquesto short �lms of the Khepera, moving around its environment, with a spe-cially constructed black and white disk placed on its uppermost face. Eachframe underwent convolution operations using D.O.G. 3 center-surround masksspeci�cally designed to respond maximally to the white patches at the centreand front of the disk placed on the Khepera. The positions of the peaks in theresultant intensity arrays were then used to pinpoint precisely the position andorientation of the Khepera in each frame. After processing an entire sequence,2It is possible that some objective scoring system could be devised based on statistics ofagent-environment interactions, but because of the nature of the problem it is not clear whatthis system would look like.3A three dimensional mask constructed from the rotation of the di�erence between twoGaussian curves, of appropriate widths, around the vertical axis



the lines, one per frame, joining the centre of the Khepera to its leading edge,were overlaid on the �nal frame to produce an image of the Khepera with awhite `tail' behind it. The pictures of paths taken by the simulated robot con-tain a `tail' of the same form. These were constructed by failing to erase a line,plotted on each previous time step, also joining its centre to its leading edge.6.1 Obstacle AvoidanceNol� et al. [15] were the �rst to try evolving behaviours in simulation for theKhepera robot. In their work, outlined in Section 2, they were attempting toevolve obstacle avoiding behaviours. As already discussed, they did not achieveclose correspondence between simulation and reality.
Observed Noise #1Zero Noise #3 Double Noise #4

Figure 3: Obstacle avoidance: from simulation to reality. These six pictures display thesituated and simulated behaviours of three di�erent neural network controllers, one takenfrom each noise class. The #s refer to Table 1.They identi�ed three distinct components to such behaviours: moving for-wards as fast as possible, moving in as straight a line as possible and keeping asfar away from objects as possible. The �tness function they employed reectsthis. During a trial three normalised sums are calculated: V , the sum of thewheel speeds at each time step, D, the signed sum of the absolute di�erencesbetween the speeds of the two wheels at each time step and I the sum of thelargest of the eight sensor values at each time step. These are combined to givea score F according to Equation 1:



Zero Noise Observed Noise Double NoiseFigure 4: Obstacle avoidance. The average �tnesses, over each set of �ve trials, of the �ttestindividuals on each evaluation in simulation.F = V (1� pD)(1� I) (1)A slight variation of this �tness function was used in the experiments re-ported here. The (1 � I) term in Equation 1 was found to be implicit if theenvironment is cluttered enough. This is because, in the environment used(Figure 1), the robot will have to learn to avoid objects if it is to go as fastand as straight as possible. Also the D term in Equation 1 was changed tothe unsigned sum of the signed di�erences between the wheel speeds. This wasthought to be a more e�ective way of forcing the robot to turn both ways toavoid objects while traveling in as straight a line as possible. Slight variationsto left and right will tend to cancel out whereas variations biased either to theleft or to the right will add. Thus the �tness equation actually used was:F = V (1�pD) (2)where D is now the absolute value of the sum of the signed di�erences betweenthe wheel speeds.Each evolutionary run consisted of one thousand �tness evaluations with theGA operating upon an initially random population of sixty four individuals.Each evaluation consisted of two trials started from a random position andrandom orientation near the centre of the environment shown in Figure 1. The�tness value was derived from the average of the scores resulting from the twotrials. The trial time was twenty simulated seconds. Each run on a single userSPARC-10 took about 40 minutes.Figure 4 shows the average �tnesses, over each set of �ve trials, of the �ttestindividuals on each evaluation. Table 1 shows the results of the subjective scor-ing process as described above. Figure 3 shows the correspondence betweensimulation and reality for some of the controllers listed in the table. See Sec-tion 7 for a discussion of these results.6.2 Light SeekingThis behaviour is perhaps easier to evolve than obstacle avoidance as everythinghappens on a much slower scale. An obstacle avoider using short range IR



Zero Noise# type of behaviour behaviour score di�erences correspondence score1 one way turner 5 a little noisier 82 wall follower 3 qualitatively similar 73 one way turner 4 noisier 54 one way turner 3 a little noisier 75 one way looper 5 noisier 4average 4 average 6.2Normal Noise# type of behaviour behaviour score di�erences correspondence score1 two way turner 8 a little noisier 82 one way looper 5 very similar 93 wall follower 4 a little noisier 74 wall follower 6 very similar 95 wall follower 7 a little noisier 7average 6 average 8Double Noise# type of behaviour behaviour score di�erences correspondence score1 one way turner 4 a little less responsive 82 two way turner 8 slightly less noisy 83 one way looper 4 less responsive 54 one way turner 5 less responsive 65 wall follower 3 less responsive 7average 4.8 average 6.8Table 1: Obstacle avoidance. This table shows the scores subjectively given by our panelof judges to the evolved neural networks on the basis of the quality of their behaviours insimulation and the correspondence between their behaviour in simulation and their behaviourin reality. All scores are out of a maximum of 10.sensors must turn the moment (or very soon afterwards) it senses an obstacle.A light seeking robot may employ a number of di�erent strategies that willtake it to the light eventually. It may react instantly to the light or take slowcurving paths. The �tness landscape of such a task is therefore much smootherand light seeking behaviour emerges fairly early on in the evolutionary process.The �tness function for this behaviour was simply calculated as the recip-rocal of the sum of the squares of the distance from the light source at anyparticular time step. In other words if Di is the distance to the light source attime step i, then the �tness F after n time steps is calculated as:F = 1Pni=1D2i (3)Again, each evolutionary run consisted of one thousand �tness evaluationswith an initially random population of sixty four individuals. A single evalua-tion consisted of two separate trials started from a �xed position and random



Double Noise #4Zero Noise #1 Observed Noise #5Figure 5: Light seeking: from simulation to reality. These six pictures display the situatedand simulated behaviours of three di�erent neural network controllers, one taken from eachnoise class. The #s refer to Table 2.orientation near the opposite end of the environment (shown in Figure 2) tothe light source. The �tness value was the average of the two scores. The trialtime was twenty simulated seconds. Each run on a single user SPARC-10 tookabout an hour.Figure 6 shows the average �tnesses, over each set of �ve trials, of the�ttest individuals on each evaluation. Table 2 shows the results of the sub-jective scoring process as described above. Figure 5 shows the correspondencebetween simulation and reality for some of the controllers listed in the table.See Section 7 for a discussion of these results.
Zero Noise Observed Noise Double NoiseFigure 6: Light seeking. The average �tnesses, over each set of �ve trials, of the �ttestindividuals on each evaluation in simulation.



Zero Noise# type of behaviour behaviour score di�erences correspondence score1 three point turner 6 noisier 42 straight looper 4 loops more 63 two way turner 6 similar 84 two way turner 8 noisier 45 two way turner 8 a little noisier 6average 6.4 average 5.6Normal Noise# type of behaviour behaviour score di�erences correspondence score1 straight looper 5 a little noisier 82 two way turner 8 a little noisier 63 two way turner 9 very similar 94 two way turner 7 a little noisier 65 bobber 5 observably identical 10average 6.8 average 7.8Double Noise# type of behaviour behaviour score di�erences correspondence score1 two way turner 7 much noisier 22 bobber 5 less noisy 63 straight looper 3 less noisy 74 two way turner 8 less noisy 65 bobber 6 less noisy 6average 5.8 average 5.4Table 2: Light seeking behaviours. This table shows the scores subjectively given by ourpanel of judges to the evolved neural networks on the basis of the quality of their behaviours insimulation and the correspondence between their behaviour in simulation and their behaviourin reality. All scores are out of a maximum of 10.7 Discussion7.1 The General PictureThe overall picture to be gleaned from a study of Tables 1 and 2 is perhapsnot very surprising. In general, networks evolved in an environment that is lessnoisy than the real world will behave more noisily when downloaded onto theKhepera and, conversely, networks evolved in an environment that is noisierthan the real world will behave less noisily when downloaded. Simulation tosituation correspondence seems to be maximised when the noise levels of thesimulation have similar amplitudes to those observed in reality. The behavioursshown in Figures 3 and 5 graphically illustrate this.Noise also plays a part in determining the quality (see Tables 1 and 2) ofbehaviours that evolve. This was a score subjectively attributed to behaviourson the grounds of how robust and optimal they proved to be in simulation



after repeated testing. Since a �tness evaluation only involves two trials, thesescores do not necessarily correspond well to the �tness values ascribed by theGA. This correspondence could be improved by increasing the number of trialsthat make up a �tness evaluation, but at the expense of lengthening the timetaken to perform an evolutionary run. The behaviour scores, then, show whichnoise levels give the best `value for money' in terms of robustness against thenumber of trials that make up a �tness evaluation.For both obstacle avoidance and light-seeking, the set of experiments run-ning under observed noise obtained the highest average behaviour score. Ina zero noise environment, brittle `hit or miss' strategies tend to evolve whicheither score incredibly well or incredibly badly on each �tness trial, depend-ing on their initial random starting positions. Although noise, in general, blursthe �tness landscape, reducing the possibility of `hit or miss' strategies evolving(since they are far more likely to `miss' rather than `hit'), too much randomnessin the environment, as in the double noise case, ensures that the same geno-types may again achieve very di�erent scores on two otherwise identical �tnessevaluations. A balance between these two cases seems to be achieved at theobserved noise level. However, the fact that the particular level of noise thatmost favours the evolution of robust behaviours in simulation is also the levelof noise that achieves the highest simulation to reality correspondence shouldprobably not be regarded as anything other than a coincidence.7.2 The Noise Level Has to Be RightIf the noise levels used in the simulation di�er signi�cantly from those presentin reality, whole di�erent classes of behaviours become available which, whileacquiring high �tness scores in simulation, necessarily fail to work in reality. Thezero noise behaviour shown in Figure 3 is one example. Evolution has takenadvantage of the fact that, in a zero noise environment, the simulated robot willreact identically in similar situations. By always turning through exactly ninetydegrees, the simulated robot circumnavigates the room, ad in�nitum, scoringwell on the �tness test. In reality, the Khepera will never respond in exactly thesame way twice. As can be seen from the picture, its behaviour is qualitativelysimilar, but the fact that its turns are never exactly ninety degrees means thatit cannot settle down into a steady state of circumnavigation. Instead, becausethe neural network controlling it is `blind' on one side, it ends up hitting objectsand displaying far from optimal behaviour.It is perhaps less obvious that evolution can also take advantage of too muchnoise in the simulation to produce networks that rely on the extra noise and arethus incapable of reproducing their behaviours in reality. The �rst double-noiselight-seeker in Table 2 is one such example. Here a network that displayed nearoptimal (if noisy) light-seeking behaviour in simulation proved totally uselesswhen downloaded onto the Khepera. It would jitter rapidly from side to side,



approaching the light only very slowly, and occasionally backing right awayfrom it into the rear wall. The neural network in question uses two sensors,one on either side, to �nd the light. Each sensor controls the wheel on theopposite side of the robot in a Braitenberg fashion, but they are so arrangedthat, when the Khepera exactly faces the light-source, they are both only justilluminated. Since each input of the neural network is divided into bands, theyare never both illuminated su�ciently (in a low noise world) to provide positiveinput to the neural network at the same time, and thus the robot jitters on thespot. However, in the double noise environment, there is enough noise presentto push each sensor input's value up from the lowest band every now and then,thus providing positive inputs from both sensors at the same time, driving therobot forwards.The experimental results provided some (inconclusive) support for the envelope-of-noise conjecture mentioned in the Introduction { that inevitable de�cienciesin the simulation could be blurred by noise. In this case, sensor noise pro�leswere not modelled, rather a simple distribution of noise at the right level wasused. Also di�erences between individual sensors were not modelled.8 ConclusionsIt has been shown that it is possible to arti�cially evolve successful network-based control systems in simulation that generate almost identical behavioursin reality. However, great care must be taken in building the simulation andappropriate levels of noise must be included.The robot-environment interactions modelled here are relatively simple. Dif-�culties in simulating interference between the IR and ambient light modes ofthe Khepera's sensors, suggest that the approach taken here rather quickly be-come less feasible as the interaction dynamics become more complex. We stillfeel that real-world evolution techniques such as those described in [7, 5] arenecessary, at least for the time being, to deal with these more complex cou-plings. However, it does appear that simulations are not quite the dead-endsome had suggested. For simpler cases at least, it has been shown that theycan be made accurate enough. Their attractive qualities of speed and ease ofdata collection can then be made use of.AcknowledgementsNick Jakobi is supported by a COGS postgraduate bursary. Thanks to col-leagues in the Evolutionary and Adaptive Systems Group for useful discus-sions. Special thanks to David Young and Bob Ives for help in conducting theexperiments described in this paper.



References[1] R.A. Brooks. Intelligence without reason. In Proceedings IJCAI-91, pages 569{595. Morgan Kaufmann, 1991.[2] R.A. Brooks. Intelligence without representation. Arti�cial Intelligence, 47:139{159, 1991.[3] Rodney A. Brooks. Arti�cial life and real robots. In F. J. Varela and P. Bourgine,editors, Proceedings of the First European Conference on Arti�cial Life, pages3{10. MIT Press/Bradford Books, Cambridge, MA, 1992.[4] R. Collins and D. Je�erson. Selection in massively parallel genetic algorithms. InR. K. Belew and L. B. Booker, editors, Proceedings of the Fourth Intl. Conf. onGenetic Algorithms, ICGA-91, pages 249{256. Morgan Kaufmann, 1991.[5] D. Floreano and F. Mondada. Automatic creation of an autonomous agent: Ge-netic evolution of a neural-network driven robot. In D. Cli�, P. Husbands, J.-A.Meyer, and S. Wilson, editors, From Animals to Animats 3, Proc. of 3rd Intl.Conf. on Simulation of Adaptive Behavior, SAB'94. MIT Press/Bradford Books,1994.[6] A.S. Glasner, editor. An Introduction To Ray Tracing. Academic Press, London,1989.[7] I. Harvey, P. Husbands, and D. Cli�. Seeing the light: Arti�cial evolution, realvision. In D. Cli�, P. Husbands, J.-A. Meyer, and S. Wilson, editors, From Ani-mals to Animats 3, Proc. of 3rd Intl. Conf. on Simulation of Adaptive Behavior,SAB'94, pages 392{401. MIT Press/Bradford Books, 1994.[8] P. Husbands and I. Harvey. Evolution versus design: Controlling autonomousrobots. In Integrating Perception, Planning and Action, Proceedings of 3rd AnnualConference on Arti�cial Intelligence, Simulation and Planning, pages 139{146.IEEE Press, 1992.[9] P. Husbands, I. Harvey, and D. Cli�. An evolutionary approach to situated AI.In A. Sloman et al., editor, Proc. 9th bi-annual conference of the Society for theStudy of Arti�cial Intelligence and the Simulation of Behaviour (AISB 93), pages61{70. IOS Press, 1993.[10] N. Jakobi. Evolving sensorimotor control architectures in simulation for a realrobot. Master's thesis, School of Cognitive and Computing Sciences, Universityof Sussex, 1994.[11] K-Team. Khepera users manual. EPFL,Lausanne, June 1993.[12] J. Kunt. An Introduction to Control Theory. Hudders�eld and Wallstone, 1964.[13] O. Miglino, C. Nafasi, and C. Taylor. Selection for wandering behavior in a smallrobot. Technical Report UCLA-CRSP-94-01, Dept. Cognitive Science, UCLA,1994.[14] F. Mondada and P. Verschure. Modeling system-environment interaction: Thecomplementary roles of simulations and real world artifacts. In Proceedings ofSecond European Conference on Arti�cial Life, ECAL93, pages 808{817. Brussels,May 1993, 1993.



[15] S. Nol�, D. Floreano, O. Miglino, and F. Mondada. How to evolve autonomousrobots: Di�erent approaches in evolutionary robotics. In R. Brooks and P. Maes,editors, Arti�cial Life IV, pages 190{197. MIT Press/Bradford Books, 1994.[16] Tim Smithers. On why better robots make it harder. In D. Cli�, P. Husbands, J.-A.Meyer, and S.Wilson, editors, From Animals to Animats 3, Proc. of 3rd Intl. Conf.on Simulation of Adaptive Behavior, SAB'94, pages 54{72. MIT Press/BradfordBooks, 1994.[17] A. Thompson. Evolving electronic robot controllers that exploit hardware re-sources. In F. Moran, A. Moreno, J.J. Merelo, and P. Chacon, editors, Advancesin Arti�cial Life: Proc. 3rd European Conference on Arti�cial Life, pages 640{656.Springer-Verlag, Lecture Notes in Arti�cial Intelligence 929, 1995.[18] B. Yamauchi and R. Beer. Integrating reactive, sequential, and learning behav-ior using dynamical neural networks. In D. Cli�, P. Husbands, J.-A. Meyer, andS. Wilson, editors, From Animals to Animats 3, Proc. of 3rd Intl. Conf. on Simu-lation of Adaptive Behavior, SAB'94, pages 382{391. MIT Press/Bradford Books,1994.


