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I. The Design of Embedded Agents 

Embedded agents are computer systems that 
sense and act on their environments, monitoring 
complex dynamic conditions and affecting the en- 
vironment in goal-directed ways. Systems of this 
kind are extremely difficult to design and build, 
and without clear conceptual models and powerful 
programming tools, the complexities of the real 
world can quickly become overwhelming. In cer- 
tain special cases, designs can be based on well- 
understood mathematical paradigms such as 
classical control theory. More typically, however, 
tractable models of this type are not available and 
alternative approaches must be used. One such 
alternative is the situated-automata framework, 
which models the relationship between embedded 
control systems and the external world in qualiti- 
tative terms and provides a family of program- 
ming abstractions to aid the designer. This paper 
briefly reviews the situated-automata approach 
and then explores in greater detail one aspect of 
the approach, namely the design of the action-gen- 
erating component of embedded agents. 

1.1. The Situated-A utomata Model 
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as a pair of interacting automata, one correspond- 
ing to the physical environment and the other to 
the embedded agent. Each has local state that 
varies as a function of signals projected from the 
other. The aim of the design process is to synthe- 
size an agent, in the form of an embedded state 
machine, that causes the desired effects in the 
environment over time. 

In applications of interest, it is often useful to 
describe the agent in terms of, the information 
available about the environment and the goals the 
agent is pursuing. It is also desirable that these 
descriptions be expressed in language that refers 
to states of the environment rather than to specific 
internal data structures, at least during the early 
phases of design. Moreover, the inputs, outputs, 
and internal states of the state machine will be far 
too numerous to consider explicitly, which means 
the machine must be constructed out of a set of 
separate components acting together to generate 
complex patterns of behavior. These requirements 
highlight the need for compositional, high-level 
languages that compactly describe machine com- 
ponents in semantically meaningful terms. 

Situated-automata theory provides a principled 
way of interpreting data values in the agent as 
encoding facts about the world expressed in some 
language whose semantics is clear to the designer. 
Interpretations of this sort would be of little use 
were it not also the case that whenever the data 
structure had a particular value, the condition 
denoted was guaranteed to hold in the environ- 
ment. Such considerations motivate defining the 
semantics of data structures in terms of objective 
correlations with external reality. In this ap- 
proach, a machine variable x is said to carry the 
information that p in world state s, written s 
K(x ,  p), if for all world states in which x has the 
same value it does in s, the proposition p is true. 
The formal properties of this model and its useful- 
ness for programming embedded systems have 
been described elsewhere [9,11,5,10]. 

Having established a theoretical basis for view- 
ing a given signal or state in the agent as carrying 
information content by virtue of its objective cor- 
relation with the environment, one can consider 
languages in which this content might be ex- 
pressed. In general there will be no single "best" 
language for expressing this information. For ex- 
ample, one language is the set of signals or states 
themselves. These can be regarded as a system of 

signs whose semantic interpretations are exactly 
the conditions with which they are correlated. 
However, the designer will typically wish to em- 
ploy other, higher-level, languages during the de- 
sign process. This theme will be expanded upon 
below in connection with goal-description lan- 
guages. 

1.2. Perception-Action Split 

One way of structuring the design process for 
the cognitive ease of the designer is to separate the 
problem of acquiring information about the world 
from the problem of acting appropriately relative 
to that information. The former we shall label 
perception and the latter, action. In terms of the 
state-machine model, as shown in Fig. 1, the 
perception component corresponds to the update 
function and the initial state, whereas the action 
component corresponds to the output mapping. 

The perception-action spit in itself is entirely 
conceptual and may or may not be the basis for 
modulafizing the actual system. Horizontal de- 
compositions that cut across perception and ac- 
tion have been advocated by Brooks as a practical 
way of approaching agent design [2]. The horizon- 
tal approach allows the designer to consider 
simultaneously those limited aspects of perception 
and action needed to support specific behaviors. 
In this way, it discourages the pursuit of spurious 
generality that often inhibits practical progress in 
robotics. 

These attractive features are counterbalanced, 
however, by the degree to which horizontal de- 
composition encourages linear thinking. In prac- 
tice, the methodology of not separating the 
acquisition of information from its use tends to 
encourage the development of very specific behav- 
iors rather than the identification of elements that 
can recombine freely to produce complex patterns 
of behavior. The alternative is a vertical strategy 
based on having separate system modules that 

Perception Action 

. _ - . . - - ~  

Fig. 1. Division between perception and action components. 
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recover broadly useful information from multiple 
sources and others that exploit it for multiple 
purposes. The inherent combinatorics of informa- 
tion extraction and behavior generation make the 
vertical approach attractive as a way of making 
efficient use of a programmer 's  effort. 

The commitment to a decomposition based 
upon the perception-action split still leaves open 
the question of development strategy. One ap- 
proach is to iteratively refine the perception-acfion 
pair, more or less in lockstep. The information 
objectively carded by an input signal or an inter- 
nal state is relative to constraints on other parts of 
the system--including constraints on the action 
component. The more constrained the rest of the 
system, the more the designer can deduce about 
the world from a given internal signal or state, 
hence the more " informat ion"  it contains. As the 
designer refines his design, his model of the infor- 
mation available to the system and what the sys- 
tem will do in response becomes increasingly 
specific. 

An alternative to iterafive refinement, suitable 
in many practical design situations, is the strict 
divide-and-conquer strategy in which the design of 
the perception component  is carried out in com- 
plete isolation from the development of the action 
component except for the specification of a com- 
mon in ter face-- the  data structures that encode 
the information shared between the perception 
and action modules. Although there may be occa- 
sions when the designer needs to rely on some fact 
about what the agent will do in order to guarantee 
that a certain signal or state has the semantic 
content he intends, if these situations can be mini- 
mized or ignored, considerable simplification will 
result. 

1.3. Goals 

As we have seen, one way of semantically char- 
acterizing an agent's states is in terms of the 
information they embody. The perception compo- 
nent delivers information, and the action compo- 
nent maps this information to action. In many 
cases, however, it is more natural to describe ac- 
tions as functions not only of information but  of 
the goals the agent is pursuing at the moment  [12]. 

Goals can be divided into two broad classes: 
static and dynamic. A static goal is a statement 
the agent's behavior is simply designed to make 

true. In reality, a static goal is nothing more than 
a specification, and as such the attribution of this 
"goal"  to the agent is somewhat superfluous, al- 
though it may be of pragmatic use in helping the 
designer organize his conception of the agent's 
action strategy. Dynamic  goals are another matter. 
The ability to attribute to the agent goals that 
change dynamically at run time opens the possibil- 
ity of dramatically simplifying the designer's de- 
scription of the agent 's behavior. 

Since we are committed to an information-based 
semantics for reactive systems, we seek an "objec- 
five" semantics of goals defined explicitly in infor- 
mational terms. We can reformulate the notion of 
having a goal p as having the information that p 
implies a fixed top-level goal, called N for 
"Nirvana ."  Formally, we define a goal operator G 
as follows: 

C ( x ,  p )  - K ( x ,  p -~ N ) .  

In this model, x has the goal p if x carries the 
information that p implies Nirvana. 1 This defini- 
tion captures the notion of dynamic goals because 
p can be an indexical statement, such as " i t  is 
raining now," whose truth varies with time. Since 
this model defines goals explicitly in terms of 
information, the same formal tools used to study 
information can be applied to goals as well. In 
fact, under this definition, goals and information 
are dual concepts. 

To see the duality of goals and information, 
consider a function f mapping values of one 
variable, a, to values of another variable, b. Un- 
der the information interpretation, such a function 
takes elements having more specific information 
into elements having less specific information. This 
is because functions generally introduce ambiguity 
by mapping distinct inputs to the same output. 
For example, if value u 1 at a is correlated with 
proposition p and value u 2 at a is correlated with 
q and if f maps both u 1 and u 2 to o at b, the 
value o is ambiguous as to whether it arose from 
u~ or u 2, and hence the information it contains is 
the disjunctive information p v q, which is less 
specific than the information contained in either 
u a or u 2. Thus, functional mappings are a form of 
forgetting. 

i We observe that under this definition False will always be a 
goal; in practice, however, we are only interested in non-triv- 
ial goals. 
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Under the goal interpretation, this picture is 
reversed. The analog to "forgetting" is committing 
to subgoals, which can be thought of as "forget- 
ting" that there are other ways of achieving the 
condition. For instance, let the objective informa- 
tion at variable a be that the agent is hungry and 
that there is a sandwich in the fight drawer and an 
apple in the left. If the application of a many-to- 
one function results in variable b's having a value 
compatible with the agent's being hungry and 
there being a sandwich in the fight drawer and 
either an apple in the left drawer or not, we could 
describe this state of affairs by saying that varia- 
ble b has lost the information that opening the 
left drawer would be a way of finding food. Alter- 
natively, we could say that variable b had com- 
mitted to the subgoal of opening the right drawer. 
The phenomena of forgetting and commitment are 
two sides of the same coin. 

We can relate this observation to axioms de- 
scribing information and goals. One of the formal 
properties satisfied by K is the deductive closure 
axiom, whicti can be written as follows: 

K(x,  p -~ q) ~ (K(x,  p) ~ K(x,  q)). 
The analogous axiom for goals is 

K(x,  p -~ q) ~ (G(x, q) --* G(x, p)). 
This is precisely the subgoaling axiom. If the agent 
has q as a goal and carries the information that q 
is implied by some other, more specific, condition, 
p, the agent is justified in adopting p as a goal. 
The validity of this axiom can be established 
directly from the definition of G. 

Given these two ways of viewing the semantics 
of data structures, we can revisit the state-machine 
model of agents introduced above. Rather than 
specify the action component of the machine as a 
function of one argument interepreted in purely 
"informational" terms, f(i), it may be much more 
convenient for designers to define it as a function 
of two arguments, f ' (g ,  i) where the g argument 
is interpreted as representing the dynamic goals of 
the agent. Where does the g input come from? 
Clearly, it must ultimately be computed from the 
agent's current information state as well as its 
static goals, go. As such, it must be equivalent to 
some non-goal-dependent specification: f ( i ) =  
f '  ( extract( i, go), i). Nevertheless, the decomposi- 
tion into a goal-extraction module and a goal-di- 
rected action module may significantly ease the 

cognitive burden for the designer while leaving 
him secure in the knowledge that his design is 
semantically grounded. 

1.4. Software Tools for Agent Design 

Although it is conceptually important to have a 
formal understanding of the semantics of the data 
structures in an embedded agent, this understand- 
ing does not, directly, simplify the programmer's 
task. For this reason, it is necessary to design and 
implement software tools that are based on proper 
foundations and that make it easier to program 
embedded agents. 

Rex [5,7] is a language that allows the pro- 
grammer to use the full recursive power of Lisp at 
compile time to specify a synchronous digital cir- 
cuit. The circuit model of computation facilitates 
semantic analysis in the situated-automata theory 
framework. However, Rex only provides, however, 
a low-level, operational language that is more akin 
to standard programming languages than to de- 
clarative AI languages. For this reason, we have 
designed and implemented a pair of declarative 
programming languages on top of the base pro- 
vided by Rex. Ruler [10] is based on the "informa- 
tional" semantics and is intended to be used to 
specify the perception component of an agent. 
Gapps [6] is based on the "goal" semantics and is 
intended to be used to specify the action compo- 
nent of an agent. In the rest of this paper, we will 
describe the Gapps language, its use in program- 
ming embedded agents, and a number of exten- 
sions that relate it to more traditional work in 
planning. 

2. Gapps 

In this section we describe Gapps, a language 
for specifying behaviors of computer agents that 
retains the advantage of declarative specification, 
but generates run-time programs that are reactive, 
do parallel actions, and carry out strategies made 
up of very low-level actions. 

Gapps is intended to be used to specify the 
action component of an agent. The Gapps com- 
piler takes as input a declarative specification of 
the agent's top-level goal and a set Of goal-reduc- 
tion rules, and transforms them into the descrip- 
tion of a circuit that has the output of the percep- 
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tion component as its input, and the output of the 
agent as a whole as its output. The output of the 
agent may be divided into a number of separately 
controllable actions, so that we can independently 
specify procedures that allow an agent to move 
and talk at the same time. A sample action vector 
declaration is: 
(declare-action-vector 

(left-wheel-velocity int) 
(right-~Nheel-velocity int) 
(speech string)) 

This states that the agent has three independently 
controllable effectors and declares the types of the 
output values that control them. 

In the following sections, we shall present a 
formal description of Gapps and its goal evalua- 
tion algorithm, and explain how Gapps specifica- 
tions can be instantiated as circuit descriptions. 

2.1. Goals and Programs 

The Gapps compiler maps a top-level goal and 
a set of goal-reduction rules into a program. In 
this section we shall clarify the concepts of goal, 
goal-reduction rule, and program. 

There are three primitive goal types: goals of 
execution, achievement, and maintenance. Goals 
of execution are of the form do(a), with a specify- 
ing an instantaneous action that can be taken by 
the agent in the world-- the agent's goal is simply 
to perform that action. If an agent has a goal of 
maintenance, notated maint(p),  then if the pro- 
position p is true, the agent should strive to 
maintain the truth of p for as long as it can. The 
goal ach(p) is a goal of achievement, for which 
the agent should try. to bring about the truth of 
proposition p as soon as possible. The set of goals 
is made up of the primitive goal types, closed 
under the Boolean operators. The notions of 
achievement and maintenance are dual, so we 
have ~aeh(p)  --- malnt(--,p) and -imaint(p) - 
ach(--,p). 

In order to characterize the correctness of pro- 
grams with respect to the goals that specify them, 
we must have a notion of an action leading to a 
goal. Informally, an action a leads to a goal G 
(notated a ,~ G) if it constitutes a correct step 
toward the satisfaction of the goal. For a goal of 
achievement, the action must be consistent with 

the goal condition's eventually being true; for a 
goal of maintenance, if the condition is already 
true, the action must imply that it will be true at 
the next instant of time. The leads to operator 
must also have the following formal properties: 

a ~ do(a )  

G) ^ (a C') = a (G ^ G') 
(a ~ G) V (a ,'~ G')  =:, a -~ (G V G')  

cond(p, a ,--, e ,  a C ' )  - -  a ,-, cond(p, e ,  G ' )  

(a  --, G)  ^ (G --, G ' )  a --, G'.  

This definition captures a weak intuition of what 
it means for an action to lead to a goal. The goal 
of doing an action is immediately satisfied by 
doing that action. If an action leads to each of two 
goals, it leads to their conjunction; similarly for 
disjunction and conditionals. The definition of 
leads to for goals of achievement may seem too 
weak--rather than saying that doing the action is 
consistent with achieving the goal, we would like 
somehow to say that the action actually con- 
stitutes progress toward the goal condition. Un- 
fortunately, it is difficult to formalize this notion 
in a domain-independent way. In fact, any defini- 
tion of leads to that satisfies this definition is 
compatible with the goal reduction algorithm used 
by Gapps, so the definition may be strengthened 
for a particular domain. 

Goal reduction rules are of the form (defgoalr G 
G')  and have the semantics that the goal G can be 
reduced to the goal G'; that is, that G'  is a 
specialization of G, and therefore implies G. By 
the definition of "leads to", any action that leads 
to G'  will also lead to G. 

A program is a finite set of condition-action 
pairs, in which the condition is a run-time expres- 
sion (actually a piece of Rex circuitry with a 
Boolean-valued output) and an action is a vector 
of run-time expressions, one corresponding to each 
primitive output field. These actions are run-time 
mappings from the perceptual inputs into output 
values, and can be viewed as strategies, in which 
the particular output to be generated depends on 
the external state of the world via the internal 
state of the agent. Allowing the actions to be 
entire strategies is very flexible, but makes it im- 
possible to enumerate the possible values of an 
output field. In order to specify a program that 
controls only the speech field of an action vector, 
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we need to be able to describe a program that 
requires the speech field to have a certain value, 
but makes no constraints on the values of the 
other fields. One way to do this would be to 
enumerate a set of action vectors with the speci- 
fied speech value, each of which has different 
values for the other action vector components. 
Instead of doing this, we allow elements of an 
action vector to contain the value ~[, which stands 
for all possible instantiations of that field. 

A program /-/, consisting of the condition-ac- 
tion pairs ( (cI, a 1) . . . . .  ( c, ,  a , )  }, is said to weakly 
satisfy a goal G if, for every condition c~, if that 
condition is true, the corresponding action a t leads 
to G. That is, 
/7 weakly satisfies G ~ Vi.c~ --* (a  t .~ G).  

Note that the conditions in a program need not be 
erdaaustivemsatisfaction does not require that 
there be an action that leads to the goal in every 
situation, since this is impossible in general. We 
will refer to the class of situations in which a 
program does specify an action as the domain of 
the program. We define the domain o f / 7  as 

dom( /7 )  ffi Vc , .  
i 

A goal G is strongly satisfied by p rog ram/7  if it is 
weakly satisfied b y / 7  and dora(/7) = true; that is, 
if for every situation, /7 supplies an action that 
leads to G. The conditions in a program need not 
be mutually exclusive. When more than one condi- 
tion of a program is true, the action associated 
with each of them leads to the goal, and an 
execution of the program may choose among these 
actions nondeterministically. 

Given the non-deterministic execution model, 
we can give programs a declarative semantics, as 
well  A program 17= ((Cl,  a l )  . . . . .  (Cn, a, )} ,  can 
be thought of has having the logical interpretation 

(A(a,--,,,) ^ ya,) v.w,., 
Either the domain of the program is false (the 
second clause) or there is some action that is 
executed and the condition associated with that 
action is true. 

2.2. Recursive Goal Evaluation Procedure 

Gapps i s  implemented on top of Rex, and 
makes use of constructs from the Rex language to 

provide perceptual tests. There is not room here to 
describe the details of the Rex language, so we 
refer the interested reader to other papers [5,7]. 
Gapps programs are made up of a set of goal 
reduction rules and a top-level goal-expression. 
The general form of a goal-reduction rule is 

(defgoalr goal-pat goal-expr ) , 
where 

goal-pat:: = (ach pat rex-params ) 
(maint pat rex-params ) 

goal-expr : : = (do index rex-expr ) 
"(and goal-expr goal-expr ) 
(or goal-expr goal-expr ) 
(not goal-expr ) 
(if rex-expr goal-expr goal-expr ) 
(ach pat rex-expr ) 
(maint pat rex-expr ) 

index is a keyword, pat is a compile-time pattern 
with unifiabIe variables, rex-expr is a Rex expres- 
sion specifying a run-time function of input varia- 
bles, and rex-params is a structure of variables 
that becomes bound to the result of a rex-expr. 
The details of these constructs will be discussed in 
the following sections. 

The Gapps compiler is an implementation of 
an evaluation function that maps goal expressions 
into programs, using a set of goal reduction rules 
supplied by the programmer. In this section we 
shall present the evaluation procedure; we have 
shown that it is correct; that is, that given a goal G 
and a set of reduction rules F, eval(G, F)  weakly 
satisfies G. 

Given a reduction-rule set Gamma, we define 
the evaluation procedure as follows: 
d e f i n e  e v a l ( G )  

case first(G) 
do : make-primitive-program(second(G), 

third(G)) 
and : conjoin-programs(eval(second(G)), 

eval(third(G))) 
or : disjoin-programs(eval(seoond(G)), 

eval(third(G))) 
not  : eval (negate-goal-expr(second(G))) 
if : disjoin-programs 

(conjoin-cond(second(G), 
eval(third(G))), 
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conjoin-cond(negate-cond(G), 
eval(fourth(G)))) 

maint, 
ach : for all R in Gamma such that 

match(G,head (R)) 
disjoin-programs(eval(body(R)) 

We shall now consider each of  these cases in turn. 

Do 
The function make-primitive-program takes an 

index and a Rex expression and returns a pro- 
gram. The index indicates which of the fields of 
the action vector is being assigned, and the Rex 
expression denotes a function from the input to 
values for that action field. It is formally defined 
as 

make-primitive-program(i, rex-expr ) 
= { <true, (~J,..., rex-expr . . . .  ,~J)) }, 

with the rex-expr in the ith component of the 
action vector. This program allows any action so 
long as compgnent i of the action is the strategy 
described by-rex-expr. 

And 
Programs are conjoined by taking the cross- 

product of their condition-action pairs and merg- 
ing each of elements of the cross-product together. 
In conjoining two programs, the merged action 
vector is associated with the conjunction of the 
conditions of the original pairs, together with the 
condition that the two actions are mergeable. The 
conjunction procedure simply finds the pairs in 
each program that share an action and conjoins 
their conditions. We can define the operation for- 
really as 

conjoin-programs(F/', F/" ) 
{< (  , ,, = c/' A d '  A mergeable(ai, ay )), 

me,g<o:, , , ; , )>}  

f o r l < i < m , l _ < j < n  where 
t r F/ t=  {(cl ' al ) . . . . .  (c,~, a,~)} 

F / " =  {<C~', a~') . . . . .  <c~', a " ) } .  

The conjunction operation preserves the declara- 
tive semantics of programs; that is, the semantic 
interpretation of the conjoined program is implied 

by the conjunction of the semantic interpretations 
of the individual programs. 

Two action vectors are mergeable if, for each 
component, at least one of them is unspecified or 
they are equal. 

mergoable((aa . . . . .  a . ) , (  bl . . . . .  b.) ) 
~Vi.(ai=~) V (hi =~)  v (ai=bi). 

If either component is unspecified, the test can be 
completed at compile time and no additional cir- 
cuitry is generated. Otherwise, an equality test is 
conjoined in with the conditions to be tested at 
run time. 

Action vectors are merged at the component 
level, taking the defined dement if one is availa- 
ble. If the vectors axe unequally defined on a 
component, the result is undefined: 

merge((al , . . . ,  a . ) , (b l  . . . . .  b.)) 
= ( q  . . . . .  c .) ,  where 

{abi i f b i = l J ~  
ci = if a i ~" ~J 

otherwise. 

The merger of two action vectors results in an 
action vector that allows the intersection of the 
actions allowed by the original ones. 

Or 
The disjunction of two programs is simply the 

union of their sets of condition-action pairs. Stated 
formally, 

disjoin-programs(F/',/ '/") = / I '  U F/". 

Not 
In Gapps, negation is driven into an expression 

as far as possible, using DeMorgan's laws and the 
duality of ach and maint, until the only expres- 
sions containing not are those of the form (ach 
(not pat)), (maint (not pat)), and (not (do index 
rex-expr)). In the first two cases, there must be 
explicit reduction rules for the goal; in the last 
case we simply return the empty program. The 
handling of negation could be much stronger if we 
provided for the enumeration of all possible val- 
ues of any action vector component and required 
them to be known constants at compile time. Then 
(not (do left-velocity 6)) would be the same as 
v i,, 6 make-primitive-program (left-velocity, i); that 
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is, license to go at any velocity but 6. As we noted 
before, these limitations are too severe for use in 
controlling a complex agent that has large num- 
bers of possible outputs. 

The procedure negate-goal-expression rewrites 
goal expressions as follows: 

(not (and G z G2)) = (or (not G]) (not G2)) 
(not (orG, G2) ) = (and (not G,) (not G2)) 
(not (not G)) = G 
(not (if c G, G2) ) = (if c (not G]) (not G2)) 
(not (ach p)) = (maint (not p)) 
(not (maint p)) = (ach (not p)) 

/f 
The evaluation procedure for conditional pro- 

grams hinges on the definition of the conditional 
operator cond(p, q, r) as (p  A q) V (~p  A r). 
The procedure for conjoining a condition and a 
program is defined as follows: 

conjoin-cond(p; / / )  
= { ( p A c t ,  a,) . . . . .  ( p A c , ,  a . ) } .  

Thus, 

disjoin-programs(conioin-cond( p , / 7 ' ) ,  

conjoin-cond(-~p, H" ) )  
= { (p  A c;, a;> . . . . .  (~p A c. ~, a.~), 

A c;', a; ' )  . . . . .  A c'.;, a " ) ) .  

Ach and Maint 
Goals of maintenance and achievement are 

evaluated by disjoining the results of all applicable 
reduction rules in the rulebase F. A reduction rule 
whose head is the expression (ach pat~ rex-params) 
matches the goal expression (ach pat 2 rex-expr) if 
pat 1 and pat 2 can be unified in the current bind- 
ing environment. The patterns are s-expressions 
with compile-time variables that are marked by a 
leading ?. The Rex expression and parameter 
arguments may be omitted if they are null. The 
binding environment consists of other bindings of 
compile-time variables within the goal expression 
being evaluated. Thus, when evaluating the (ach 
(go ?p)) subgoal of the goal (and (aeh (drive ?q 
?p)) (ach (go ?p))), we may already have a binding 
for ?p. As in Prolog, evaluation of this goal will 

backtrack through all possible bindings of ?p and 
?q. 

Once a pattern has been matched, Gapps sets 
up a new compile-time binding environment for 
evaluating the body of the rule. This is necessary 
in case variables in the body are bound by the 
invocation, as in 
(defgoalr (ach (at ?p) [dist-err angle-err]) 

(if (not-facing ?p angle-err) 
(ach (facing ?p) angle-err) 
(ach (moved-toward ?p) dist-err))). 

In the rule above, (at ?p) is a pattern, ?p is a 
compile-time parameter, dist-err and angle-err are 
Rex variables, and (not-facing ?p angle-err) will be 
a Rex expression once a binding is substituted for 
?p. A possible invocation of this rule would be: 
(ach (at (office-of stan)) [  9 distance-eps. 10]). 
Gapps also creates a new Rex-variable binding 
environment when the rule is invoked, binding the 
Rex variables in the head to the evaluated Rex 
expressions in the invocation. These variables may 
appear in Rex expressions in the body of the rule. 
Note that compile-time variables may also be used 
in Rex expressions, in order to choose at compile 
time from among a class of available run-time 
functions. 

2.3. Generating a Circuit 

Once a goal expression has been evaluated, 
yielding a program, a circuit similar to the one 
shown in Fig. 2, that instantiates the program is 
generated. 2 Because any action whose associated 
condition is true is sufficient for correctness, the 
conditions are tested in an arbitrary order that is 
chosen at compile time. The output of the circuit 
is the action corresponding to the first condition 
that is true. If no condition is satisfied, an error 
action is output to signal the programmer that he 
has made an error. If, at the final stage of circuit 
generation, there are still ~ components in an 
action vector, they must be instantiated with an 
arbitrary value. The inputs to the circuit are corn- 

2 An equivalent, but more confusing, circuit with log(n) depth 
can be generated for improved performance on parallel mac- 
hines. 
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C I 

a I - -  

C l - -  

a 2 

q 
a 3 - -  

c, a, 
e r r  F 

Fig. 2. Circuit generated from Gapps program. 

puted by the Rex expressions supplied in the if 
and do forms. The outputs of the circuit are used 
to control the agent. 

2.4. Reducing Conjunctive Goal Expressions 

Conjunctive goal expressions can have two 
forms: (ach-or-maint (and p: P2)) and (and (ach- 
or-maint Pl) (ach-or-maint P2)). Because of the 
properties of maintainance, the goals (maint (and 
Pl P2)) and (and (maint Pl) (maint P2)) are seman- 
tically equivalent. This is not true, however, for 
goals of achievement. The goal (aeh (and p: P2)) 
requires that Pl and P2 be true simultaneously, 
whereas the goal (and (ach G:) (ach G2) ) requires 
only that they each be true at some time in the 
future. 

Goals of the form (ach-or-maint (and Pl P2)) 
can only be reduced using reduction rules whose 
pattern matches this conjunctive pattern. Goals of 
the form (and ( ach-or-maint Pl) ( ach-or-maint P2)) 
can be reduced in two ways: using the standard 
evaluation procedure for conjunctive goals and 
using special reduction rules. It is often the case 
that an effective behavior for achieving G~ and 
achieving G2 cannot be generated simply by con- 
joining programs that achieve G1 and G~ individ- 
ually. A program for the goal (and (aeh have 
hammer) (ach have saw)) will almost certainly be 
incomplete when the two tools are in different 
rooms, because there will be no actions available 
that are consistent with the standard programs for 
achieving each of the subgoals. Because of this, we 
allow reduction rules of the form (defgoatr (and 
( ach-or-maint pat 1 rex-pararasl) ( ach-or-maint pat 2 
rex-params2) ) goal-expr) so that special behaviors 
can be generated in the face of a conjunctive goal. 

Following is an example that illustrates both 
kinds of conjunctive goals. At the top level, the 
goal is to have the hammer and saw simulta- 
neously, but this reduces to conjunctions of ach 
and maint goals. 
(defgoalr (aeh (and (have hammeO (have saw)) 

(if (have hammer) 
(and (maint have hammer) 

(ach have saw)) 
(if (have saw) 

(and (maint have saw) 
(ach have hammer)) 

(if (closer-than hammer saw) 
(ach have hammer) 
(ach have saw))))) 

The agent will pursue the closer object until he has 
it, then pursue the second while maintaining 
posession of the first. We might need a similar 
rule for reducing the conjunctions of goals of 
achievement and maintenance. Instead of the 
specific rule above, we could write a more genetic 
sequencing rule, like the following: 
(defgoalr (aeh (and ?gl ?g2) 

[gl-params g2-params]) 
(if (holds ?gl gl-params) 

(and (maint ?gl gl-params) 
(ach ?g2 g2-params)) 

(if (holds ?g2 g2-params) 
(and (maint ?g2 g2-params) 

(ach ?gl gl-params)) 
(if (better-to-pursue ?gl gl-params 

?g2 g2-params) 
(ach ?gl gl-params) 
(ach ?g2 g2-params))))). 

The genetic form of the rule assumes that there is 
a Rex function, holds, that takes a compile-time 
parameter and generates a circuit that tests to see 
whether the predicate encoded by the compile-time 
parameter and the run-time variables is true in the 
world. 

2.5. Prioritized Goal Lists 

It is often convenient to be able to specify a 
prioritized list of goals. In Gapps, we cart do this 
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with a goal expression of the form (prio goal- 
exprl . . ,  goal-expr,). The semantics of this is 

cond(dom(//1) ,  171, 

cond(dom(II2 ), 1-I2 . . . . .  

cond( dom(/'/',_, ), / ' / ' ,_,, /- I , ,  ) . . .  )), 
where/7 i = eval(goal-expri). The domain of a pro- 
gram (true in a situation if the program has an 
applicable action in that situation) is the disjunc- 
tion of the conditions in the program. A program 
for a prio goal executes the first program, unless it 
has no applicable action, in which case it executes 
the second program, and so on. At circuit-genera- 
tion time, this construct can be implemented sim- 
ply by concatenating the programs in priority 
order, and executing the first action whose corre- 
sponding condition is satisfied. 

An example of the use of the prio construct 
comes about when there is more than one way of 
achieving a particular goal and one is preferable to 
the other for some reason, but is not always appli- 
cable. We might have the rule 
(defgoalr (ach in-room r) 

(prio (ach follow-planned-route-to r) 
(ach use-local-navigation-to r))). 

This rule states that the agent should travel to 
rooms by following planned paths, but if for some 
reason it is impossible to do that, it should do so 
through local navigation. The same effect could be 
achieved with an if expression, but this rule does 
not require the higher-level construct to know the 
exact conditions under which the higher-priority 
goal will fail. 

2.6. Prioritized Conjunctions 

An interesting special case of a prioritized set 
of goals is a prioritized conjunction of goals, in 
which the most preferred goal is the entire con- 
junction, and the less preferred goals are the con- 
junctions of shorter and shorter prefixes of the 
goal sequence. We define (prio-and G a G2 . . .  G,) 
to be 

(prio (and G 1 G=... Gn) 
(and G 1 G2...  G,_ 1)""  
(and G 1 G2) 

GI). 

Isaac Asimov's three laws of robotics [1] are a 
well-known example of this type of goal structure. 
As another example, consider a robot that can talk 
and push blocks. It has as its top-level goal 

(prio-and (maint not-crashed) 

(ach (in block1 room3)) 

(maint humans-not-bothered)). 

It also has rules that say that any action with the 
null string in the talking field will maintain hu- 
mans-not-bothered; that (in ?x ?y) can be achieved 
by pushing ?x or by asking a human to pick it up 
and move it; and that any action that keeps the 
robot from coming into contact with a wall will 
maintain not-crashed. As long as the robot can 
push the block, it can satisfy all three conditions. 
If, however, the block is in a comer, getting in a 
position to push it would require sharing space 
with a wall, thus violating the first subgoal. The 
most preferred goal cannot be achieved, so we 
consider the next-most-preferred goal, obtained by 
dropping the last condition from the conjunction. 
Since it is now allowed to bother humans, the 
robot can satisfy its goal by asking someone to 
move the block for it. As soon as the human 
complies, moving the block out of the comer, the 
robot will automatically revert to its former push- 
ing behavior. This is a convenient high-level con- 
struct for programming flexible reactive behavior 
without the need for the programmer to explicitly 
envision every combination of conditions in the 
world. It is important to remember that all of the 
symbolic manipulation of the goals happens at 
compile time; at run time, the agent simply ex- 
ecutes the action associated with the first condi- 
tion that evaluates to true. 

3. Extending Gapps 

Gapps is an appropriate language for specifying 
action maps that can be hard-wired at the compile 
time of the agent. In this section, we will consider 
ways of extending and augmenting Gapps to do 
exhaustive planning at compile time, to do run- 
time planning, and to do run-time goal reduction. 
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3.1. Unioersal Planning with Goal-Reduction 
Schema 

Schoppers [13] has introduced the notion of a 
unioersal plan. A universal plan is a function that, 
for a given goal, maps every possible input situa- 
tion of the agent into an action that leads to (in an 
informal sense) that goal. The program resulting 
from the Gapps-evaluation of a goal can be 
thought of as a universal plan, mapping situations 
to actions" in service of the top-level goal. 

Schoppers' approach differs from Gapps in that 
the user specifies the capabilities of the agent in 
an operator-description language. This language 
allows the user to specify a set of atomic capabili- 
ties of the agent, called operators, and the ex- 
pected effect that executing each of the operators 
will have on the world, depending possibly on the 
state of the world in which the operator was 
executed. 

Another way to characterize operators is 
through the use of a regression function [8]. The 
relation q =  regress(a, p)  holds if, whenever q 
holds in the world, the agent's performing action a 
will cause p to hold in the world as a result. In 
general, the regression function will return the 
weakest such q. Regression is usually used to look 
backwards from a goal~situation p; the proposi- 
tion q describes a set of situations that are only 
one "step" or operator application away from the 
set of situations satsifying p. We know that if the 
agent can get to a situation satisfying q, it can 
easily get to a situation satisfying p. 

The following schematic Gapps rule allows it to 
do the exhaustive backward-chaining search that 
is typically done by a planner, in order to con- 
struct a universal plan. The Gapps compiler must 
be augmented slightly by giving it a depth-bound 
for its backward chaining, because this rule would, 
by default, cause infinite backward chaining. 
(defgoalr (aeh (before ?p ?q)) 

(if (holds ?q) 
fail 
(if (holds ?p) 

(do anything) 
(if (holds (regress ?a ?p)) 

(do ?a) 
(ach (before (regress ?a ?p) 

(regress ?a ?q))))))) 

The reduction rule is for goals of the form (ach 
(before ?p ?q)); that is, the goal is to achieve some 
condition ?p before some other condition ?q ob- 
tains. This form of achievement goal is, we think, 
typ ica lp i t  is rare that an agent has a goal of 
achieving something no matter how long it takes. 
The rule works as follows: if ?q is true in the 
world, the agent fails; if ?p holds in the world, 
then the agent can do anything because it has 
achieved its goal; otherwise, if, for any action ?a, 
(regress ?a ?p) holds (that is, performing action 
?a will cause ?p to hold next time) then this goal 
reduces to the goal (do ?a); finally, this goal can 
be reduced to achieving, for any action ?a, (before 
(regress ?a ?p) (regress ?a ?q). The final reduction 
says that it is good for the agent to get into a state 
from which action ?a achieves the goal ?p before 
the agent gets into a state from which action ?a 
achieves the releasing condition ?q, because once 
that has been done, all the agent must do is do 
action ?a. 

Consider the application of this process to the 
standard 3-block blocks-world problem. The ac- 
tions are named atoms, like pab, which signifies 
"pu t  a on b." The world is described by predicates 
like ca, which signifies "clear a" and obt, which 
signifies "on  b table." An additional predicate, 
time(i), is true if the time on some global clock, 
which starts at 0, is i. We will use the abbreviation 
t i to stand for time(i). Given the goal (ach (before 
(and oab obc) (time 2))1, the evaluation procedure 
returns a program that is described proposition- 
ally as follows: 

{((rot 2 A obc A ca A cb), pab) ,  

( ( ~ t  2 ^ ~ t  1 ̂  obc A ca A cb), pa t ) ,  

( ( ~ t  2 ̂  ~ t  1 A obc A oab A ca), pat ) ,  

( ( ~ t  2 A ~ t  I A ca ^ cb A cc), pbc),  

((rot 2 A ~ t  1 A oba A cb A cc), pbc) }. 

According to this program, if b is on c, a and b 
are clear, and it is not time 2, then the agent can 
put a on b; otherwise, if it is neither time 1 nor 
time 2, the agent can do a variety of other things. 
For instance, if b is on c and a and b are clear, 
the agent can put a on the table. This illustrates 
the generality of the program. Because it is not yet 
time 1, it is acceptable to undo progress (we might 
have some other reason for wanting to do this), 
because there is time to put a back on b before 
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time 2. Notice that this program is not complete. 
There axe situations for which it has no action, 
because there are block configurations that cannot 
be made to satisfy the goal in two actions. Notice 
also that, because this is a program of the stan- 
dard form used by Gapps, it can be conjoined in 
with programs arising from other goals, such as 
global maintenance goals. Its generality, in allow- 
ing any sequence of actions that achieves the first 
condition before the second, makes it more likely 
that conjoining it in with a program expressing 
some other constraint will result in a non-null 
program. 

3.2. Working in Parallel with an Anytime Planner 

When the size of the state space is so large that 
doing exhaustive planning at compile time is im- 
practical, it is possible to solve problems described 
as planning problems by integrating a run-time 
planning system with the Gapps framework. 

We can express the planning process as an 
incremental computation, one step of which is 
done on each tick. On each tick the process gener- 
ates an output, but it may be one that means "I  
don't have an answer yet." After some number of 
ticks, depending on the size of the planning prob- 
lem, the planner will generate a real result. This 
result could be cached and executed as in a tradi- 
tional system, or the agent could just take the first 
action and wait for the planner to generate a new 
plan. 

Because time may have passed since the planner 
began its task, we must take care that the plan it 
generates is appropriate for the situation the agent 
finds itself in when the planner is finished. This 
can be guaranteed if the planner monitors the 
conditions in the world upon which the cor- 
rectness of its plan depends. If any of these condi- 
tions becomes false, the planner can begin again. 
This behavior will be correct, though not always 
optimal. In the worst case, the planner will con- 
tinuously emit the "I don't know" output and the 
agent will react reflexively to its environment 
without the benefit of a plan. 

The kind of planner discussed above is a degen- 
erate form of an anytime algorithm [3]. An any- 
time algorithm always has an answer, but the 
answer improves over time. In the example given 
above, the answer is useless for a while, then 
improves dramatically in one step. It might be 

useful to have planning algorithms that improve 
more gradually. Such algorithms exist for certain 
kinds of path planning, for instance, in which 
some path is returned at the beginning, but the 
algorithm works to make the path shorter or more 
efficient. There is still a difficult decision to be 
made, however, about whether to take the first 
step of a plan that is known to be non-optimal or 
to spend more time planning. For many everyday 
activities, optimality is not crucial, and it will be 
sufficient to act on the basis of a simple plan, if a 
plan is required at all. 

From the perspective of Gapps, the anytime 
planner is just a perceptual process that has state. 
It is "perceiving" conditions of the form: "the 
world is in a state such that if I do action a 
followed by action /3, followed by action 7, my 
goal will be achieved." The following Gapps pro- 
gram makes use of such a planner, but also has 
the potential for reacting to emergency situations: 
(defgoalr (ach (in room) [r t]) 

(if (know-plan-for-getting-to-room r t) 
(ach execute-first-step 

(plan-for-getting-to-room r t)) 
(if ( t ime- is-cr i t ical - for-gett ing-to-room r t) 

(ach drive-in-the-direction-of-room r) 
(maint sit-still)))). 

If the agent has the goal of being in room r at time 
t, and he knows a plan for getting there, then he 
should execute the first step of that plan; other- 
wise, if it looks like time is running out, the agent 
should do the best action he can think of at the 
moment; if there is no problem with time, his best 
course of action is to sit still and wait until the 
perception component has produced a plan. These 
issues of combining planning and reactive action 
are explored more fully by Kaelbling [4]. 

3.3. Run-Time Goals 

So far, we have only addressed the case in 
which the agent's top-level goal is specified at 
compile time. It will often be the case that it is 
useful to think of the agent as acquiring goals at 
run time. 

3.3.1. Dispatching 
The simplest case of responding to run-time 

goals is to consider them to be another type of 
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perceived information and write goal-reduction 
rules that are conditional on the given goal. As an 
example of this, an agent could be given the static 
compile-time goal of following orders and reduc- 
tion rules of the following form: 
(defgoalr (maint follow-orders) 

(if (current-request-pending) 
(ach goal-encoded-by 

(perceived-command)) 
(do twiddle-thumbs))) 

(defgoalr (ach goal-encoded-by params) 
( i f  (move-command params) 

(ach do-move-command 
(get-destination params)) 

( i f  (stop-command params) 
(ach stopped) 
...))). 

The agent will carry out requests as it perceives 
them by dispatching to the right goal-reductions 
based on the nature of the request. This method is 
sufficient for many cases, but requires the run-time 
goals to be of a few limited types, because the 
different types must be tested for and dispatched 
to directly. 

3.3.2. Run Time Goal Reduction 
An alternative to explicit dispatching on the 

types of goals is to interpret Gapps-style goal-re- 
duction rules at run time. An interpreter for Gapps 
is very similar to the evaluation procedure, except 
that the result at each step is a set of possible 
actions, rather than a set of condition-action pairs. 
This is because the interpretation is taking place 
at run time, which allows all of  the conditions to 
be evaluated during the interpretation process, 
rather than combined into a program that is to be 
evaluated later. Any action can be chosen from 
the set resulting from interpreting the top-level 
goal in the current situation. 

Given a reduction-rule set Gamma, we define 
the interpretation procedure as follows: 
define interp(G) 
case first(G) 

do : make-action-set(second(G), 
rex-eval(third(G))) 

and : conjoin-action-sets(interp(second(G)), 
interp(third(G))) 

or : disjoin-action-sets(interp(second(G)), 
interp(third(G))) 

not : interp(negate-goal-expr(second(G))). 
if  : if  rex-eval(second(G)) then 

interp(third(G)) else 
interp(fourth(G)) 

maint, 
ach : for all R in Gamma such that 

match(G,head(R)) 
disjoin-action-sets(interp(body(R)) 

The function make-action-vector takes an index 
and a value and returns the singleton set contain- 
ing the action vector with the field specified by the 
index set to the indicated value. That is, 

make-action-vector(i, o) = { (g . . . . .  o . . . . .  ~)  }. 

The value is calculated by evaluating, in the cur- 
rent state of the world, the Rex expression specify- 
ing the primitive action. Using the functions 
mergeable and merge described in Section 2.2, the 
conjunction of action sets can be defined as 

conjoin-action-sets( A',  A"  ) 
( ( ,  ,,) ( ,  ;,)} -- merge ai,  a.i Imergeable a i ,  a 

f o r l < i < m , l < j < n  where 
A' ( '  ' }  ---- a 1 ,  9 am 
A " =  (~; '  . . . . .  ~ " } .  

The disjunction of two action sets is simply the 
union of the sets: 

disjoin-action-sets(A', A ' )  = A' U A ' .  

The crucial difference between the interpreta- 
tion procedure and the evaluation procedure is in 
the if case. When the interpreter encounters an if 
goal, it can simply test the condition in the current 
state of the world and go on to interpret the 
subgoal corresponding to the result of the test. 
This obviates the need for manipulating formal 
descriptions of conditions during the goal-inter- 
pretation process. 

If the rule set is fixed at compile time and is 
not recursive, interpretation can be done by a 
fixed circuit (written, perhaps, in Rex) whose 
depth is equal to the length of the maximum-length 
chain of rules in the rule set. If the rule set is 
recursive, a depth bound will have to be imposed 
in order to guarantee real-time response. Another 
possiblity would be to make this into an anytime 
algorithm by using iterative-deepening search over 
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the course of a number of ticks, and being careful 
that conditions that have already been evaluated 
do not change their values during the search pro- 
CesS. 

If the agent acquires goal reduction rules at run 
time, perhaps through learning, then the interpre- 
tation process can by carded out by general-pur- 
pose goal-reduction machinery. It can either be 
done in real time by a fixed circuit or over time by 
an anytime search procedure. If interpretation is 
to happen in real time, there must be a limit on 
the number of reduction rules that can be applied, 
in order to make the circuitry be of fixed size. 

4. Conclusions 

The Gapps goal-reduction formalism provides 
a flexible, declarative method for describing the 
action component of agents that must operate in 
real-time in dynamic worlds. It has a formal 
semantic grounding and has been implemented 
and used in a variety of robotic applications. In 
addition, it can be extended in a number of ways 
for use in domains with different types of com- 
plexity. 
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