
Action
35

and Planning in Embedded Agents*

Leslie Pack Kaelbling
and Stanley J. Rosenschein
Teleos Research, 576 Middlefield Road, Palo Alto, CA 94301,
USA

Embedded agents are computer systems that sense and act on
their environments, monitoring complex dynamic conditions
and affecting the environment in goal-directed ways. This
paper briefly reviews the situated automata approach to agent
design and explores issues of planning and action in the
situated-automata framework.

Keywords." Intelligent agents; Reactive systems; Planning; Ac-
tion; Situated-automata theory; Gapps; Embedded
agents

I. The Design of Embedded Agents

Embedded agents are computer systems that
sense and act on their environments, monitoring
complex dynamic conditions and affecting the en-
vironment in goal-directed ways. Systems of this
kind are extremely difficult to design and build,
and without clear conceptual models and powerful
programming tools, the complexities of the real
world can quickly become overwhelming. In cer-
tain special cases, designs can be based on well-
understood mathematical paradigms such as
classical control theory. More typically, however,
tractable models of this type are not available and
alternative approaches must be used. One such
alternative is the situated-automata framework,
which models the relationship between embedded
control systems and the external world in qualiti-
tative terms and provides a family of program-
ming abstractions to aid the designer. This paper
briefly reviews the situated-automata approach
and then explores in greater detail one aspect of
the approach, namely the design of the action-gen-
erating component of embedded agents.

1.1. The Situated-A utomata Model

. Ms Kaelbling received a Philosophy
A.B. from Stanford University in 1983
and is currently a Ph.D. candidate with
the Department of Computer Science
at that University. From 1982 to 1984
Ms Kaelbling acted as a Research and
Teaching Assistance at Stanford and
in 1984 she joined SRI International's
Artificial Intelligence Center as a
Computer Scientist, leaving to join
Teleos Research as a Computer Scien-
tist in 1988. Ms Kaelbling's research
interests include artificial intelligence,

machine learning, programming languages and robotics; her
Ph.D. dissertation will address learning in embedded systems.

* This work was supported in part by the Air Force Office of
Scientific Research under contract F49620-89-C-0055DEF
and in part by the National Aeronautics and Space Admin-
istraction under Cooperative Agreement NCC-2-494 through
Stanford University subcontract PR-6359.

North-Holland
Robotics and Autonomous Systems 6 (1990) 35-48

The theoretical foundations of the situated-au-
tomata approach are based on modeling the world

Dr. Rosenschein received his B.A. from
Columbia University in 1971 and his
Ph.D. in Computer and Information
Sciences from the University of Penn-
sylvania in 1975. After a post-
doctorate at the Courant Institute of
Mathematics of New York University.
a lectureship at the Technion in Haifa,
Israel, and a research position at the
Rand Corporation, Dr. Rosenschein
jo ined the Artificial Intelligence
Center at SRI International in 1980.
He became Director of the Center in

1984 and held that post until 1988 at which time he left the
Center to found Teleos Research, a research and development
company working in artificial intelligence, robotics and ad-
vanced computing. Dr. Rosenschein's research has focused on
theoretical issues in automated reasoning, knowledge represen-
tation, natural language processing, and robotics.

0921-8830/90/$03.50 9 1990 - Elsevier Science Publishers B.V. (North-Holland)

36 L p. Koelbling, S.J. Rosenschein /Action and Planning in Embedded Agents

as a pair of interacting automata, one correspond-
ing to the physical environment and the other to
the embedded agent. Each has local state that
varies as a function of signals projected from the
other. The aim of the design process is to synthe-
size an agent, in the form of an embedded state
machine, that causes the desired effects in the
environment over time.

In applications of interest, it is often useful to
describe the agent in terms of, the information
available about the environment and the goals the
agent is pursuing. It is also desirable that these
descriptions be expressed in language that refers
to states of the environment rather than to specific
internal data structures, at least during the early
phases of design. Moreover, the inputs, outputs,
and internal states of the state machine will be far
too numerous to consider explicitly, which means
the machine must be constructed out of a set of
separate components acting together to generate
complex patterns of behavior. These requirements
highlight the need for compositional, high-level
languages that compactly describe machine com-
ponents in semantically meaningful terms.

Situated-automata theory provides a principled
way of interpreting data values in the agent as
encoding facts about the world expressed in some
language whose semantics is clear to the designer.
Interpretations of this sort would be of little use
were it not also the case that whenever the data
structure had a particular value, the condition
denoted was guaranteed to hold in the environ-
ment. Such considerations motivate defining the
semantics of data structures in terms of objective
correlations with external reality. In this ap-
proach, a machine variable x is said to carry the
information that p in world state s, written s
K(x , p), if for all world states in which x has the
same value it does in s, the proposition p is true.
The formal properties of this model and its useful-
ness for programming embedded systems have
been described elsewhere [9,11,5,10].

Having established a theoretical basis for view-
ing a given signal or state in the agent as carrying
information content by virtue of its objective cor-
relation with the environment, one can consider
languages in which this content might be ex-
pressed. In general there will be no single "best"
language for expressing this information. For ex-
ample, one language is the set of signals or states
themselves. These can be regarded as a system of

signs whose semantic interpretations are exactly
the conditions with which they are correlated.
However, the designer will typically wish to em-
ploy other, higher-level, languages during the de-
sign process. This theme will be expanded upon
below in connection with goal-description lan-
guages.

1.2. Perception-Action Split

One way of structuring the design process for
the cognitive ease of the designer is to separate the
problem of acquiring information about the world
from the problem of acting appropriately relative
to that information. The former we shall label
perception and the latter, action. In terms of the
state-machine model, as shown in Fig. 1, the
perception component corresponds to the update
function and the initial state, whereas the action
component corresponds to the output mapping.

The perception-action spit in itself is entirely
conceptual and may or may not be the basis for
modulafizing the actual system. Horizontal de-
compositions that cut across perception and ac-
tion have been advocated by Brooks as a practical
way of approaching agent design [2]. The horizon-
tal approach allows the designer to consider
simultaneously those limited aspects of perception
and action needed to support specific behaviors.
In this way, it discourages the pursuit of spurious
generality that often inhibits practical progress in
robotics.

These attractive features are counterbalanced,
however, by the degree to which horizontal de-
composition encourages linear thinking. In prac-
tice, the methodology of not separating the
acquisition of information from its use tends to
encourage the development of very specific behav-
iors rather than the identification of elements that
can recombine freely to produce complex patterns
of behavior. The alternative is a vertical strategy
based on having separate system modules that

Perception Action

. _ - . . - - ~

Fig. 1. Division between perception and action components.

L P. Kaelblin~ S.J. Rosenschein / Action and Planning in Embedded Agents 37

recover broadly useful information from multiple
sources and others that exploit it for multiple
purposes. The inherent combinatorics of informa-
tion extraction and behavior generation make the
vertical approach attractive as a way of making
efficient use of a programmer 's effort.

The commitment to a decomposition based
upon the perception-action split still leaves open
the question of development strategy. One ap-
proach is to iteratively refine the perception-acfion
pair, more or less in lockstep. The information
objectively carded by an input signal or an inter-
nal state is relative to constraints on other parts of
the system--including constraints on the action
component. The more constrained the rest of the
system, the more the designer can deduce about
the world from a given internal signal or state,
hence the more " informat ion" it contains. As the
designer refines his design, his model of the infor-
mation available to the system and what the sys-
tem will do in response becomes increasingly
specific.

An alternative to iterafive refinement, suitable
in many practical design situations, is the strict
divide-and-conquer strategy in which the design of
the perception component is carried out in com-
plete isolation from the development of the action
component except for the specification of a com-
mon in ter face-- the data structures that encode
the information shared between the perception
and action modules. Although there may be occa-
sions when the designer needs to rely on some fact
about what the agent will do in order to guarantee
that a certain signal or state has the semantic
content he intends, if these situations can be mini-
mized or ignored, considerable simplification will
result.

1.3. Goals

As we have seen, one way of semantically char-
acterizing an agent's states is in terms of the
information they embody. The perception compo-
nent delivers information, and the action compo-
nent maps this information to action. In many
cases, however, it is more natural to describe ac-
tions as functions not only of information but of
the goals the agent is pursuing at the moment [12].

Goals can be divided into two broad classes:
static and dynamic. A static goal is a statement
the agent's behavior is simply designed to make

true. In reality, a static goal is nothing more than
a specification, and as such the attribution of this
"goal" to the agent is somewhat superfluous, al-
though it may be of pragmatic use in helping the
designer organize his conception of the agent's
action strategy. Dynamic goals are another matter.
The ability to attribute to the agent goals that
change dynamically at run time opens the possibil-
ity of dramatically simplifying the designer's de-
scription of the agent 's behavior.

Since we are committed to an information-based
semantics for reactive systems, we seek an "objec-
five" semantics of goals defined explicitly in infor-
mational terms. We can reformulate the notion of
having a goal p as having the information that p
implies a fixed top-level goal, called N for
"Nirvana ." Formally, we define a goal operator G
as follows:

C (x , p) - K (x , p -~ N) .

In this model, x has the goal p if x carries the
information that p implies Nirvana. 1 This defini-
tion captures the notion of dynamic goals because
p can be an indexical statement, such as " i t is
raining now," whose truth varies with time. Since
this model defines goals explicitly in terms of
information, the same formal tools used to study
information can be applied to goals as well. In
fact, under this definition, goals and information
are dual concepts.

To see the duality of goals and information,
consider a function f mapping values of one
variable, a, to values of another variable, b. Un-
der the information interpretation, such a function
takes elements having more specific information
into elements having less specific information. This
is because functions generally introduce ambiguity
by mapping distinct inputs to the same output.
For example, if value u 1 at a is correlated with
proposition p and value u 2 at a is correlated with
q and if f maps both u 1 and u 2 to o at b, the
value o is ambiguous as to whether it arose from
u~ or u 2, and hence the information it contains is
the disjunctive information p v q, which is less
specific than the information contained in either
u a or u 2. Thus, functional mappings are a form of
forgetting.

i We observe that under this definition False will always be a
goal; in practice, however, we are only interested in non-triv-
ial goals.

38 LP. Kaelblin& S.J. Rosenschein /Action and Planning in Embedded Agents

Under the goal interpretation, this picture is
reversed. The analog to "forgetting" is committing
to subgoals, which can be thought of as "forget-
ting" that there are other ways of achieving the
condition. For instance, let the objective informa-
tion at variable a be that the agent is hungry and
that there is a sandwich in the fight drawer and an
apple in the left. If the application of a many-to-
one function results in variable b's having a value
compatible with the agent's being hungry and
there being a sandwich in the fight drawer and
either an apple in the left drawer or not, we could
describe this state of affairs by saying that varia-
ble b has lost the information that opening the
left drawer would be a way of finding food. Alter-
natively, we could say that variable b had com-
mitted to the subgoal of opening the right drawer.
The phenomena of forgetting and commitment are
two sides of the same coin.

We can relate this observation to axioms de-
scribing information and goals. One of the formal
properties satisfied by K is the deductive closure
axiom, whicti can be written as follows:

K(x, p -~ q) ~ (K(x, p) ~ K(x, q)).
The analogous axiom for goals is

K(x, p -~ q) ~ (G(x, q) --* G(x, p)).
This is precisely the subgoaling axiom. If the agent
has q as a goal and carries the information that q
is implied by some other, more specific, condition,
p, the agent is justified in adopting p as a goal.
The validity of this axiom can be established
directly from the definition of G.

Given these two ways of viewing the semantics
of data structures, we can revisit the state-machine
model of agents introduced above. Rather than
specify the action component of the machine as a
function of one argument interepreted in purely
"informational" terms, f(i), it may be much more
convenient for designers to define it as a function
of two arguments, f ' (g , i) where the g argument
is interpreted as representing the dynamic goals of
the agent. Where does the g input come from?
Clearly, it must ultimately be computed from the
agent's current information state as well as its
static goals, go. As such, it must be equivalent to
some non-goal-dependent specification: f (i) =
f ' (extract(i, go), i). Nevertheless, the decomposi-
tion into a goal-extraction module and a goal-di-
rected action module may significantly ease the

cognitive burden for the designer while leaving
him secure in the knowledge that his design is
semantically grounded.

1.4. Software Tools for Agent Design

Although it is conceptually important to have a
formal understanding of the semantics of the data
structures in an embedded agent, this understand-
ing does not, directly, simplify the programmer's
task. For this reason, it is necessary to design and
implement software tools that are based on proper
foundations and that make it easier to program
embedded agents.

Rex [5,7] is a language that allows the pro-
grammer to use the full recursive power of Lisp at
compile time to specify a synchronous digital cir-
cuit. The circuit model of computation facilitates
semantic analysis in the situated-automata theory
framework. However, Rex only provides, however,
a low-level, operational language that is more akin
to standard programming languages than to de-
clarative AI languages. For this reason, we have
designed and implemented a pair of declarative
programming languages on top of the base pro-
vided by Rex. Ruler [10] is based on the "informa-
tional" semantics and is intended to be used to
specify the perception component of an agent.
Gapps [6] is based on the "goal" semantics and is
intended to be used to specify the action compo-
nent of an agent. In the rest of this paper, we will
describe the Gapps language, its use in program-
ming embedded agents, and a number of exten-
sions that relate it to more traditional work in
planning.

2. Gapps

In this section we describe Gapps, a language
for specifying behaviors of computer agents that
retains the advantage of declarative specification,
but generates run-time programs that are reactive,
do parallel actions, and carry out strategies made
up of very low-level actions.

Gapps is intended to be used to specify the
action component of an agent. The Gapps com-
piler takes as input a declarative specification of
the agent's top-level goal and a set Of goal-reduc-
tion rules, and transforms them into the descrip-
tion of a circuit that has the output of the percep-

LP. Kaelblin& S.J. Rosenschein /Action and Plann#~g in Embedded Agents 39

tion component as its input, and the output of the
agent as a whole as its output. The output of the
agent may be divided into a number of separately
controllable actions, so that we can independently
specify procedures that allow an agent to move
and talk at the same time. A sample action vector
declaration is:
(declare-action-vector

(left-wheel-velocity int)
(right-~Nheel-velocity int)
(speech string))

This states that the agent has three independently
controllable effectors and declares the types of the
output values that control them.

In the following sections, we shall present a
formal description of Gapps and its goal evalua-
tion algorithm, and explain how Gapps specifica-
tions can be instantiated as circuit descriptions.

2.1. Goals and Programs

The Gapps compiler maps a top-level goal and
a set of goal-reduction rules into a program. In
this section we shall clarify the concepts of goal,
goal-reduction rule, and program.

There are three primitive goal types: goals of
execution, achievement, and maintenance. Goals
of execution are of the form do(a), with a specify-
ing an instantaneous action that can be taken by
the agent in the world-- the agent's goal is simply
to perform that action. If an agent has a goal of
maintenance, notated maint(p), then if the pro-
position p is true, the agent should strive to
maintain the truth of p for as long as it can. The
goal ach(p) is a goal of achievement, for which
the agent should try. to bring about the truth of
proposition p as soon as possible. The set of goals
is made up of the primitive goal types, closed
under the Boolean operators. The notions of
achievement and maintenance are dual, so we
have ~aeh(p) --- malnt(--,p) and -imaint(p) -
ach(--,p).

In order to characterize the correctness of pro-
grams with respect to the goals that specify them,
we must have a notion of an action leading to a
goal. Informally, an action a leads to a goal G
(notated a ,~ G) if it constitutes a correct step
toward the satisfaction of the goal. For a goal of
achievement, the action must be consistent with

the goal condition's eventually being true; for a
goal of maintenance, if the condition is already
true, the action must imply that it will be true at
the next instant of time. The leads to operator
must also have the following formal properties:

a ~ do(a)

G) ^ (a C') = a (G ^ G')
(a ~ G) V (a ,'~ G') =:, a -~ (G V G')

cond(p, a ,--, e , a C ') - - a ,-, cond(p, e , G ')

(a --, G) ^ (G --, G ') a --, G'.

This definition captures a weak intuition of what
it means for an action to lead to a goal. The goal
of doing an action is immediately satisfied by
doing that action. If an action leads to each of two
goals, it leads to their conjunction; similarly for
disjunction and conditionals. The definition of
leads to for goals of achievement may seem too
weak--rather than saying that doing the action is
consistent with achieving the goal, we would like
somehow to say that the action actually con-
stitutes progress toward the goal condition. Un-
fortunately, it is difficult to formalize this notion
in a domain-independent way. In fact, any defini-
tion of leads to that satisfies this definition is
compatible with the goal reduction algorithm used
by Gapps, so the definition may be strengthened
for a particular domain.

Goal reduction rules are of the form (defgoalr G
G') and have the semantics that the goal G can be
reduced to the goal G'; that is, that G' is a
specialization of G, and therefore implies G. By
the definition of "leads to", any action that leads
to G' will also lead to G.

A program is a finite set of condition-action
pairs, in which the condition is a run-time expres-
sion (actually a piece of Rex circuitry with a
Boolean-valued output) and an action is a vector
of run-time expressions, one corresponding to each
primitive output field. These actions are run-time
mappings from the perceptual inputs into output
values, and can be viewed as strategies, in which
the particular output to be generated depends on
the external state of the world via the internal
state of the agent. Allowing the actions to be
entire strategies is very flexible, but makes it im-
possible to enumerate the possible values of an
output field. In order to specify a program that
controls only the speech field of an action vector,

40 I..P. Kaelbling~ S.J. Rosenschein /Action and Planning in Embedded Agents

we need to be able to describe a program that
requires the speech field to have a certain value,
but makes no constraints on the values of the
other fields. One way to do this would be to
enumerate a set of action vectors with the speci-
fied speech value, each of which has different
values for the other action vector components.
Instead of doing this, we allow elements of an
action vector to contain the value ~[, which stands
for all possible instantiations of that field.

A program /-/, consisting of the condition-ac-
tion pairs ((cI, a 1) (c, , a ,) }, is said to weakly
satisfy a goal G if, for every condition c~, if that
condition is true, the corresponding action a t leads
to G. That is,
/7 weakly satisfies G ~ Vi.c~ --* (a t .~ G).

Note that the conditions in a program need not be
erdaaustivemsatisfaction does not require that
there be an action that leads to the goal in every
situation, since this is impossible in general. We
will refer to the class of situations in which a
program does specify an action as the domain of
the program. We define the domain o f / 7 as

dom(/7) ffi Vc , .
i

A goal G is strongly satisfied by p rog ram/7 if it is
weakly satisfied b y / 7 and dora(/7) = true; that is,
if for every situation, /7 supplies an action that
leads to G. The conditions in a program need not
be mutually exclusive. When more than one condi-
tion of a program is true, the action associated
with each of them leads to the goal, and an
execution of the program may choose among these
actions nondeterministically.

Given the non-deterministic execution model,
we can give programs a declarative semantics, as
well A program 17= ((Cl, a l) (Cn, a,)} , can
be thought of has having the logical interpretation

(A(a,--,,,) ^ ya,) v.w,.,
Either the domain of the program is false (the
second clause) or there is some action that is
executed and the condition associated with that
action is true.

2.2. Recursive Goal Evaluation Procedure

Gapps i s implemented on top of Rex, and
makes use of constructs from the Rex language to

provide perceptual tests. There is not room here to
describe the details of the Rex language, so we
refer the interested reader to other papers [5,7].
Gapps programs are made up of a set of goal
reduction rules and a top-level goal-expression.
The general form of a goal-reduction rule is

(defgoalr goal-pat goal-expr) ,
where

goal-pat:: = (ach pat rex-params)
(maint pat rex-params)

goal-expr : : = (do index rex-expr)
"(and goal-expr goal-expr)
(or goal-expr goal-expr)
(not goal-expr)
(if rex-expr goal-expr goal-expr)
(ach pat rex-expr)
(maint pat rex-expr)

index is a keyword, pat is a compile-time pattern
with unifiabIe variables, rex-expr is a Rex expres-
sion specifying a run-time function of input varia-
bles, and rex-params is a structure of variables
that becomes bound to the result of a rex-expr.
The details of these constructs will be discussed in
the following sections.

The Gapps compiler is an implementation of
an evaluation function that maps goal expressions
into programs, using a set of goal reduction rules
supplied by the programmer. In this section we
shall present the evaluation procedure; we have
shown that it is correct; that is, that given a goal G
and a set of reduction rules F, eval(G, F) weakly
satisfies G.

Given a reduction-rule set Gamma, we define
the evaluation procedure as follows:
d e f i n e e v a l (G)

case first(G)
do : make-primitive-program(second(G),

third(G))
and : conjoin-programs(eval(second(G)),

eval(third(G)))
or : disjoin-programs(eval(seoond(G)),

eval(third(G)))
not : eval (negate-goal-expr(second(G)))
if : disjoin-programs

(conjoin-cond(second(G),
eval(third(G))),

LP. Kaelbfing, S.J. Rosenschein /Action and Planning in Embedded Agents 41

conjoin-cond(negate-cond(G),
eval(fourth(G))))

maint,
ach : for all R in Gamma such that

match(G,head (R))
disjoin-programs(eval(body(R))

We shall now consider each of these cases in turn.

Do
The function make-primitive-program takes an

index and a Rex expression and returns a pro-
gram. The index indicates which of the fields of
the action vector is being assigned, and the Rex
expression denotes a function from the input to
values for that action field. It is formally defined
as

make-primitive-program(i, rex-expr)
= { <true, (~J,..., rex-expr ,~J)) },

with the rex-expr in the ith component of the
action vector. This program allows any action so
long as compgnent i of the action is the strategy
described by-rex-expr.

And
Programs are conjoined by taking the cross-

product of their condition-action pairs and merg-
ing each of elements of the cross-product together.
In conjoining two programs, the merged action
vector is associated with the conjunction of the
conditions of the original pairs, together with the
condition that the two actions are mergeable. The
conjunction procedure simply finds the pairs in
each program that share an action and conjoins
their conditions. We can define the operation for-
really as

conjoin-programs(F/', F/")
{< (, ,, = c/' A d ' A mergeable(ai, ay)),

me,g<o:, , , ; ,)>}

f o r l < i < m , l _ < j < n where
t r F/ t= {(cl ' al) (c,~, a,~)}

F / " = {<C~', a~') <c~', a ") } .

The conjunction operation preserves the declara-
tive semantics of programs; that is, the semantic
interpretation of the conjoined program is implied

by the conjunction of the semantic interpretations
of the individual programs.

Two action vectors are mergeable if, for each
component, at least one of them is unspecified or
they are equal.

mergoable((aa a .) , (bl b.))
~Vi.(ai=~) V (hi =~) v (ai=bi).

If either component is unspecified, the test can be
completed at compile time and no additional cir-
cuitry is generated. Otherwise, an equality test is
conjoined in with the conditions to be tested at
run time.

Action vectors are merged at the component
level, taking the defined dement if one is availa-
ble. If the vectors axe unequally defined on a
component, the result is undefined:

merge((al , . . . , a .) , (b l b.))
= (q c .) , where

{abi i f b i = l J ~
ci = if a i ~" ~J

otherwise.

The merger of two action vectors results in an
action vector that allows the intersection of the
actions allowed by the original ones.

Or
The disjunction of two programs is simply the

union of their sets of condition-action pairs. Stated
formally,

disjoin-programs(F/',/ '/") = / I ' U F/".

Not
In Gapps, negation is driven into an expression

as far as possible, using DeMorgan's laws and the
duality of ach and maint, until the only expres-
sions containing not are those of the form (ach
(not pat)), (maint (not pat)), and (not (do index
rex-expr)). In the first two cases, there must be
explicit reduction rules for the goal; in the last
case we simply return the empty program. The
handling of negation could be much stronger if we
provided for the enumeration of all possible val-
ues of any action vector component and required
them to be known constants at compile time. Then
(not (do left-velocity 6)) would be the same as
v i,, 6 make-primitive-program (left-velocity, i); that

42 LP. Kaelblin& S.J. Rasenschein / Action and Planning in Embedded Agents

is, license to go at any velocity but 6. As we noted
before, these limitations are too severe for use in
controlling a complex agent that has large num-
bers of possible outputs.

The procedure negate-goal-expression rewrites
goal expressions as follows:

(not (and G z G2)) = (or (not G]) (not G2))
(not (orG, G2)) = (and (not G,) (not G2))
(not (not G)) = G
(not (if c G, G2)) = (if c (not G]) (not G2))
(not (ach p)) = (maint (not p))
(not (maint p)) = (ach (not p))

/f
The evaluation procedure for conditional pro-

grams hinges on the definition of the conditional
operator cond(p, q, r) as (p A q) V (~p A r).
The procedure for conjoining a condition and a
program is defined as follows:

conjoin-cond(p; / /)
= { (p A c t , a,) (p A c , , a .) } .

Thus,

disjoin-programs(conioin-cond(p , / 7 ') ,

conjoin-cond(-~p, H"))
= { (p A c;, a;> (~p A c. ~, a.~),

A c;', a; ') A c'.;, a ")) .

Ach and Maint
Goals of maintenance and achievement are

evaluated by disjoining the results of all applicable
reduction rules in the rulebase F. A reduction rule
whose head is the expression (ach pat~ rex-params)
matches the goal expression (ach pat 2 rex-expr) if
pat 1 and pat 2 can be unified in the current bind-
ing environment. The patterns are s-expressions
with compile-time variables that are marked by a
leading ?. The Rex expression and parameter
arguments may be omitted if they are null. The
binding environment consists of other bindings of
compile-time variables within the goal expression
being evaluated. Thus, when evaluating the (ach
(go ?p)) subgoal of the goal (and (aeh (drive ?q
?p)) (ach (go ?p))), we may already have a binding
for ?p. As in Prolog, evaluation of this goal will

backtrack through all possible bindings of ?p and
?q.

Once a pattern has been matched, Gapps sets
up a new compile-time binding environment for
evaluating the body of the rule. This is necessary
in case variables in the body are bound by the
invocation, as in
(defgoalr (ach (at ?p) [dist-err angle-err])

(if (not-facing ?p angle-err)
(ach (facing ?p) angle-err)
(ach (moved-toward ?p) dist-err))).

In the rule above, (at ?p) is a pattern, ?p is a
compile-time parameter, dist-err and angle-err are
Rex variables, and (not-facing ?p angle-err) will be
a Rex expression once a binding is substituted for
?p. A possible invocation of this rule would be:
(ach (at (office-of stan)) [9 distance-eps. 10]).
Gapps also creates a new Rex-variable binding
environment when the rule is invoked, binding the
Rex variables in the head to the evaluated Rex
expressions in the invocation. These variables may
appear in Rex expressions in the body of the rule.
Note that compile-time variables may also be used
in Rex expressions, in order to choose at compile
time from among a class of available run-time
functions.

2.3. Generating a Circuit

Once a goal expression has been evaluated,
yielding a program, a circuit similar to the one
shown in Fig. 2, that instantiates the program is
generated. 2 Because any action whose associated
condition is true is sufficient for correctness, the
conditions are tested in an arbitrary order that is
chosen at compile time. The output of the circuit
is the action corresponding to the first condition
that is true. If no condition is satisfied, an error
action is output to signal the programmer that he
has made an error. If, at the final stage of circuit
generation, there are still ~ components in an
action vector, they must be instantiated with an
arbitrary value. The inputs to the circuit are corn-

2 An equivalent, but more confusing, circuit with log(n) depth
can be generated for improved performance on parallel mac-
hines.

LP. Kaelblin~ S.J. Rosenschein / Action and Planning in Embedded Agents 43

C I

a I - -

C l - -

a 2

q
a 3 - -

c, a,
e r r F

Fig. 2. Circuit generated from Gapps program.

puted by the Rex expressions supplied in the if
and do forms. The outputs of the circuit are used
to control the agent.

2.4. Reducing Conjunctive Goal Expressions

Conjunctive goal expressions can have two
forms: (ach-or-maint (and p: P2)) and (and (ach-
or-maint Pl) (ach-or-maint P2)). Because of the
properties of maintainance, the goals (maint (and
Pl P2)) and (and (maint Pl) (maint P2)) are seman-
tically equivalent. This is not true, however, for
goals of achievement. The goal (aeh (and p: P2))
requires that Pl and P2 be true simultaneously,
whereas the goal (and (ach G:) (ach G2)) requires
only that they each be true at some time in the
future.

Goals of the form (ach-or-maint (and Pl P2))
can only be reduced using reduction rules whose
pattern matches this conjunctive pattern. Goals of
the form (and (ach-or-maint Pl) (ach-or-maint P2))
can be reduced in two ways: using the standard
evaluation procedure for conjunctive goals and
using special reduction rules. It is often the case
that an effective behavior for achieving G~ and
achieving G2 cannot be generated simply by con-
joining programs that achieve G1 and G~ individ-
ually. A program for the goal (and (aeh have
hammer) (ach have saw)) will almost certainly be
incomplete when the two tools are in different
rooms, because there will be no actions available
that are consistent with the standard programs for
achieving each of the subgoals. Because of this, we
allow reduction rules of the form (defgoatr (and
(ach-or-maint pat 1 rex-pararasl) (ach-or-maint pat 2
rex-params2)) goal-expr) so that special behaviors
can be generated in the face of a conjunctive goal.

Following is an example that illustrates both
kinds of conjunctive goals. At the top level, the
goal is to have the hammer and saw simulta-
neously, but this reduces to conjunctions of ach
and maint goals.
(defgoalr (aeh (and (have hammeO (have saw))

(if (have hammer)
(and (maint have hammer)

(ach have saw))
(if (have saw)

(and (maint have saw)
(ach have hammer))

(if (closer-than hammer saw)
(ach have hammer)
(ach have saw)))))

The agent will pursue the closer object until he has
it, then pursue the second while maintaining
posession of the first. We might need a similar
rule for reducing the conjunctions of goals of
achievement and maintenance. Instead of the
specific rule above, we could write a more genetic
sequencing rule, like the following:
(defgoalr (aeh (and ?gl ?g2)

[gl-params g2-params])
(if (holds ?gl gl-params)

(and (maint ?gl gl-params)
(ach ?g2 g2-params))

(if (holds ?g2 g2-params)
(and (maint ?g2 g2-params)

(ach ?gl gl-params))
(if (better-to-pursue ?gl gl-params

?g2 g2-params)
(ach ?gl gl-params)
(ach ?g2 g2-params))))).

The genetic form of the rule assumes that there is
a Rex function, holds, that takes a compile-time
parameter and generates a circuit that tests to see
whether the predicate encoded by the compile-time
parameter and the run-time variables is true in the
world.

2.5. Prioritized Goal Lists

It is often convenient to be able to specify a
prioritized list of goals. In Gapps, we cart do this

44 LP. Kaelbling. S.J. Rosenschein /Action and Planning in Embedded Agents

with a goal expression of the form (prio goal-
exprl . . , goal-expr,). The semantics of this is

cond(dom(//1) , 171,

cond(dom(II2), 1-I2

cond(dom(/'/',_,), / ' / ' ,_,, /- I , ,) . . .)),
where/7 i = eval(goal-expri). The domain of a pro-
gram (true in a situation if the program has an
applicable action in that situation) is the disjunc-
tion of the conditions in the program. A program
for a prio goal executes the first program, unless it
has no applicable action, in which case it executes
the second program, and so on. At circuit-genera-
tion time, this construct can be implemented sim-
ply by concatenating the programs in priority
order, and executing the first action whose corre-
sponding condition is satisfied.

An example of the use of the prio construct
comes about when there is more than one way of
achieving a particular goal and one is preferable to
the other for some reason, but is not always appli-
cable. We might have the rule
(defgoalr (ach in-room r)

(prio (ach follow-planned-route-to r)
(ach use-local-navigation-to r))).

This rule states that the agent should travel to
rooms by following planned paths, but if for some
reason it is impossible to do that, it should do so
through local navigation. The same effect could be
achieved with an if expression, but this rule does
not require the higher-level construct to know the
exact conditions under which the higher-priority
goal will fail.

2.6. Prioritized Conjunctions

An interesting special case of a prioritized set
of goals is a prioritized conjunction of goals, in
which the most preferred goal is the entire con-
junction, and the less preferred goals are the con-
junctions of shorter and shorter prefixes of the
goal sequence. We define (prio-and G a G2 . . . G,)
to be

(prio (and G 1 G=... Gn)
(and G 1 G2... G,_ 1)""
(and G 1 G2)

GI).

Isaac Asimov's three laws of robotics [1] are a
well-known example of this type of goal structure.
As another example, consider a robot that can talk
and push blocks. It has as its top-level goal

(prio-and (maint not-crashed)

(ach (in block1 room3))

(maint humans-not-bothered)).

It also has rules that say that any action with the
null string in the talking field will maintain hu-
mans-not-bothered; that (in ?x ?y) can be achieved
by pushing ?x or by asking a human to pick it up
and move it; and that any action that keeps the
robot from coming into contact with a wall will
maintain not-crashed. As long as the robot can
push the block, it can satisfy all three conditions.
If, however, the block is in a comer, getting in a
position to push it would require sharing space
with a wall, thus violating the first subgoal. The
most preferred goal cannot be achieved, so we
consider the next-most-preferred goal, obtained by
dropping the last condition from the conjunction.
Since it is now allowed to bother humans, the
robot can satisfy its goal by asking someone to
move the block for it. As soon as the human
complies, moving the block out of the comer, the
robot will automatically revert to its former push-
ing behavior. This is a convenient high-level con-
struct for programming flexible reactive behavior
without the need for the programmer to explicitly
envision every combination of conditions in the
world. It is important to remember that all of the
symbolic manipulation of the goals happens at
compile time; at run time, the agent simply ex-
ecutes the action associated with the first condi-
tion that evaluates to true.

3. Extending Gapps

Gapps is an appropriate language for specifying
action maps that can be hard-wired at the compile
time of the agent. In this section, we will consider
ways of extending and augmenting Gapps to do
exhaustive planning at compile time, to do run-
time planning, and to do run-time goal reduction.

L.P. Kaelbling, S.J. Rosenschein / Action and Planning bl Embedded Agents 45

3.1. Unioersal Planning with Goal-Reduction
Schema

Schoppers [13] has introduced the notion of a
unioersal plan. A universal plan is a function that,
for a given goal, maps every possible input situa-
tion of the agent into an action that leads to (in an
informal sense) that goal. The program resulting
from the Gapps-evaluation of a goal can be
thought of as a universal plan, mapping situations
to actions" in service of the top-level goal.

Schoppers' approach differs from Gapps in that
the user specifies the capabilities of the agent in
an operator-description language. This language
allows the user to specify a set of atomic capabili-
ties of the agent, called operators, and the ex-
pected effect that executing each of the operators
will have on the world, depending possibly on the
state of the world in which the operator was
executed.

Another way to characterize operators is
through the use of a regression function [8]. The
relation q = regress(a, p) holds if, whenever q
holds in the world, the agent's performing action a
will cause p to hold in the world as a result. In
general, the regression function will return the
weakest such q. Regression is usually used to look
backwards from a goal~situation p; the proposi-
tion q describes a set of situations that are only
one "step" or operator application away from the
set of situations satsifying p. We know that if the
agent can get to a situation satisfying q, it can
easily get to a situation satisfying p.

The following schematic Gapps rule allows it to
do the exhaustive backward-chaining search that
is typically done by a planner, in order to con-
struct a universal plan. The Gapps compiler must
be augmented slightly by giving it a depth-bound
for its backward chaining, because this rule would,
by default, cause infinite backward chaining.
(defgoalr (aeh (before ?p ?q))

(if (holds ?q)
fail
(if (holds ?p)

(do anything)
(if (holds (regress ?a ?p))

(do ?a)
(ach (before (regress ?a ?p)

(regress ?a ?q)))))))

The reduction rule is for goals of the form (ach
(before ?p ?q)); that is, the goal is to achieve some
condition ?p before some other condition ?q ob-
tains. This form of achievement goal is, we think,
typ ica lp i t is rare that an agent has a goal of
achieving something no matter how long it takes.
The rule works as follows: if ?q is true in the
world, the agent fails; if ?p holds in the world,
then the agent can do anything because it has
achieved its goal; otherwise, if, for any action ?a,
(regress ?a ?p) holds (that is, performing action
?a will cause ?p to hold next time) then this goal
reduces to the goal (do ?a); finally, this goal can
be reduced to achieving, for any action ?a, (before
(regress ?a ?p) (regress ?a ?q). The final reduction
says that it is good for the agent to get into a state
from which action ?a achieves the goal ?p before
the agent gets into a state from which action ?a
achieves the releasing condition ?q, because once
that has been done, all the agent must do is do
action ?a.

Consider the application of this process to the
standard 3-block blocks-world problem. The ac-
tions are named atoms, like pab, which signifies
"pu t a on b." The world is described by predicates
like ca, which signifies "clear a" and obt, which
signifies "on b table." An additional predicate,
time(i), is true if the time on some global clock,
which starts at 0, is i. We will use the abbreviation
t i to stand for time(i). Given the goal (ach (before
(and oab obc) (time 2))1, the evaluation procedure
returns a program that is described proposition-
ally as follows:

{((rot 2 A obc A ca A cb), pab) ,

((~ t 2 ^ ~ t 1 ̂ obc A ca A cb), pa t) ,

((~ t 2 ̂ ~ t 1 A obc A oab A ca), pat) ,

((~ t 2 A ~ t I A ca ^ cb A cc), pbc),

((rot 2 A ~ t 1 A oba A cb A cc), pbc) }.

According to this program, if b is on c, a and b
are clear, and it is not time 2, then the agent can
put a on b; otherwise, if it is neither time 1 nor
time 2, the agent can do a variety of other things.
For instance, if b is on c and a and b are clear,
the agent can put a on the table. This illustrates
the generality of the program. Because it is not yet
time 1, it is acceptable to undo progress (we might
have some other reason for wanting to do this),
because there is time to put a back on b before

46 LP. Kaelbling, S.J, Rosenschein / Action and Planning in Embedded Agents

time 2. Notice that this program is not complete.
There axe situations for which it has no action,
because there are block configurations that cannot
be made to satisfy the goal in two actions. Notice
also that, because this is a program of the stan-
dard form used by Gapps, it can be conjoined in
with programs arising from other goals, such as
global maintenance goals. Its generality, in allow-
ing any sequence of actions that achieves the first
condition before the second, makes it more likely
that conjoining it in with a program expressing
some other constraint will result in a non-null
program.

3.2. Working in Parallel with an Anytime Planner

When the size of the state space is so large that
doing exhaustive planning at compile time is im-
practical, it is possible to solve problems described
as planning problems by integrating a run-time
planning system with the Gapps framework.

We can express the planning process as an
incremental computation, one step of which is
done on each tick. On each tick the process gener-
ates an output, but it may be one that means "I
don't have an answer yet." After some number of
ticks, depending on the size of the planning prob-
lem, the planner will generate a real result. This
result could be cached and executed as in a tradi-
tional system, or the agent could just take the first
action and wait for the planner to generate a new
plan.

Because time may have passed since the planner
began its task, we must take care that the plan it
generates is appropriate for the situation the agent
finds itself in when the planner is finished. This
can be guaranteed if the planner monitors the
conditions in the world upon which the cor-
rectness of its plan depends. If any of these condi-
tions becomes false, the planner can begin again.
This behavior will be correct, though not always
optimal. In the worst case, the planner will con-
tinuously emit the "I don't know" output and the
agent will react reflexively to its environment
without the benefit of a plan.

The kind of planner discussed above is a degen-
erate form of an anytime algorithm [3]. An any-
time algorithm always has an answer, but the
answer improves over time. In the example given
above, the answer is useless for a while, then
improves dramatically in one step. It might be

useful to have planning algorithms that improve
more gradually. Such algorithms exist for certain
kinds of path planning, for instance, in which
some path is returned at the beginning, but the
algorithm works to make the path shorter or more
efficient. There is still a difficult decision to be
made, however, about whether to take the first
step of a plan that is known to be non-optimal or
to spend more time planning. For many everyday
activities, optimality is not crucial, and it will be
sufficient to act on the basis of a simple plan, if a
plan is required at all.

From the perspective of Gapps, the anytime
planner is just a perceptual process that has state.
It is "perceiving" conditions of the form: "the
world is in a state such that if I do action a
followed by action /3, followed by action 7, my
goal will be achieved." The following Gapps pro-
gram makes use of such a planner, but also has
the potential for reacting to emergency situations:
(defgoalr (ach (in room) [r t])

(if (know-plan-for-getting-to-room r t)
(ach execute-first-step

(plan-for-getting-to-room r t))
(if (t ime- is-cr i t ical - for-gett ing-to-room r t)

(ach drive-in-the-direction-of-room r)
(maint sit-still)))).

If the agent has the goal of being in room r at time
t, and he knows a plan for getting there, then he
should execute the first step of that plan; other-
wise, if it looks like time is running out, the agent
should do the best action he can think of at the
moment; if there is no problem with time, his best
course of action is to sit still and wait until the
perception component has produced a plan. These
issues of combining planning and reactive action
are explored more fully by Kaelbling [4].

3.3. Run-Time Goals

So far, we have only addressed the case in
which the agent's top-level goal is specified at
compile time. It will often be the case that it is
useful to think of the agent as acquiring goals at
run time.

3.3.1. Dispatching
The simplest case of responding to run-time

goals is to consider them to be another type of

L P. Kaelbfing, S.J. Rosenschein / Action and Planning in Embedded Agents 47

perceived information and write goal-reduction
rules that are conditional on the given goal. As an
example of this, an agent could be given the static
compile-time goal of following orders and reduc-
tion rules of the following form:
(defgoalr (maint follow-orders)

(if (current-request-pending)
(ach goal-encoded-by

(perceived-command))
(do twiddle-thumbs)))

(defgoalr (ach goal-encoded-by params)
(i f (move-command params)

(ach do-move-command
(get-destination params))

(i f (stop-command params)
(ach stopped)
...))).

The agent will carry out requests as it perceives
them by dispatching to the right goal-reductions
based on the nature of the request. This method is
sufficient for many cases, but requires the run-time
goals to be of a few limited types, because the
different types must be tested for and dispatched
to directly.

3.3.2. Run Time Goal Reduction
An alternative to explicit dispatching on the

types of goals is to interpret Gapps-style goal-re-
duction rules at run time. An interpreter for Gapps
is very similar to the evaluation procedure, except
that the result at each step is a set of possible
actions, rather than a set of condition-action pairs.
This is because the interpretation is taking place
at run time, which allows all of the conditions to
be evaluated during the interpretation process,
rather than combined into a program that is to be
evaluated later. Any action can be chosen from
the set resulting from interpreting the top-level
goal in the current situation.

Given a reduction-rule set Gamma, we define
the interpretation procedure as follows:
define interp(G)
case first(G)

do : make-action-set(second(G),
rex-eval(third(G)))

and : conjoin-action-sets(interp(second(G)),
interp(third(G)))

or : disjoin-action-sets(interp(second(G)),
interp(third(G)))

not : interp(negate-goal-expr(second(G))).
if : if rex-eval(second(G)) then

interp(third(G)) else
interp(fourth(G))

maint,
ach : for all R in Gamma such that

match(G,head(R))
disjoin-action-sets(interp(body(R))

The function make-action-vector takes an index
and a value and returns the singleton set contain-
ing the action vector with the field specified by the
index set to the indicated value. That is,

make-action-vector(i, o) = { (g o ~) }.

The value is calculated by evaluating, in the cur-
rent state of the world, the Rex expression specify-
ing the primitive action. Using the functions
mergeable and merge described in Section 2.2, the
conjunction of action sets can be defined as

conjoin-action-sets(A', A")
((, ,,) (, ;,)} -- merge ai, a.i Imergeable a i , a

f o r l < i < m , l < j < n where
A' (' ' } ---- a 1 , 9 am
A " = (~; ' ~ " } .

The disjunction of two action sets is simply the
union of the sets:

disjoin-action-sets(A', A ') = A' U A ' .

The crucial difference between the interpreta-
tion procedure and the evaluation procedure is in
the if case. When the interpreter encounters an if
goal, it can simply test the condition in the current
state of the world and go on to interpret the
subgoal corresponding to the result of the test.
This obviates the need for manipulating formal
descriptions of conditions during the goal-inter-
pretation process.

If the rule set is fixed at compile time and is
not recursive, interpretation can be done by a
fixed circuit (written, perhaps, in Rex) whose
depth is equal to the length of the maximum-length
chain of rules in the rule set. If the rule set is
recursive, a depth bound will have to be imposed
in order to guarantee real-time response. Another
possiblity would be to make this into an anytime
algorithm by using iterative-deepening search over

48 L.P. Kaelbling~ S.J. Rosenschein / Action and Planning in Embedded Agents

the course of a number of ticks, and being careful
that conditions that have already been evaluated
do not change their values during the search pro-
CesS.

If the agent acquires goal reduction rules at run
time, perhaps through learning, then the interpre-
tation process can by carded out by general-pur-
pose goal-reduction machinery. It can either be
done in real time by a fixed circuit or over time by
an anytime search procedure. If interpretation is
to happen in real time, there must be a limit on
the number of reduction rules that can be applied,
in order to make the circuitry be of fixed size.

4. Conclusions

The Gapps goal-reduction formalism provides
a flexible, declarative method for describing the
action component of agents that must operate in
real-time in dynamic worlds. It has a formal
semantic grounding and has been implemented
and used in a variety of robotic applications. In
addition, it can be extended in a number of ways
for use in domains with different types of com-
plexity.

References

[1] Isaac Asimov, L Robot (Fawcett Crest, New York, 1950).
[2] Rodney A. Brooks, A robust layered control system for a

mobile robot, Technical Report AIM-864, MIT Artificial
Intelligence Laboratory, Cambridge, Massachusetts (1985).

[3] Thomas Dean and Mark Boddy, An analysis of time-de-
pendent planning, in Proceedings of the Seoenth National
Conference on Artificial Intelligence, Minneapolis-St. Paul,
Minnesota (1988).

[4] Leslie Pack Kaelbling, An architecture for intelligent reac-
tive systems, In Michael P. Georgeff and Amy L. Lansky
(eds), Reasoning About Actions and Plans, (Morgan Kauf-
mann, 1987) 395-410.

[5] Leslie Pack Kaelbling, Rex: A symbolic language for the
design and parallel implementation of embedded systems,
in Proceedings of the AIAA Conference on Computers in
Aerospace, Wakefield, Massachusetts (1987).

[6] Leslie Pack Kaelbling, Goals as parallel program specifi-
cations, in Proceedings of the Seoenth National Conference
on Artificial b~telligence, Minneapolis-St. Paul, Minnesota
(1988).

[7] Leslie Pack Kaelbling and Nathan J. Wilson, Rex pro-
grammer's manual, Technical Report 381R, Artificial In-
telligence Center, SRI International, Menlo Park, Cali-
fornia (1988).

[8] Stanley J. Rosenschein, Plan synthesis: A logical perspec-
tive, in Proceedings of the Seventh International Joint
Conference on Artificial Intelligence, Vancouver, British
Columbia (1981).

[9] Stanley J. Rosenschein, Formal theories of knowledge in
AI and robotics, New Generation Computing, 3(4) (1985)
345-357.

[10] Stanley J. Rosenschein, Synthesizing information-tracking
automata from environment descriptions, in Proceedings
of Conference on Principles of Knowledge Representation
and Reasoning, Toronto, Canada (1989).

[11] Stanley J. Rosenscbein and Leslie Pack Kaelbling, The
synthesis of digital machines with provable epistemic
properties, in Joseph Halpern (ed.) Proceedings of the
Conference on Theoretical Aspects of Reasoning About
Knowledge (Morgan Kaufmann, 1986) 83-98. An updated
version appears as Technical Note 412, Artificial Intelli-
gence Center, SKI International, Menlo Park, California.

[12] Stanley J. Rosenschein and Leslie Pack Kaelbling, In-
tegrating planning and reactive control, in Proceedings of
NASA/JPL Conference on Space Telerobotics, Pasadena,
California (1989).

[13] Marcel J. Sehoppers, Universal plans for reactive robots
in unpredictable environments, in Proceedings of the Tenth
International Joint Conference on Artificial Intelligence,
vol. 2, Milan (Morgan Kaufmann, 1987) 1039-1046.

