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Abstract 

In this paper, we suggest an approach to multi- 
agent planning that contains heuristic elements. Our 
method makes use of subgoals, and derived sub-plans, 
to construct a global plan. Agents solve their individ- 
ual sub-plans, which are then merged into a global 
plan. The suggested approach may reduce overall 
planning time and derives a plan that approximates 
the optimal global plan that would have been derived 
by a central planner, given those original subgoals. 

We consider two different scenarios. The first involves 
a group of agents with a common goal. The second 
considers how agents can interleave planning and exe- 
cution when planning towards a common, though dy- 
namic, goal. 

ecomposition Reducing Complexity 
The complexity of a planning process is measured by 
the time (and space) consumed. Let b be the branching 
factor of the planning problem (the average number of 
new states that can be generated from a given state by 
applying a single operator), and let cb denote the depth 
of the problem (the optimal path from the initial state 
to the goal state). The time complexity of the planning 
problem is then G(bd) (Korf 1987). 

In a multi-agent environment, where each agent can 
carry out each of the possible operators (possibly with 
differing costs), the complexity may be even worse. A 
centralized planner should consider assigning each op- 
erator to each one of the n agents. Thus, finding an 
optimal plan becomes O(n x b)d. 

However, if the global goal can be decomposed into 
n subgoals ((gr, . . . , gn)) the time complexity may be 
reduced significantly. Let bi and di denote respectively 
the branching factor and depth of the optimal plan 
that achieves gi . Then, as shown by Korf in (Korf 
1987), if the subgoals are independent or serializable,’ 
the central multi-agent planning time complexity can 
be reduced to Ci((n x bi)di), where bi M i and di M $. 

‘A set of subg oals is said to be independent if the plans 
that achieve them do not interact. If the subgoals are se- 
riulizable then there exists an ordering among them such 
that achieving any subgoal in the series does not violate 
any of its preceding subgoals. 
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This phenomenon of reduced complexity due to the 
division of the search space can be exploited most nat- 
urally in a multi-agent environment. The underlying 
idea is to assign to each agent a subgoal and let that 
agent construct the plan that achieves it. Since agents 
plan in parallel, planning time is further reduced to 
max;(n x bi)di. Moreover, if each agent is to generate 
its plan according to its own view (assuming that the 
available operators are common knowledge) then the 
complexity becomes mw(bi)d’. The global plan can 
then be constructed out of local plans that are based 
upon the agents’ local knowledge. Unfortunately, un- 
less the subgoals are independent or serial, the plans 
that achieve the set of subgoals interfere, and conflicts 
(or redundant actions) may arise and need to be re- 
solved. 

In this paper we suggest a heuristic approach to 
multi-agent planning that exploits this phenomenon of 
decomposed search space. The essential idea is that the 
individual sub-plans serve to derive a heuristic function 
that is used to guide the search for the global plan. This 
global search is then done in the space of world states 
which is pruned using the A* algorithm. Our method 
makes use of pre-existing subgoals. These subgoals are 
not necessarily independent, nor are they necessarily 
serial. The separate agents’ sub-plans, each derived 
separately and in parallel, are ultimately merged into a 
unified, valid global plan. The suggested approach may 
reduce overall planning time while deriving the optimal 
global plan that would have been derived, given those 
original subgoals. In multi-agent environments this ap- 
proach also removes the need for a central planner that 
has global knowledge of the domain and of the agents 
involved. 

Our scenario involves a group 4. = (al, . . . , a,} of n 
agents. These agents are to achieve a global goal G. 
The global goal, G, has been divided into n subgoals 
W 1,***9 G,}), and formulated as a subgoal planning 
problem (i.e., the interrelationship among subgoals has 
been specified). The agents communicate as they con- 
struct a global plan. 

A Simple Example 

Consider a scenario in the slotted blocks world. As de- 
scribed in Figure 1 there are three agents (al, o2,u3) 

Collaboration 375 

From: AAAI-94 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved. 



and 4 blocks (a,b,c,d) with lengths of 1,2,2, and 3 
respectively. The world may be described by the fol- 
lowing relations: Clear(b)(-there is no object on b); 
On(b, x, V/H)(-b is located on block/location x ei- 
ther vertically (V) or horizontally (H)); At(x, Zoc)(- 
the left edge of object x (agent or block) is at Zoc). 

The functions r(b) and Z(b) return the region of b’s 
left edge, .and the length of b, respectively. We will use 
only the first letter of a predicate to denote it. 

Figure 1: An Arch in the Blocks World 

The available operators (described in a STRIPS-like 
fashion) are: 

Takei(b, x, y)- Agent i takes b from region/block x 
to region/bloc y: [cost: IZoc(=) - Zoc(y)l x Z(b), pre: 
C(b),C(y),A(e, a), del: C(Y)P+, x)4(4 x),O(h 2, 
Z)r add: C(x)90(b, Y9 z)4(%s Y),A(b~ Y)l 

Rotatei -i rotates b by *F: [cost: Z2(b), pre: 
C(b), A(ai, r(b)), del: O(b, X, z), add: O(b, X, z)] (.I? 
denotes V and vice versa) 

Movoi(x, y)--i goes from x to y: [cost: IX - 91, 
pre: A(%, x), del: A(%, x), add: A(a;, y)] 

The initial state is described in the left side of Fig- 
ure 1. The agents are to construct an arch such as the 
one pictured in the right side of the figure. A straight- 
forward division into subgoals is to first construct left 
and right columns (appropriately distant and aligned) 
and then put up a top. Given this Q priori breakdown 
into subgoals, our agents are to go through a planning 
process that will result in satisfying the original goal. 

Assumptions and Definitions 
o The global goal, G, is a set of predicates, possibly 

including uninstantiated variables. g denotes any 
grounded instance of G (a set of grounded predicates 
that specifies a set of states). We assume that G is 
divided into n abstract subgoals (Gr, G2, . . . , G,), 
such that there exists a consistent set of instances of 
these subgoals that satisfies G (Uigi b G). 
In accordance with the possibly required (partial) 
order of subgoal achievement, we denote the pre- 
conditions for any plan, pi, that achieves gi by go 
(which for most subgoals is simply the initial state). 

e Each pi is expressed by the set of the essential propo- 
sitions that enable any sequence of operators that 
construct it. These propositions are partially or- 
dered according to their temporal order in pie2 

2Using SNLP (McAllester & Rosenblitt 1991) terminol- 
ogy, these are the propositions in the causal links that con- 
struct the “nonlinear abstraction” of pi, partially ordered 

For the merging/composition process to find the (op- 
timal) global plan, it will, in general, be necessary 
to generate more than just one plan for some sub- 
goals. 4 denotes the depth (radius) of the search 
that is needed so as to generate the sufficient num- 
ber of sub-plans that achieve gi. We assume that 4 
is known ahead of time (for each gi)a3 Pi denotes 
the (sufficient) set of plans that is generated within 
this h-depth search. 

Each agent has a cost jknction over the domain’s op- 
erators. The cost of aj’~ plan cj(pj) is Cr.r cj(opk). 

Given that the set of propositions E holds (in some 
world state), F&,,,,, (E) is defined to be the set of 
all propositions that can be satisfied by invoking at 
most one operator at that state. (Fjllow (E) = (I I 
%[OP(E) I= 111 h w ere qp(E) denotes the invocation 
of op at a state that satisfies E.) Similarly, F&-(E) 
is the set of propositions that can be achieved by 
invoking at most two operators simultaneously (by 
two agents) given E, and Fslow (E) is the set that 
can be achieved by at most n simultaneous actions. 

The Process 
At the beginning of the planning process each agent, 
i, is assigned (for the purposes of the planning pro- 
cess) one subgoal gi. Given that subgoal, the agent de- 
rives Pi, the (sufficient) set of sub-plans that achieves 
it given some initial configuration gf. 

The significant savings in time and space complex- 
ity of the search is established by the decomposition of 
the search space and by parallelism of the search. How- 
ever, the primary phase of the subgoal technique is the 
process of merging the sub-plans that achieve the given 
subgoals. A sub-plan is constructed by an agent with 
only a local view of the overall problem. Therefore, 
conflicts may exist among agents’ sub-plans, and re- 
dundant actions may also have been generated. Given 
the set of sub-plans, we are looking for a method to 
inexpensively merge them into an optimal global plan. 

To do so we employ an iterative search. The un- 
derlying idea is the dynamic generation of alternatives 
that identifies the optimal global plan. At each step, all 
agents state additional information about the sub-plan 
of which they are in charge. The current set of candi- 
date global plans is then expanded to comprise the new 
set of candidate global plans. The process continues 

according to their safety conditions, and stated as prerequi- 
sites (preconditions in UCPOP’s terminology (Penberthy & 
Weld 1992)) (e.g., if step w has prerequisite On(z, B) and 
step 8 enables it by establishing On(A,B), the essential 
proposition is On(x, B) rather than On( A, B)). 

3This unrealistic assumption is needed only for the com- 
pleteness of the planning process. However, using domain 
dependent knowledge, the corresponding d;‘s may be as- 
sessed heuristically. In general, the more the sub-plans will 
tend to interact (and the closer to optimal the solution 
needs to be) the deeper the d;‘s that are needed. 
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until the optimal plan is found. Plans are represented 
by the partially ordered sets of the essential proposi- 
tions that enable them. These sets of propositions are 
aggregated throughout the process. 

We use ordered propositions instead of sequences of 
operators for the following reasons. First, the con- 
structed sub-plans serve only to guide the heuristic 
search for the actual global multi-agent plan. The cat- 
t& multi-agent action to establish a proposition is de- 
termined only during the merging process itself. This is 
essential for the efficiency of the resulting multi-agent 
plan.4 Second, the propositions encode all the infor- 
mation needed for the heuristic evaluation. And third, 
by dealing with propositions we achieve more flexibil- 
ity (least commitment) in the merging process, both 
in the choice of operators and in their bindings. 

Note that the essential search method is similar to 
the search employed by progressive world-state plan- 
ners. In general, the search through the space of states 
is inferior to the search, as conducted by POCL plan- 
ners, through the space of plans (Minton, Bresina, & 
Drummond 1991). The reason is that any (nonde- 
terministic) choice of action within the first method 
also enforces the timing of that action (and thus, a 
greater breadth of search is needed to ensure complete- 
ness, e.g., in the Sussman anomaly). However, given 
the individual sub-plans, our merging procedure need 
consider only a small number of optional expansions, 
among which the heuristic evaluation “foresees” most 
commitments that may result in backtracking. Thus, 
becomes possible and worthwhile to avoid the causal- 
link-protection step of the POCL planners. 

To achieve that, the search method employs an A* 
algorithm where each path represents one optional 
global multi-agent plan. The heuristic function (f’ = 
g+h’) that guides the search is dynamically determined 
by the agents during the process. g is the actual cost 
of the partial path (multi-agent plan) that has already 
been constructed. h’ is the sum of the approximate re- 
maining costs, hi, that each agent assigns to that path, 
based on its own generated sub-plan. Since based upon 
an actually constructed plan, each individual estimate, 
hi, is absolutely accurate in isolation. Thus, if the sub- 
goals are independent, then the global heuristic func- 
tion (Cy hi) will b e accurate, and the merging process 
will choose the correct (optimal) candidate for further 
expansion at each step of the process. 

Unfortunately, since in general sub-plans will tend 
to interfere with one another, h’ is an underestimate 
(the individual estimates will turn out to be too op- 
timistic). An underestimated heuristic evaluation is 
also desirable, since it will make the entire A* search 

*For examp Ie it might be the case that towards the , 
achievement of his assigned subgoal a; planned to perform 
spa in order to establish proposition P, but in the multi- 
agent plan P will actually be established by oj performing 
op,, Therefore, what counts for the global plan is what is 
established, rather than how it is established. 

admissible, meaning that once a path to the global 
goal has been found, it is guaranteed to be the optimal 
one. However, due to overlapping constraints (“favor 
relationsn (Martial 1990), or “positive” interactions) 
the global heuristic evaluation might sometimes be an 
overestimate. Therefore, the A* search for the optimal 
path would (in those cases) have to continue until the 
potential effect of misjudgment in the global heuristic 
evaluation fades away. In general, the more overlap ap- 
pears in the individual sub-plans, the more additional 
search steps are needed. 

More specifically, the agents go through the follow- 
ing search 100~:~ 

At step Ire one aggregated set (of propositions), A:+, 
is chosen from all sets with minimal heuristic value, 
J@+. This set (with its corresponding multi-agent 
plan) is the path currently being considered. Each 
agent declares the maximal set of propositions, Et, 
such that: 
(a). These propositions represent some possible se- 
quence of consecutive operators in the agents’ pri- 
vate sub-plan, and all their necessary predecessors 
hold at the current node. 
(b). The declaration is “feasible,” i.e., it can be 
achieved by having each of the agents perform at 
most one action simultaneously with one another 
(ET c ~L7u (A;+)). 

All (set-theoretic) maximal feasible expansions of 
A!+ with elements of the agents’ declarations are 

glnerated. [Each expansion, Ez(Ai+), is one of 
the fixed points {I 1 (I E Ui El)r\(I U Ez(Ai+) E 
Fzrilow (A:+)). Note that this is only a subset of the 
expansions that a “blind planner” should generate.] 

At this stage, based on the extended set of proposi- 
tions, the agents construct additions to the ongoing 
candidate plans. Each expansion that was generated 
in the previous step induces a sequence of operations 
that achieves it. The generation of these sequences 
is discussed below. 

All expansions are evaluated, in a central manner, so 
as to direct the search (i.e., find the value, f’ = g+h’, 
of the A* evaluation function): 
(a). The g component of each expansion is simply 
taken to be the cost of deriving it (the cost of the 
plan that is induced by the current path plus the 
additional cost of the multi-agent plan that derives 
the expansion). 
(b). To determine the heuristic component, h’, each 
agent declares hi, the estimate it associates with 

‘The set of all aggregated sets of propositions at step 
k is denoted by A’ (its constituent sets will be denoted 
by A$, where j is simply an index over those sets). dk+ 
denotes the set that has the maximal value according to 
the heuristic function at step k. 
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5. 

each newly-formed set of aggregated propositions. 
This is the cost it associates with completing its 
“private” sub-plan, given that the expansion is es- 
tablished. The h’ value is then taken to be the sum 
of these estimates (xi hi(Ez,(Ak+))). 

The aggregated set A:+ is replaced by its union with 
all of its expansions: A’+’ = (A’; \ A$+) U (Ai+U 
Ea,(A;+)}. 

The process ends when all “best plans” have been 
found. Since the heuristic function is not guaranteed 
to be an underestimate, stopping when the first global 
plan has been generated may not result in the optimal 
global plan. It is a matter of policy, how much more 
searching the agents should do (if at all) to discover 
better global plans. 

The entire process has the following advantages from 
a complexity point of view. First, the branching factor 
of the search space is strictly constrained by the indi- 
vidual plans’ propositions. Second, the A* algorithm 
uses a relatively good heuristic function, because it is 
derived “bottom-up” from the plans that the agents 
have already generated (not simply an artificial h’ func- 
tion). Third, generation of successors in the search tree 
is split up among the agents (each doing a part of the 
search for a successor). Fourth, the heuristic function 
is calculated only for maximally “feasible” alternatives 
(infeasible alternatives need not be considered). 

Theorem 1 Given Pi, the sub-plans that achieve each 
subgoal (gi), the merging algorithm will find the opti- 
mal multi-agent plan that achieves these subgoals. The 
process will end within O(q x d) steps where d is the 
length of the optimal plan, and q is a measure of the 
positive interactions between overlapping propositions. 

In comparison to planning by a central planner, the 
overall complezity of the planning process, O((nx b)d), 
is reduced to O(mq b? + bxnxqxd), where bfi M ( i) fk. 

Proof: The formal proofs of the theorems in this paper 
appear in (Ephrati 1993). 

Construction of the Global 
The multi-agent plan is constructed throughout the 
process (Step 3 of the algorithm). At this step, all the 
optimal sequences of operators are determined. We re- 
quire that the actual plan be constructed dynamically 
in order to determine the g value of each alternative. 
The construction of the new segments of plans is de- 
termined by the cost that agents assign to each of the 
required actions; each agent bids for each action that 
each expansion implies. The bid that each agent gives 
takes into consideration the actions that the agent has 
been assigned so far. Thus, the global minimal cost 
sequence can be determined. 

An important aspect of the process is that each ex- 
pansion of the set of propositions belongs to the FzIow 
of the already achieved set. Therefore, it is straightfor- 
ward to detect actions that can be performed in par- 
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allel. Thus the plan that is constructed is not just 
cost-efficient, but also time-efficient. 

There are several important tradeoffs to be made 
here in the algorithm, and the decision of the system 
designer will affect the optima&y of the resulting plan. 
First, it would be possible to use Best First Search 
instead of A* so as to first determine the entire set 
of propositions, and only then construct the induced 
plan. Employing such a technique would still be less 
time-consuming than global planning. Second, when 
the agents add on the next steps of the global plan, 
they could consider the (developing) global plan from 
its beginning to the current point when deciding on 
the least expensive sequence of additional steps. This 
will (eventually) result in a globally optimal plan, but 
at the cost of continually reevaluating the developing 
plan along the way. Alternatively, it is possible to save 
all possible combinations of the actions that achieve 
any Ex, (A;+), and thus have a set of plans corre- 
spond to each expansion. 
E; c F;,,(&+) t 

Third, each agent declares 
0 ensure maximal parallelism in 

the resulting global plan. However, agents may relate 
just to Fillow (.A”+) and establish parallelism only after 
the global plan is fully constructed. 

Back to the Example 
Consider again the example. Assume that the agents’ 
subgoals are (respectively): gr = {A(c, l), O(c, 1, V), 
C(c)39 Q2 = (A@, a), O(h 3, V), C(b)), and g3 = 
(A(4 1),0(4 =, V)). To simplify things we will 
use throughout this example FtllouI (A”+) instead of 
F,$- (A’+). Th e resulting multi-agent plan is illus- 
trated in Figure 2. 

Given these subgoals, the agents will generate the 
following sets of propositions:” 

PI = ([C(a), A(c, l), A(ui, +#olu[C(c)][‘lu 
[A(ai,r(c))][2]U[O(c, 1, V)][“]} (this ordered set corre- 
sponds to the plan (Tl(a, 2,3), Mr(3, l), RI(C))). 

232 = ([C(b), A( uj, r(b)), C(3)J[‘b[O(b, 3, V)][“J} (in- 
ducing the plan (Tf(b, 4,3))). 

~3 = ([C(b), C(3)]["] U [A(a, r(b)), C(3)][21U[C(d)][21 
u[A(Q, r(d)][‘]u[g2, gr, O(d, c, H)]l’l) (inducing the -- 
plan (~3(6,4),T3(b,4,3),M3(3,4),T3(d,4,1))). 

Notice that there exists a positive relation between 
~2% and ~3’s sets of propositions (both would need 
block b to be removed from on top of block d), but 
there is a possible conflict, slot 3, between their plans 
and al’s plan. 
At the first iteration, there is only one candidate 
set for expansion-the empty set. The aggregated set 

6We underline propositions that, once satisfied, must 
stay valid throughout the process (e.g., propositions that 
construct the final subgoal). The region b denotes any re- 
gion besides r(b). W e use only the first letter of operators 
and predicates to denote them. The additional estimated 
cost of satisfying a subset of propositions appears in the 
superscript brackets. 



of declared DroDositions is: 
[A(c, l), C(O), e(b), C(3), A(ai, r(a)), A(uj, +)I- The 
(sole) expansion is fully satisfied by the initial state; 
therefore, g(A’) = 0, and f’(A’) is equal to its h’ value 
(that is, the sum of the individual estimate costs, which 
is 23, i.e., = 7 + 2 + 14, a heuristic overestimate of 4). 

t the second iteration, ~1 declares [C(c)], u2 de- -_- 
clares [O(b, 3, V)], and u3 may already declare [C(d)]. 

All declarations are in F&,(.,4’). Thus, Ex(A1) = 
[C(c), O(b, 3, V), C(d)]). These propositions can be 
achieved by Ti (a, 2,0) and Tj(b, 4,3). The bids that 
czl,a2 and u3 give to these actions are respectively 
[2,5], [4,2], and [6,4]. Therefore, u1 is “assigned” 
to block u and (~2 is assigned to block b while 
us remains unemployed. ‘l!he constructed plan is 
((Tl(a, 2,0), T2(b, 4,3))) (where both agents perform 
in parallel), yielding a g value of 4. 
At the third iteration, (A2+ = [C(c), O(b, 3, V), 
C(d)]), u1 declares [A(a;,r(c))] and u3 declares [A(uk, 

f@)hwl~ A ccording to the agents’ bids, this expan- 
sion can best be achieved by ({M’l(O, l), &(3,4)}) 
At the fourth iteration, only al has a feasible ex- 
pansion to the current best set, that is [O(c, 1, V)] 
(note that a3 may not declare his final subgoal before 
~2’s and ~1% assigned subgoals are satisfied). The cor- 
responding segment of the multi-agent plan is (RI(c)). 
Finally, at the fifih iteration, only ~3% assigned goal 
is not satisfied, and he declares [O(d, c, H)]. This last 
expansion is best satisfied by (Tz(d, 4,1)). Thus, the 
overall cost is 19. Notice that the final goal is achieved 
without any physical contribution on the part of as. 

Figure 2: The resulting multi-agent plan 

Interleaved Planning and Execution 
The multi-agent planning procedure is based on the 
incremental process of merging sub-plans. This at- 
tribute of the process makes it very suitable for sce- 
narios where the execution of the actual plan is ur- 
gent. In such scenarios it is important that, parallel 
to the planning process, the agents will actually exe- 
cute segments of the plan that has been constructed 
so far (Dean & Boddy 1988; Durfee 1990). We assume 
that there is some look-ahead factor, 1, that specifies 
the number of planning steps that should precede the 
actual execution step(s). We also assume that each 
agent can construct the- first 1 optimal steps (in terms 
of propositions) of its own sub-plan. 

The fact that in order to find the first step(s) of the 
multi-agent optimal plan it is important for the merg- 
ing process to have only the corresponding first step(s) 

of the individual sub-plans, also makes the process very 
suitable for scenarios where the global goal may change 
dynamically. In such cases, the required revision of 
the (merged) multi-agent plan may sufficiently be ex- 
pressed only by the first 1 look-ahead steps. More- 
over, the process is flexible in response to such global 
changes, since they may be handled through the di- 
vision of the new goal into subgoals. Thus, a change 
in the global goal may be reflected only in changes in 
several subgoals, and plan revision is needed only in 
several sub-plans. 

We can therefore use the planning algorithm in sce- 
narios where planning and execution are interleaved, 
and goals may dynamically change. As in the previous 
scenario, the key element of the approach is a cost- 
driven merging process that results in a coherent global 
plan (of which the first 1 sets of simultaneous operators 
are most relevant), given the sub-plans. At each time 
step t each agent, i, is assigned (for the purposes of the 
planning process) one task and derives (the first 1 steps 
of) p,“, the sub-plan that achieves it. Note that once i 
has been assigned g4 at any given t, the plan it derives 
to accomplish the subgoal stays valid (for the use of 
the algorithm) as long as gi remains the same. That 
is, for any time t + Ic such that gj+k = gi, it holds that 

t+k pi = pi. Thus, re-planning is modularized among 
agents; one agent may have to re-plan, but the others 
can remain with their previous plans. 

As in the previous scenario, at each step, all agents 
state additional information about the sub-plan of 
which they are in charge. The next 1 optimal steps are 
then determined and the current configuration of the 
world, st, is changed to be st+‘. The process continues 
until all tasks have been accomplished (the global goal 
as of that specific time has been achieved). 

Since steps of the plan are executed in parallel to the 
planning process, the smaller the look-ahead factor is, 
the smaller the weight of the g component of the eval- 
uation function becomes (and the more the employed 
search method resembles Hill Climbing). Therefore, 
the resulting multi-agent plan may only approximate 
the actual optimal global plan. 

Theorem 2 Let the cost eflect of “positive” interac- 
tions among members of some subset, p, of the set 
of sub-plans, P t, that achieves Gt be denoted by 6$, 
and let the cost e#ect of “negative” interactions among 
these sub-plans be denoted by 6;. Accordingly, let 
6 = maxpEps 1 6p+ - 6; 1.7 We say that the multi- 
agent plan that achieves Gt is 6-optimal, if it diverges 
from the optimal plan by at most 6. 

Then, at any time step t, employing the merging al- 
gorithm, the agents will follow a 6-optimal multi-agent 
plan that achieves Gt. 

‘The effect of heuristic overestimate (due to positive fu- 
ture interaction between individual plans) and the effect of 
heuristic underestimate (due to interference between indi- 
vidual plans) offset one another. 
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Conclusions and Related Work 
In this paper, we presented a heuristic multi-agent 
planning framework. The procedure relies on an u pri- 
ori division of the global goal into subgoals. Agents 
solve local subgoals, and then merge them into a global 
plan. By making use of the computational power of 
multiple agents working in parallel, the process is able 
to reduce the total elapsed time for planning as com- 
pared to a central planner. The optima&y of the pro- 
cedure is dependent on several heuristic aspects, but 
in general increased effort on the part of the planners 
can result in superior global plans. 

An approach similar to our own is taken in (Nau, 
Yang, & Hendler 1990) to find an optimal plan. It is 
shown there how planning for multiple goals can be 
done by first generating several plans for each subgoal 
and then merging these plans. The basic idea there is 
to try and make a global plan by repeatedly merging 
complete plans that achieve the separate subgoals and 
answer several restrictions. In our approach, there are 
no prior restrictions, the global plan is created incre- 
mentally, and agents do the merging in parallel. 

In (Foulser, Li, 8z Yang 1992) it is shown how to 
handle positive interactions efficiently among different 
parts of a given plan. The merging process looks for 
redundant operators (as opposed to aggregating propo- 
sitions) within the same grounded linear plan in a dy- 
namic fashion. In (Yang 1992), on the other hand, 
it is shown how to handle conflicts efficiently among 
different parts of a given plan. Conflicts are resolved 
by transforming the planning search space into a con- 
straint satisfaction problem. The transformation and 
resolution of conflicts is done using a backtracking al- 
gorithm that takes cubic time. In our framework, both 
positive and negative interactions are addressed simul- 
t aneously. 

Our approach also resembles the CEMPLAN plan- 
ning system (Lansky & Fogelsong 1987; Lansky 1990). 
There, the search space is divided into “regions” of ac- 
tivity. Planning in each region is done separately, but 
an important part of the planning process within a re- 
gion is the updating of its overlapping regions (while 
the planning process freezes). 

Our planning framework also relates to the approach 
suggested in (Wellman 1987). There too the planning 
process is viewed as the process of incremental con- 
straint posting. A method is suggested for assigning 
preferences to sets of constraints (propositions in our 
terminology) that will direct the planner. However, 
the evaluation and comparison between alternatives is 
done according to the global-view of the single planner, 
and is based on pre-defined dominance relations. 
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