
2 INTELLIGENT AGENTS

In which we discuss the nature of agents, perfect or otherwise, the diversity of
environments, and the resulting menagerie of agent types.

Chapter 1 identified the concept of rational agents as central to our approach to artificial
intelligence. In this chapter, we make this notion more concrete. We will see that the concept
of rationality can be applied to a wide variety of agents operating in any imaginable environ-
ment. Our plan in this book is to use this concept to develop a small set of design principles
for building successful agents—systems that can reasonably be called intelligent.

We begin by examining agents, environments, and the coupling between them. The
observation that some agents hehave Netter than others leads naturally to the idea of a rational
agent—one that behaves as well as possible. How well an agent can behave depends on
the nature of the environment; some environments are more difficult than others. We give a
crude categorization of environments and show how properties of an environment influence
the design of suitable agents for that environment. We describe a number of basic "skeleton"
agent designs, which we flesh out in the rest of the book.

2.1 AGENTS AND ENVIRONMENTS

ENVIRONMENT

SENSOR

ACTUATOR

PERCEPT

PERCEPT SEQUENCE

An agent is anything that can be viewed as perceiving its environment through sensors and
acting upon that environment through actuators. This simple idea is illustrated in Figure 2.1.
A human agent has eyes, ears, and other organs for sensors and hands, legs, vocal tract, and so
on for actuators. A robotic agent might have cameras and infrared range finders for sensors
and various motors for actuators. A software agent receives keystrokes, file contents, and
network packets as sensory inputs and acts on the environment by displaying on the screen,
writing files, and sending network packets.

We use the term percept to refer to the agent's perceptual inputs at any given instant. An
agent's percept sequence is the complete history of everything the agent has ever perceived.
In general, an agent's choice of action at any given instant can depend on the entire percept
sequence observed to date, but not on anything it hasn't perceived. By specifying the agent's
choice of action for every possible percept sequence, we have said more or less everything

34

Agent Sensors

Pi.rciipts

7

IT
AL

U
TI

O
SI

AU

Actual in

Actions

1

Figure 2.1 Agents interact with environments through sensors and actuators.

Section 2.1. Agents and Environments 35

there is to say about the agent. Mathematically speaking, we say that an agent's behavior is
AGENT FUNCTION described by the agent function that maps any given percept sequence to an action.

We can imagine tabulating the agent function that describes any given agent; for most
agents, this would he a very large table—infinite, in fact, unless we place a bound on the
length of percept sequences we want to consider. Given an agent to experiment with, we can,
in principle, construct this table by trying out all possible percept sequences and recording
which actions the agent does in response) The table is of course, an eviernal characterization
of the agent. Internally, the agent function for an artificial agent will be implemented by an

AGMIT mown,' agent program. It is important to keep these two ideas distinct. The agent function is an
abstract mathematical description; the agent program is a concrete implementation, running
within some physical system.

To illustrate these ideas, we use a very simple example—the vacuum-cleaner world
shown in Figure 2.2. This world is so simple that we can describe everything that happens;
it's also a made-up world, so we can invent many variations. This particular world has just two
locations: squares A and B. The vacuum agent perceives which square it is in and whether
there is dirt in the square. It can choose to move left, move right, suck up the dirt, or do
nothing. One very simple agent function is the following: if the current square is dirty, then
suck; otherwise, move to the other square. A partial tabulation of this agent function is shown
in Figure 2.3 and an agent program that implements it appears in Figure 2.8 on page 48.

Looking at Figure 2.3, we see that various vacuum-world agents can be defined simply
by filling in the right-hand column in various ways. The obvious question, then, is this: Wiwi
is the right way to fill out the table? In other words, what makes an agent good or bad,
intelligent or stupid? We answer these questions in the next section,

If the agent uses some randomization to choose its actions, then we would have to try each sequence many
times to identify the probability of each action. One might imagine that acting randomly is rather silly, but we
show later in this chapter that it can be very intelligent.

36 Chapter 2. Intelligent Agents

13

600
c> 0(3

Figure 2.2 A vacuum-cleaner world with just two locations.

Percept sequence Acticn

[A, Clean]
[A, Dirty]
[B, Clean]
[l3, Dirty]
[A, Clean], [A, Clean]
[A, Clean], [A, Dirty]

.
[A, Clean], [A, Clean], [A, Clean]
[A, Clean], [A, Clean], [A, Dirty]

:

Right
Suck
Left
Suck
Right
Suck

:
Right
Snek

.

Figure 2.3 Partial tabulation of a simple agent function for the vacuum-cleaner world
shown in Figure 2.2.

Before closing this section, we should emphasize that the notion of an agent is meant to
be a tool for analyzing systems, not an absolute characterization that divides the world into
agents and non-agents. One could view a hand-held calculator as an agent that chooses the
action of displaying "4" when given the percept sequence "2 t- 2 =," but such an analysis
would hardly aid our understanding of the calculator. In a sense. all areas of engineering can
be seen as designing artifacts that interact with the world; AI operates at (what the authors
consider to he) the most interesting end of the spectrum, where the artifacts have significant
computational resources and the task environment requires nontrivial decision making.

2.2 GOOD B EHAVIOR: THE CONCEPT OF RATIONALITY

RATIONAL AGENT A rational agent is one that does the right thing—conceptually speaking, every entry in the
table for the agent function is filled out correctly. Obviously, doing the right thing is better
than doing the wrong thing, but what does it mean to do the right thing'

Section 2.2. Good Behavior: The Concept of Rationality 37

PERFORMANCE
MEASURE

DENITION OF A
RARONAL AGENT

We answer this age-old question in an age-old way: by considering the consequences
of the agent's behavior. When an agent is plunked down in an environment, it generates a
sequence of actions according to the percepts it receives. This sequence of actions causes the
environment to go through a sequence of states. If the sequence is desirable, then the agent
has performed well. This notion of desirability is captured by a performance measure that
evaluates any given sequence of environment states.

Notice that we said environment states, not agent states. if we define success in terms
of agent's opinion of its own performance, an agent could achieve perfect rationality simply
by deluding itself that its performance was perfect. Human agents in particular are notorious
for "sour grapes"—believing they did not really want something (e.g., a Nobel Prize) after
not getting it

Obviously, there is not one fixed performance measure for all tasks and agents; typically,
a designer will devise one appropriate to the circumstances. This is not as easy as it sounds.
Consider, for example, the vacuum-cleaner agent from the preceding section. We might
propose to measure performance by the amount of dirt cleaned up in a single eight-hour shift.
With a rational agent, of course, what you ask for is what you get. A rational agent can
maximize this performance measure by cleaning up the dirt, then dumping it all on the floor,
then cleaning it up again, and so on. A more suitable performance measure would reward the
agent for having a clean floor. For example, one point could be awarded for each clean square
at each time step (perhaps with a penalty for electricity consumed and noise generated). As
a general rule, it is better to design performance measures according to what one actually
wants in the environment, rather than according to how one thinks the agent should behave.

Even when the obvious pitfalls are avoided, there remain some knotty issues to untangle.
For example, the notion of "clean floor" in the preceding paragraph is based on average
cleanliness over time. Yet the same average cleanliness can be achieved by two different
agents, one of which does a mediocre job all the time while the other cleans energetically but
takes long breaks. Which is preferable might seem to be a fine point of janitorial science, but
in fact it is a deep philosophical question with far-reaching implications. Which is better—
a reckless life of highs and lows, or a safe but himidnim existence? Which is better—an
economy where everyone lives in moderate poverty, or one in which some live in plenty
while others are very poor? We leave these questions as an exercise for the diligent reader.

2.2.1 Rationality

What is rational at any given time depends on four things:
• The performance measure that defines the criterion of success.
• The agent's prior knowledge of the environment.
• The actions that the agent can perform.
• The agent's percept sequence to date.

This leads to a definition of a rational agent:

For each possible percept sequence, a rational agent should select an action that is ex-
pected to maximize its performance measure, given the evidence provided by the percept
sequence and whatever built-in knowledge the agent has.

38 Chapter 2. Intelligent Agents

OMNECENCE

Consider the simple vacuum-cleaner agent that cleans a square if it is dirty and moves to the
other square if not; this is the agent function tabulated in Figure 2.3. Is this a rational agent?
That depends! First, we need to say what the performance measure is, what is known about
the environment, and what sensors and actuators the agent has Let us assume the following:

■ The performance measure awards one point for each clean square at each time step,
over a "lifetime" of 1000 time steps.

■ The "geography" of the environment is known a priori (Figure 2.2) but the dirt distri-
bution and the initial location of the agent are not. Clean squares stay clean and sucking
cleans the current square. The Left and Hight actions move the agent left and right
except when this would take the agent outside the environment, in which case the agent
remains where it is.

• The only available actions are Left, Right, and Suck.

■ The agent correctly perceives its location and whether that location contains dirt.

We claim that under these circumstances the agent is indeed rational; its expected perfor-
mance is at least as high as any other agent's. Exercise 2.2 asks you to prove this.

One can see easily that the same agent would be irrational under different circum-
stances. For example, once all the dirt is cleaned up, the agent will oscillate needlessly back
and forth; if the performance measure includes a penalty of one point for each movement left
or right, the agent will fare poorly. A better agent for this case would do nothing once it is
sure that all the squares are clean. If clean squares can become dirty again, the agent should
occasionally check and re-clean them if needed. If the geography of the environment is un-
known, the agent will nccd to explore it rather than stick to squares A and B. Exercise 2.2
asks you to design agents for these cases.

2.2.2 Omniscience, learning, and autonomy

We need to be careful to distinguish between rationality and omniscience. An omniscient
agent knows the actual outcome of its actions and can act accordingly; but omniscience is
impossible in reality. Consider the following example: I am walking along the Champs
Elysees one day and I see an old friend across the street There is no traffic nearby and I'm
not otherwise engaged, so, being rational, I start to cross the street Meanwhile, at 33,000
feet, a cargo door falls off a passing airliner, 2 and before I make it to the other side of the
street I am flattened. Was I irrational to cross the street? It is unlikely that my obituary would
read "Idiot attempts to cross street."

This example shows that rationality is not the same as perfection. Rationality max-
imizes expected performance, while perfection maximizes actual performance. Retreating
from a requirement of perfection is not just a question of being fair to agents. The point is
that if we expect an agent to do what turns out to be the best action after the fact, it will be
impossible to design an agent to fulfill this specification—unless we improve the performance
of crystal balls or time machines.

2 See N. Henderson, "New door latches urged for Boeing 747 jumbo jets," Washington Poe, August 24. 1989.

Section 2.2. Good Behavior: The Concept of Rationality 39

AUTONOMY

Our definition of rationality does not require omniscience, then, because the rational
choice depends only on the percept sequence to date. We must also ensure that we haven't
inadvertently allowed the agent to engage in decidedly underintelligent activities. For exam-
ple, if an agent does not look both ways before crossing a busy road, then its percept sequence
will not tell it that there is a large truck approaching at high speed. Does our definition of
rationality say that it's now OK to cross the road? Far from it! First, it would net be rational
to cross the road given this uninformative percept sequence: the risk of accident from cross-
ing without looking is too great. Second, a rational agent should choose the "looking" action
before stepping into the street, because looking helps maximize the expected performance.
Doing actions in order to modify future percepts—sometimes called information gather-
ing—is an important part of rationality and is covered in depth in Chapter 16. A second
example of information gathering is provided by the exploration that must be undertaken by
a vacuum-cleaning agent in an initially unknown environment.

Our definition requires a rational agent not only to gather information but also to learn
as much as possible from what it perceives. The agent's initial configuration could reflect
sonic prior knowledge of the environment, but as the agent gains experience this may be
modified and augmented. There are extreme cases in which the environment is completely
known a priori. In such cases, the agent need not perceive or learn; it simply acts correctly.
Of course, such agents are fragile. Consider the lowly dung beetle. After digging its nest and
laying its eggs, it fetches a ball of dung from a nearby heap to plug the entrance. If the hall of

dung is removed from its grasp en route, the beetle continues its task and pantomimes plug-
ging the nest with the nonexistent dung ball, never noticing that it is missing. Evolution has
built an assumption into the beetle's behavior, and when it is violated, unsuccessful behavior
results. Slightly more intelligent is the sphex wasp. The female sphex will dig a burrow, go
out and sting a caterpillar and drag it to the burrow, enter the burrow again to check all is
well, drag the caterpillar inside, and lay its eggs. The caterpillar serves as a food source when
the eggs hatch. So far so good, but if an entomologist moves the caterpillar a few inches
away while the sphex is doing the check, it will revert to the "drag" step of its plan and will
continue the plan without modification, even after dozens of caterpillar-moving interventions_
The sphex is unable to learn that its innate plan is failing, and thus will not change it.

To the extent that an agent relies on the prior knowledge of its designer rather than
on its own percepts, we say that the agent lacks autonomy. A rational agent should be
autonomous—it should learn what it can to compensate for partial or incorrect prior knowl-
edge. For example, a vacuum-cleaning agent that learns to foresee where and when additional
dirt will appear will do better than one that does not. As a practical matter, one seldom re-
quires complete autonomy from the start: when the agent has had little or no experience, it
would have to act randomly unless the designer gave some assistance. So, just as evolution
provides animals with enough built-in reflexes to survive long enough to learn for themselves,
it would be reasonable to provide an artificial intelligent agent with some initial knowledge
as well as an ability to learn. After sufficient experience of its environment, the behavior
of a rational agent can become effectively independent of its prior knowledge. Hence, the
incorporation of learning allows one to design a single rational agent that will succeed in a
vast variety of environments.

INFORMATICN
GATHERING

EXPLORATION

LEARNING

40 Chapter 2. Intelligent Agents

2.3 THE NATURE OF ENVIRONMENTS

Now that we have a definition of rationality, we are almost ready to think about building
TAa ENVIRCNMENT rational agents. First, however, we must think about task environments, which are essen-

tially the "problems" to which rational agents are the "solutions." We begin by showing how
to specify a task environment, illustrating the process with a number of examples. We then
show that task environments come in a variety of flavors. The flavor of the task environment
directly affects the appropriate design for the agent program_

2.3.1 Specifying the task environment

In our discussion of the rationality of the simple vacuum-cleaner agent, we had to specify
the performance measure. the environment, and the agent's actuators and sensors. We group
all these under the heading of the task environment. For the acronymically minded, we call

PEAS

	

	 this the PEAS (Performance, Environment, Actuators, Sensors) description. In designing an
agent, the first step must always be to specify the task environment as filly as possible

The vacuum world was a simple example; let us consider a more complex problem: an
automated taxi driver. We should point out, before the reader becomes alarmed, that a fully
automated taxi is currently somewhat beyond the capabilities of existing technology. (page 28
describes an existing driving robot.) The full driving task is extremely open-ended. There is
no limit to the novel combinations of circumstances that can arise—another reason we chose
it as a focus for discussion Figure 2A summarizes the PEAS description for the taxi's task
environment. We discuss each element in more detail in the following paragraphs.

Agent Type Performance
Measure

Environment Actuators Sensors

Taxi driver Safe, fast, legal,
comfortable trip,
maximize profits

Roads, other
traffic,
pedestrians,
customers

Steering,
accelerator,
brake, signal,
horn, display

Cameras, sonar,
speedometer,
GPS, odometer,
accelerometer,
engine sensors,

keyboard

Figure 2.4 PEAS description of the task environment for an automated taxi.

First, what is the performance measure to which we would like our automated driver
to aspire? Desirable qualities include getting to the correct destination; minimizing fuel con-
sumption and wear and tear; minimizing the trip time or cost; minimizing violations of traffic
laws and disturbances to other drivers; maximizing safety and passenger comfort; maximiz-
ing profits. Obviously, some of these goals conflict, so tradeoffs will be required.

Next, what is the driving environment that the taxi will face? Any taxi driver must
deal with a variety of roads, ranging from rural lanes and urban alleys to 12-lane freeways.
The roads contain other traffic, pedestrians, stray animals, road works, police cars, puddles,

Section 2.3. The Nature of Environments 41

and potholes. The taxi must also interact with potential and actual passengers. There are also
some optional choices. The taxi might need to operate in Southern California, where snow
is seldom a problem, or in Alaska, where it seldom is not. It could always be driving on the
right, or we might want it to be flexible enough to drive on the left when in Britain or Japan.
Obviously, the more restricted the environment, the easier the design problem.

The actuators for an automated taxi include those available to a human driver: control
over the engine through the accelerator and control over steering and braking. In addition, it
will need output to a display screen or voice synthesizer to talk back to the passengers, and
perhaps some way to communicate with other vehicles, politely or otherwise.

The basic sensors for the taxi will include one or more controllable video cameras so
that it can see the road; it might augment these with infrared or sonar sensors to detect dis-
tances to other cars and obstacles. To avoid speeding tickets, the taxi should have a speedome-
ter, and Lu consul the vehicle properly, especially on curves, it should have an accelerometer.
To determine the mechanical state of the vehicle, it will need the usual array of engine, fuel,
and electrical system sensors. Like many human drivers, it might want a global positioning
system (GPS) so that it doesn't get lost. Finally, it will need a keyboard or microphone for
the passenger to request a destination.

In Figure 2.5. we have sketched the basic PEAS elements for a number of additional
agent types. Further examples appear in Exercise 2.4. It may come as a surprise to some read-
ers that our list of agent types includes some programs that operate in the entirely artificial
environment defined by keyboard input and character output on a screen. "Surely," one might
say, "this is not a real environment, is it?" In fact, what matters is not the distinction between
"real" and "artificial" environments, but the complexity of the relationship among the behav-
ior of the agent, the percept sequence generated by the environment, and the performance
measure. Some "real" environments are actually quite simple. For example, a robot designed
to inspect parts as they come by on a conveyor belt can make use of a number of simplifying
assumptions: that the lighting is always just so, that the only thing on the conveyor belt will
be parts of a kind that it knows about, and that only two actions (accept or reject) are possible.

SCMYARE AGENT In contrast, some software agents (or software robots or softhots) exist in rich, unlitm-
S0=TBOT ited domains. Imagine a softbot Weh site operator designed to scan Internet news sources and

show the interesting items to its users, while selling advertising space to generate revenue.
To do well, that operator will need some natural language processing abilities, it will need
to learn what each user and advertiser is interested in, and it will need to change its plans
dynamically—for example, when the connection for one news source goes down or when a
new one comes online. The Internet is an environment whose complexity rivals that of the
physical world and whose inhabitants include many artificial and human agents.

2.3.2 Properties of task environments

The range of task environments that might arise in AI is obviously vast. We can, however,
identify a fairly small number of dimensions along which task environments can be catego-
rized. These dimensions determine, to a large extent, the appropriate agent design and the
applicability of each of the principal families of techniques for agent implementation. First,

42 Chapter 2. Intelligent Agents

Agent Type Performance
Measure

Environment Actuators Sensors

Medical
diagnosis system

Healthy patient,
reduced costs

Patient, hospital,
staff

Display of
questions, tests,
diagnoses,
treatments,
referrals

Keyboard entry
of symptoms,
findings, patient's
answers

Satellite image

analysis system
Correct image

categorization
Downlink from

orbiting satellite
Display of scene

categorization
Color pixel

arrays

Part-picking
robot

Percentage cf
parts in correct
bins

Conveyor belt
with parts: bins

Jointed arm and
hand

Camera, joint
angle sensors

Refinery

controller
Purity, yield,

safety
Refinery,

operators
Valves, pumps,

beaters, displays
Temperature,

pressure,
chemical sensors

Interactive
English tutor

Student's score
on test

Set of students,
testing agency

Display of
exercises.
suggestions,
corrections

Keyboard entry

Figure 2.5 Examples of agent types and their PEAS descriptions.

we list the dimensions, then we analyze several task environments to illustrate the ideas. The
definitions here are informal; later chapters provide more precise statements and examples of
each kind of environment.

Fully observable vs. partially observable: If an agent's sensors give it access to the
complete state of the environment at each point in time, then we say that the task environ-
ment is fully observable. A task environment is effectively fully observable if the sensors
detect all aspects that are relevant to the choice of action; relevance, in turn, depends on the
performance measure. Fully observable environments are convenient because the agent need
not maintain any internal state to keep track of the world. An environment might be partially
observable because of noisy and inaccurate sensors or because parts of the state are simply
missing from the sensor data—for example, a vacuum agent with only a local dirt sensor
cannot tell whether there is dirt in other squares, and an automated taxi cannot see what other
diners are thinking If the agent has no sensors at all then the environment is unobserv-
able. One might think that in such cases the agent's plight is hopeless, but, as we discuss in
Chapter 4, the agent's goals may still be achievable, sometimes with certainty.

Single agent vs. multiagent: The distinction between single-agent and multiagent en-

FULLY OGGEKVA6LE

PAFTIALLY
OBSERVABLE

UNOBSERVABLE

SINGLE AGENT

MUILTIAGENF

Section 2.3. The Nature of Environments 43

vironments may seem simple enough. For example, an agent solving a crossword puzzle by
itself is clearly in a single-agent environment, whereas an agent playing chess is in a two-
agent environment. There are, however, some subtle issues. First, we have described how an
entity may be viewed as an agent, but we have not explained which entities must be viewed
as agents. Does an agent A (the taxi driver for example) have to treat an object B (another
vehicle) as an agent. or can it be treated merely as an object behaving according to the laws of
physics, analogous to waves at the beach or leaves blowing in the wind? The key distinction
is whether B's behavior is best described as maximizing a performance measure whose value
depends on agent A's behavior. For example, in chess, the opponent entity B is trying to
maximize its performance measure, which, by the rules of chess, minimizes agent As per-

COMPETITIVE

	

	formance measure. Thus, chess is a competitive multiagent environment. In the taxi-driving
environment, on the other hand, avoiding collisions maximizes the performance measure of

CLEHEHAEIVE
 all agents, so it is a partially cooperative rnultiagent environment. It is also partially com-

petitive because, for example, only one car can occupy a parking space. The agent-design
problems in multiagent environments are often quite different from those in single-agent en-
vironments; for example, communication often emerges as a rational behavior in multiagent
environments; in some competitive environments, randomized behavior is rational because
it avoids the pitfalls of predictability.

DETERMINISTIC Deterministic vs. stochastic. If the next state of the environment is completely deter-
STOCHASTIC mined by the current state and the action executed by the agent, then we say the environment

is deterministic; otherwise, it is stochastic. In principle, an agent need not worry about uncer-
tainty in a fully observable, deterministic environment. (In our definition, we ignore uncer-
tainty that arises purely from the actions of other agents in a multiagent environment: thus,
a game can be deterministic even though each agent may be unable to predict the actions of
the others.) If the environment is partially observable, however, then it could appear to be
stochastic. Most real situations are so complex that it is impossible to keep track of all the
unobserved aspects; for practical purposes, they must be treated as stochastic. Taxi driving is
clearly stochastic in this sense, because one can never predict the behavior of traffic exactly;
moreover, one's tires blow out and one's engine seizes up without warning_ The vacuum
world as we described it is deterministic, but variations can include stochastic elements such
as randomly appearing dirt and an unreliable suction mechanism (Exercise 2.13). We say an

UNIT RTAIN

	

	 environment is uncertain if it is not fully observable or not deterministic. One final note:
our use of the word "stochastic" generally implies that uncertainty about outcomes is quan-

NCNDETERMINISTIC
 tified in terms of probabilities; a nondeterministic environment is one in which actions are

characterized by their possible outcomes, but no probabilities are attached to them. Nonde-
tenninistic environment descriptions are usually associated with performance measures that
require the agent to succeed for all possible outcomes of its actions.

EPLSOLIIC Episodic vs. sequential: In an episodic task environment, the agent's experience is
SEQUENTIAL divided into atomic episodes. In each episode the agent receives a percept and then performs

a single action. Crucially, the next episode does not depend on the actions taken in previous

episodes. Many classification tasks are episodic. For example, an agent that has to spot
defective parts on an assembly line bases each decision on the current part, regardless of
previous decisions; moreover, the current decision doesn't affect whether the next part is

44 Chapter 2. Intelligent Agents

STATIC

DYSAMIC

SEMIDYNAMIC

DISCRETE

CONI1NUDLIS

KNOWN

UNKNOWN

defective. In sequential environments, on the other hand, the current decision could affect
all future clecisions. 3 Chess and taxi driving arc sequential: in both cases, short-term actions
can have long-term consequences. Episodic environments are much simpler than sequential
environments because the agent does not need to think ahead.

Static vs. dynamic: If the environment can change while an agent is deliberating, then
we say the environment is dynamic for that agent; otherwise, it is static. Static environments
are easy to deal with because the agent need not keep looking at the world while it is deciding
on an action, nor need it worry about the passage of time. Dynamic environments, on the
other hand. are continuously asking the agent what it wants to do; if it hasn't decided yet.
that counts as deciding to do nothing. If the environment itself does not change with the
passage of time but the agent's performance score does, then we say the environment is
semidynamic. Taxi driving is clearly dynamic: the other cars and the taxi itself keep moving
while the driving algorithm dithers about what to do next. Chess, when played with a clock,
is semidynamic. Crossword puzzles are static.

Discrete vs. continuous: The discrete/continuous distinction applies to the state of the
environment, to the way time is handled, and to the percepts and actions of the agent. For
example, the chess environment has a finite number of distinct states (excluding the clock),
Chess also has a discrete set of percepts and actions. Taxi driving is a continuous-state and
continuous-time problem: the speed and location of the taxi and of the other vehicles sweep
through a range of continuous values and do so smoothly over time. Taxi-driving actions are
also continuous (steering angles, etc.). Input from digital cameras is discrete, strictly speak-
ing, but is typically treated as representing continuously varying intensities and locations.

Known vs. unknown: Strictly speaking, this distinction refers not to the environment
itself but to the agent's or designer's) state of knowledge about the "laws of physics" of
the environment. In a known environment, the outcomes (or outcome probabilities if the
environment is stochastic) for all actions are given. Obviously, if the environment is unknown,
the agent will have to learn how it works in order to make good decisions. Note that the
distinction between known and unknown environments is not the same as the one between
fully and partially observable environments. It is quite possible for a known environment
to be partially observable—for example, in solitaire card games, I know the rules but am
still unable to see the cards that have not yet been turned over. Conversely, an unknown

environment can be fully observable—in a new video game, the screen may show the entire
game state but I still don't know what the buttons do until I try them.

As one might expect, the hardest case is partially observable, multiagent, stochastic,
sequential, dynamic, continuous, and unknown. Taxi driving is hard in all these senses, except
that for the most pan the driver's environment is known. Driving a rented car in a new country
with unfamiliar geography and traffic laws is a lot more exciting.

Figure 2.6 lists the properties of a number of familiar environments. Note that the
answers are not always cut and dried. For example, we describe the part-picking robot as
episodic, because it normally considers each part in isolation. But if one day there is a large

s The word "sequential" is also used in computer science as the antonym of "parallel." The two meanings are
largely unrelated.

Section 2.3. The Nature of Environments 45

ENAIONMEVT
CLASS.

Task Environment Observable Agents Deterministic Episodic Static Discrete

Crossword puzzle
Chess with a clock

Fully Single Deterministic Sequential Static Discrete
Fully Multi Deterministic Sequential Semi Discrete

Poker
Backgammon

Partially Multi Stochastic Sequential Static Discrete
Fully Multi Stochastic Sequential Static Discrete

Taxi driving

Medical diagnosis
Partially Multi Stochastic. Sequential Dynamic Continuous

Partially Single Stochastic Sequential Dynamic Continuous

Image analysis
Part-picking robot

Fully Single Deterministic Episodic Semi Continuous
Partially Single Stochastic Episodic Dynamic Continuous

Refinery controller
Interactive. English tutor

Partially Single Stochastic Sequential Dynamic Continuous
Partially Multi Stochastic Sequential Dynamic Discrete

Figure 2.6 Examples of task environments and their characteristics.

batch of defective parts, the robot should learn from several observations that the distribution
of defects has changed, and should modify its behavior for subsequent parts. We have not
included a "known/unknown" column because, as explained earlier, this is not strictly a prop-
erty of the environment. For some environments, such as chess and poker, it is quite easy to
supply the agent with full knowledge of the rules, but it is nonetheless interesting to consider
how an agent might learn to play these games without such knowledge.

Several of the answers in the table depend on how the task environment is defined. We
have listed the medical-diagnosis task as single-agent because the disease process in a patient
is not profitably modeled as an agent; but a medical-diagnosis system might also have to
deal with recalcitrant patients and skeptical staff, so the environment could have a multiagent
aspect. Furthermore, medical diagnosis is episodic if one conceives of the task as selecting a
diagnosis given a list of symptoms; the problem is sequential if the task can include proposing
a series of tests, evaluating progress over the course of treatment, and so on. Also, many
environments are episodic at higher levels than the agent's individual actions. For example,
a chess tournament consists of a sequence of games; each game is an episode because (by
and large) the contribution of the moves in one game to the agent's overall performance is
not affected by the moves in its previous game. On the other hand, decision making within a
single game is certainly sequential.

The code repository associated with this book (aima.cs.berkeley.edu) includes imple-
mentations of a number of environments, together with a general-purpose environment simu-
lator that places one or more agents in a simulated environment, observes their behavior over
time, and evaluates them according to a given performance measure. Such experiments are
often carried out not for a single environment but for many environments drawn from an en•
vironment class. For example, to evaluate a taxi driver in simulated traffic, we would want to
run many simulations with different traffic, lighting, and weather conditions. If we designed
the agent fur a single scenario, we might be able to take advantage of specific properties
of the particular case but might not identify a good design for driving in general. For this

46 Chapter 2. Intelligent Agents

ENVIRONMENT
GENERATOR reason, the code repository also includes an environment generator for each environment

class that selects particular environments (with certain likelihoods) in which to run the agent.
For example, the vacuum environment generator initializes the dirt pattern and agent location
randomly. We are then interested in the agent's average performance over the environment
class. A rational agent for a given environment class maximizes this average performance.
Exercises 2.8 to 2.13 take you through the process of developing an environment class and
evaluating various agents therein.

2.4 THE STRUCTURE OF AGENTS

So far we have talked about agents by describing behavior—the action that is performed after
any given sequence of percepts. Now we must bite the bullet and talk about how the insides

AGENT PRIX RAM work. The joh of Al is to design an agent program that implements the agent function—
the mapping from percepts to actions. We assume this program will run on some sort of

Anc I II-MOTU1C computing device with physical sensors and actuators—we call this the architecture:

agent = architecture + program .

Obviously, the program we choose has to be one that is appropriate for the architecture. If the
program is going to recommend actions like Walk, the architecture had better have legs. The
architecture might be just an ordinary PC, or it might be a robotic car with several onboard
computers, cameras, and other sensors. In general, the architecture makes the percepts from
the sensors available to the program, runs the program, and feeds the program's action choices
to the actuators as they are generated. Most of this book is about designing agent programs,
although Chapters 24 and 25 deal directly with the sensors and actuators_

2.4.1 Agent programs

The agent programs that we design in this book all have the same skeleton: they take the
current percept as input from the sensors and return an action to the actuators. 4 Notice the
difference between the agent program, which takes the current percept as input, and the agent
function, which takes the entire percept history. The agent program takes just the current
percept as input because nothing more is available from the environment; if the agent's actions
need to depend on the entire percept sequence, the agent will have to remember the percepts.

We describe the agent programs in the simple pseudocode language that is defined in
Appendix B. (The online code repository contains implementations in real programming
languages.) For example, Figure 2.7 shows a rather trivial agent program that keeps track of
the percept sequence and then uses it to index into a table of actions to decide what to do,
The table—an example of which is given for the vacuum world in Figure 2.3—represents
explicitly the agent function that the agent program embodies_ To huild a rational agent in

4 There are other choices for the agent program skeleton; for example, we could have the agent programs be
coruutines that run asynchronously with the environment. Each such coroutine has an input and output port and
consists of a loop that reads the input port for percepts and writes actions to the output port.

Section 2.4. The Structure of Agents 47

function TABLE-DRIVEN-AGENT(percept) returns an action
persistent percepts, a sequence, initially empty

tablc, a table of actions, indexed by percept sequences, initially fully specified

append percept to the end of percepts
action LOOKUP(percepts,table)
return action,

Figure 2.7 The TABLE DRIVEN AGENT program is invoked for each new percept and
returns an action each time. It retains the complete percept sequence in memory.

this way, we as designers must construct a table that contains the appropriate action for every
possible percept sequence.

It is instructive to consider why the table-driven approach to agent construction is
doomed to failure. Let be the set of possible percepts and let T be the lifetime of the
agent (the total number of percepts it will receive). The lookup table will contain ET„IPrt
entries. Consider the automated taxi: the visual input from a single camera comes in at the
rate of roughly 27 megabytes per second (30 frames per second, 690 x 4B0 pixels with 24
bits of color information). This gives a lookup table with over 102500WuPM entries for an
hour's driving. Even the lookup table for chess—a tiny, well-behaved fragment of the real
world—would have at least 1015n entries. The daunting size of these tables (the number of
atoms in the observable universe is less than 1 00) means that (a) no physical agent in this
universe will have the space to store the table, (b) the designer would not have time to create
the table, (c) no agent could ever learn all the right table entries from its experience, and (d)
even if the environment is simple enough to yield a feasible table size, the designer still has
no guidance about how to fill in the table entries.

Despite all this, TARLE-DRIVEN-AGFNT does do what we want: it implements the
desired agent function. The key challenge for AI is to find out how to write programs that,
to the extent possible, produce rational behavior from a smallish program rather than from
a vast table. We have many examples showing that this can be done successfully in other
areas: for example, the huge tables of square roots used by engineers and schoolchildren prior
to the 1970s have now been replaced by a five-line program for Newton's method naming
on electronic calculators. The question is, can AI do for general intelligent behavior what
Newton did for square roots? We believe the answer is yes.

In the remainder of this section, we outline four basic kinds of agent programs that
embody the principles underlying almost all intelligent systems:

• Simple reflex agents;
• Model-based reflex agents;
• Goal-based agents; and
• Utility-based agents.

Each kind of agent program combines particular components in particular ways to generate
actions. Section 2.4.6 explains in general terms how to convert all these agents into learning

48 Chapter 2. Intelligent Agents

function REFLEx- VACUUM-AsENT(ilocation,statual) returns an action
if stratus = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

Figure 2.1i The agent program for a simple reflex agent in the two-state vacuum environ-

ment. This program implements the agent function tabulated in Figure 2.3.

agents that can improve the performance of their components so as to generate better actions.
Finally, Section / 4.7 describes the variety of ways in which the components themselves can
be represented within the agent. This variety provides a major organizing principle for the
field and for the book itself.

2.4.2 Simple reflex agents

The simplest kind of agent is the simple reflex agent. These agents select actions on the basis
of the current percept, ignoring the rest of the percept history. For example, the vacuum agent
whose agent function is tabulated in Figure 2.3 is a simple reflex agent, because its decision
is based only on the current location and on whether that location contains dirt. Art agent
program for this agent is shown in Figure 2.8.

Notice that the vacuum agent program is very small indeed compared to the correspond-
ing table. The most obvious reduction comes from ignoring the percept history, which cuts
down the number of possibilities from 4 T to just 4. A further, small reduction comes from
the fact that when the current square is dirty, the action does not depend on the location.

Simple reflex behaviors occur even in more complex environments. Imagine yourself
as the driver of the automated taxi. If the car in front brakes and its brake lights come on, then
you should notice this and initiate braking. In other words, some processing is done on the
visual input to establish the condition we call "The car in front is braking." Then, this triggers
some established connection in the agent program to the action "initiate braking." We call
such a connection a condition-action ritle, 5 written as

if car- in-front - is-braking then initiate-braking.

Humans also have many such connections, some of which are learned responses (as for driv-
ing) and some of which are innate reflexes (such as blinking when something approaches the
eye). In the course of the book, we show several different ways in which such connections
can be learned and implemented.

The program in Figure 2,8 is specific to one particular vacuum environment. A more
general and flexible approach is first to build a general-purpose interpreter for condition-
action rules and then to create rule sets for specific task environments. Figure 2.9 gives the
structure of this general program in schematic form, showing how the condition-action rules
allow the agent to make the connection from percept to action. (Do not worry if this seems

Also called situation-actiou rules, productions, or if-then roles.

SIMPLE REFLEX
AGENT

CONDMON-ACTION
RULE

Agent SeRFOrS

What action I
should do now t

Condom/I-action rules)

wuild
is like HOW

ActonLon:

Figure 2.9 Schematic diagram of a simple reflex agent.

IT
AL

U
TI

O
SI

AU

function SIMPLE-REFLEX-AGENT(percept) returns an action
persistent, rates, a set of condition—action rules

state INTERPRET-INPUT(percept)
rule RULE-MATen(state, ruie)
action 4— rule.ACTION
return action

Figure 2_10 A simple reflex agent It acts according to a vile whose condition matches
the current state, as defined by the percept.

Section 2.4. The Structure of Agents 49

trivial; it gets more interesting shortly) We use rectangles to denote the current internal state
of the agent's decision process, and ovals to represent the background information used in
the process. The agent program, which is also very simple, is shown in Figure 2.10. The
INTERPRET-INPUT function generates an abstracted description of the current slate from the
percept, and the RULE-MATCH function returns the first rule in the set of rules that matches
the given state description. Note that the description in terms of "rules" and "matching" is
purely conceptual; actual implementations can be as simple as a collection of logic gates
implementing a Boolean circuit.

Simple reflex agents have the admirable property of being simple, but they turn out to be
of limited intelligence. The agent in Figure 2.10 will work only if the correct decision can be
made on the basis of only the current percept—that is. only if the environment is fully observ-
able. Even a little bit of unobservability can cause serious trouble. For example, the braking
rule given earlier assumes that the condition car- in -front - is -braking can be determined from
the current percept—a single frame of video. This works if the car in front has a centrally

mounted brake Light. Unfortunately, older models have different configurations of taillights,

50 Chapter 2. Intelligent Agents

RAR➢OMIZAllON

brake lights, and turn-signal lights, and it is not always possible to tell from a single image
whether the car is braking. A simple reflex agent driving behind such a car would either brake
continuously and unnecessarily, or, worse, never brake at all.

We can see a similar problem arising in the vacuum world. Suppose that a simple reflex
vacuum agent is deprived of its location sensor and has only a dirt sensor. Such an agent
has just two possible percepts: [Dirty! and [Clean]. It can Suck in response to [Dirty[; what
should it do in response to [Clean]? Moving Left fails (forever) if it happens to start in square
A, and moving Right fails (forever) if it happens to start in square B. Infinite loops are often
unavoidable for simple reflex agents operating in partially observable environments.

Escape from infinite loops is possible if the agent can randomize its actions. For ex-
ample, if the vacuum agent perceives [Clean], it might flip a coin to choose between Left and
Right. It is easy to show that the agent will reach the other square in an average of two steps.
Then, if that square is dirty, the agent will clean it and the task will be complete. Hence, a
randomized simple reflex agent might outperform a deterministic simple reflex agent.

We mentioned in Section 2.3 that randomized behavior of the right kind can be rational
in some multiagent environments. In single-agent environments, randomization is usually not
rational. It is a useful trick that helps a simple reflex agent in some situations, but in most
cases we can do much better with more sophisticated deterministic agents.

2.4.3 Model-based reflex agents

The most effective way to handle partial observability is for the agent to keep track of the
parr of the world it can't see now. That is, the agent should maintain some sort of internal

INTERNAL STATE state that depends on the percept history and thereby reflects at least some of the unobserved
aspects of the current state. For the braking problem, the internal state is not too extensive—
just the previous frame from the camera, allowing the agent to detect when two red lights at
the edge of the vehicle go on or off simultaneously. For other driving tasks such as changing
lanes, the agent needs to keep track of where the other cars are if it can't see them all at once.
And for any driving to he possible at all, the agent needs to keep track of where its keys are

Updating this internal state information as time goes by requires two kinds of knowl-
edge to be encoded in the agent program. First, we need some information about how the
world evolves independently of the agent—for example, that an overtaking car generally will
be closer behind than it was a moment ago. Second, we need some information about how
the agent's own actions affect the world—for example, that when the agent turns the steering
wheel clockwise, the car turns to the right, or that after driving for five minutes northbound
on the freeway, one is usually about five miles north of where one was five minutes ago. This
knowledge about "how the world works"—whether implemented in simple Boolean circuits
or in complete scientific theories—is called a model of the world. An agent that uses such a

MODELNT
MODEL-BASED model is called a model-based agent. -BASED

Figure 2.11 gives the structure of the model-based reflex agent with internal state, show-

ing how the current percept is combined with the old internal state to generate the updated
description of the current state, based on the agent's model of how the world works. The agent
program is shown in Figure 2.12. The interesting part is the function UPDATE-STATE, which

7 ----- -„

Actuators Agent
\.,

lloia the ttotid ci:ofres

(W11 kt iny atoms do

Condition -art ion ru ics

What the world
is like now

What action I
should do now

7

rs rt)
rw

Figure 2.11 A model-based reflex agent.

function ivIODEL-BASED-REFLEX-AGENr(pc.rc:ept.) returns an action
persistent state, the agent's current conception of the world state

model, a description of how the next state depends on current state and action
rules, a set of condition—action rules
action, the most recent action, initially none

state 4— UPDATE-STATE(state, action, percept, model)
rule. 4— RULE MATCH(siate,
action Tyde.AcTioN
return action

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world,
using an internal model. It then chooses an action in the same way as the reflex agent.

Section 2.4. The Structure of Agents 51

is responsible for creating the new internal state description. The details of how models and
states are represented vary widely depending on the type of environment and the particular
technology used in the agent design. Detailed examples of models and updating algorithms
appear in Chapters 4, 12, 11, 15. 17, and 25.

Regardless of the kind of representation used, it is seldom possible for the agent to
determine the current state of a partially observable environment exactly. Instead, the box
labeled "what the world is like now" (Figure 2.11) represents the agent's "best guess" (or
sometimes best guesses). For example, an automated taxi may not be able to see around the
large truck that has stopped in front of it and can only guess about what may be causing the
hold -up. Thus, uncertainty about the current state may be unavoidable, but the agent still has
to make a decision.

A perhaps less obvious point about the internal "state" maintained by a model - based
agent is that it does not have to describe "what the world is like now" in a literal sense. For

What the world
is like now How the world %. ola es

What my actions do
What it wilt be like

if l do action A

What action
should do now

\
 Agent

lu
at

m
ica

! A
 LI

R

Figure 2.13 A model-based. goal-based agent. It keeps track of the world stale as well as
a set of goals it is trying to achieve, and chooses an action that will (eventually) lead to the
achievement of its goals.

52 Chapter 2. intelligent Agents

example, the taxi may be driving back home, and it may have a rule telling it to fill up with
gas on the way home unless it has at least half a tank. Although "driving back home" may
seem to an aspect of the world state, the fact of the taxi's destination is actually an aspect of
the agent's internal state. if you find this puzzling, consider that the taxi could be in exactly
the same place at the same time, but intending to reach a different destination.

2.4.4 Goal-haserl agen ts

Knowing something about the current state of the environment is not always enough to decide
what to do. For example. at a road junction, the taxi can turn left, turn right, or go straight
on. The correct decision depends nn where the taxi is trying to get to. In other words, as well

Goa as a current state description, the agent needs some sort of goal information that describes
situations that are desirable—for example, being at the passenger's destination. The agent
program can combine this with the model (the same information as was used in the model-
based reflex agent) to choose actions that achieve the goal. Figure 2.13 shows the goal-based
agent's structure.

Sometimes goal-based action selection is straightforward—for example, when goal sat-
isfaction results immediately from a single action. Sometimes it will be more tricky—for
example, when the agent has to consider long sequences of twists and turns in order to find a
way to achieve the goal. Search (Chapters 3 to 5) and planning (Chapters 10 and 11) are the
subfields of Al devoted to finding action sequences that achieve the agent's goals.

Notice that decision making of this kind is fundamentally different from the condition-
action rules described earlier, in that it involves consideration of the future—both "What will
happen if I do such-and-such?" and "Will that make me happy?" In the reflex agent designs ;
this information is not explicitly represented, because the built-in rules map directly from

Section 2.4. The Structure of Agents 53

percepts to actions. The reflex agent brakes when it sees brake lights. A goal-based agent, in
principle, could reason that if the car in front has its brake lights on, it will slow down. Given
the way the world usually evolves, the only action that will achieve the goal of not hitting
other cars is to brake.

Although the goal-based agent appears less efficient, it is more flexible because the
knowledge that supports its decisions is represented explicitly and can be modified. If it starts
to rain, the agent can update its knowledge of how effectively its brakes will operate; this will
automatically cause all of the relevant behaviors to be altered to suit the new conditions.
For the reflex agent, on the other hand, we would have to rewrite many condition–action
rules. The goal-based agent's behavior can easily be changed to go to a different destination,
simply by specifying that destination as the goal. The reflex agent's rules for when to turn
and when to go straight will work only for a single destination; they must all be replaced to
go somewhere new.

UTILITY

UTILITY FUNCTION

2.4.5 Utility -based agents

Goals alone are not enough to generate high-quality behavior in most environments. For
example, many action sequences will get the taxi to its destination (thereby achieving the
goal) but some are quicker, safer, more reliable, or cheaper than others. Goals just provide a
crude binary distinction between "happy" and "unhappy" states. A more general performance
measure should allow a comparison of different world states according to exactly how happy
they would make the agent. Because "happy" does not sound very scientific, economists and
computer scientists use the term utility instead.6

We have already seen that a performance measure assigns a score to any given sequence
of environment states, so it can easily distinguish between more and less desirable ways of
getting to the taxi's destination. An agent's utility function is essentially an internalization
of the performance measure. If the internal utility function and the external performance
measure are in agreement, then an agent that chooses actions to maximize its utility will be
rational according to the external performance measure.

Let us emphasize again that this is not the only way to be rational—we have already
seen a rational agent program for the vacuum world (Figure 2,8) that has no idea what its
utility function is—but, like goal-based agents, a utility-based agent has many advantages in
terms of flexibility and learning. Furthermore, in two kinds of cases, goals are inadequate but
a utility-based agent can still make rational decisions. First, when there are conflicting goals,
only some of which can be achieved (for example, speed and safety), the utility function
specifies the appropriate tradeoff. Second, when there are several goals that the agent can
aim for, none of which can be achieved with certainty, utility provides a way in which the
likelihood of success can be weighed against the importance of the goals.

Partial observability and stochasticity are ubiquitous in the real world, and so, therefore,
is decision making under uncertainty. Technically speaking, a rational utility-based agent
chooses the action that maximizes the expected utility of the action outcomes—that is, the
utility the agent expects to derive, on average, given the probabilities and utilities of each

EXPECTED UTILITY

6 The word "utility" here refers to "the quality of being useful," not to the electric company or waterworks.

S tate

Agent Actuators

How he world t %chic

What my actions do
I What it be like

it I do action A

What action 1
should do nou.

il
la

ti
li
n

1
!A

u
3

Figure 2.14 A model-based, utility-based agent. It uses a model of the world, along with
a utility function that measures its preferences among states of the world. Then it chooses the
action that leads to the best expected utility, where expected utility is computed by averaging
over all possible outcome states, weighted by the probability of the outcome.

54 Chapter 2. intelligent Agents

outcome. (Appendix A defines expectation more precisely.) In Chapter 16, we show that any
rational agent must behave as if it possesses a utility function whose expected value it tries
to maximize. An agent that possesses an erplieli utility fiinctinn can make rational decisions
with a general-purpose algorithm that does not depend on the specific utility function being
maximized_ In this way, the "global" definition of rationality—designating as rational those
agent functions that have the highest performance—is turned into a "local" constraint on
rational-agent designs that can be expressed in a simple program.

The utility-based agent stnichire appears in Figure 2.14. Iltility-based agent programs
appear in Part IV, where we design decision-making agents that must handle the uncertainty
inherent in stochastic or partially observable environments.

At this point, the reader may be wondering, "Is it that simple? We just build agents that
maximize expected utility, and we're done?" It's true that such agents would be intelligent,
but it's not simple. A utility-based agent has to model and keep track of its environment,
tasks that have involved a great deal of research on perception, representation, reasoning,
and learning. The results of this research fill many of the chapters of this book. Choosing
the utility-maximizing course of action is also a difficult task, requiring ingenious algorithms
that fill several more chapters, Even with these algorithms, perfect rationality is usually
unachievable in practice because of computational complexity, as we noted in Chapter 1.

2.4.6 Learning agents

We have described agent programs with various methods for selecting actions. We have
not, so far, explained how the agent programs come into being. In his famous early paper,
Turing (1950) considers the idea of actually programming his intelligent machines by hand.

Section 2.4. The Structure of Agents 55

LEARNING ELEMENT

PERFORMANCE
ELEMENT

CRITIC

lU
aW

U
O

I3
A

L
IA

Agent Actuators

Figure 2.15 A general learning agent.

He estimates how much work this might take and concludes "Some more expeditious method
seems desirable." The method he proposes is to build learning machines and then to teach
them. In many areas of AI, this is now the preferred method for creating state-of-the-art
systems. Learning has another advantage, as we noted earlier it allows the agent to operate
in initially unknown environments and to become more competent than its initial knowledge
alone might allow. In this section, we briefly introduce the main ideas of learning agents.
Throughout the book, we comment on opportunities and methods for learning in particular
kinds of agents. Part V goes into much more depth on the learning algorithms themselves.

A learning agent can be divided into four conceptual components, as shown in Fig-
ure 2.15. The most important distinction is between the learning element, which is re-
sponsible for making improvements, and the performance element, which is responsible for
selecting external actions. The performance element is what we have previously considered
to be the entire agent: it takes in percepts and decides on actions. The learning element uses
feedback from the critic on how the agent is doing and determines how the performance
element should be modified to do better in the future.

The design of the learning element depends very much on the design of the performance
element. When trying to design an agent that learns a certain capability, the first question is
not "How am I going to get it to team this?" but "What kind of performance element will my
agent need to do this once it has learned how?" Given an agent design, learning mechanisms
can be constructed to improve every part of the agent.

The critic tells the learning element how well the agent is doing with respect to a fixed
performance standard. The critic is necessary because the percepts themselves provide no
indication of the agent's success. For example, a chess program could receive a percept
indicating that it has checkmated its opponent, bin it needs a performance standard to know
that this is a good thing; the percept itself does not say so. It is important that the performance

56 Chapter 2. Intelligent Agents

PROBLEM
GENERATOR

standard be fixed. Conceptually, one should think of it as being outside the agent altogether
because the agent must not modify it to fit its own behavior.

The last component of the learning agent is the problem generator. It is responsible
for suggesting actions that will lead to new and informative experiences. The point is that
if the performance element had its way, it would keep doing the actions that are best ; given
what it knows. But if the agent is willing to explore a little and do some perhaps suboptimal
actions in the short run, it might discover much better actions for the long run. The problem
generator's job is to suggest these exploratory actions. This is what scientists do when they
carry out experiments. Galileo did not think that dropping rocks from the top of a tower in
Pisa was valuable in itself. He was not trying to break the rocks or to modify the brains of
unfortunate passers-by. His aim was to modify his own brain by identifying a better theory
of the motion of objects.

To make the overall design more concrete, let us return to the automated taxi example.
The performance element consists of whatever collection of knowledge and procedures the
taxi has for selecting its driving actions. The taxi goes out on the road and drives, using
this performance element. The critic observes the world and passes information along to the
learning element. For example, after the taxi makes a quick left turn across three lanes of traf-
fic, the critic observes the shocking language used by other drivers. From this experience. the
learning element is able to formulate a rule saying this was a bad action, and the performance
element is modified by installation of the new rule. The problem generator might identify
certain areas of behavior in need of improvement and suggest experiments, such as trying out
the brakes on different road surfaces under different conditions.

The learning element can make changes to any of the "knowledge" components shown
in the agent diagrams (Figures 2.9, 2.11, 2.13, and 2.14). The simplest cases involve learning
directly from the percept sequence. Observation of pairs of successive states of the environ-
ment can allow the agent to learn "How the world evolves," and observation of the results of
its actions can allow the agent to learn "What my actions do." For example, if the taxi exerts
a certain braking pressure when driving on a wet road, then it will soon find out how much
deceleration is actually achieved_ Clearly, these two learning tasks are more difficult if the
environment is only partially observable.

The forms of learning in the preceding paragraph do not need to access the external
performance standard—in a sense, the standard is the universal one of making predictions
that agree with experiment. The situation is slightly more complex for a utility-based agent
that wishes to learn utility information. For example, suppose the taxi-driving agent receives
no tips from passengers who have been thoroughly shaken up during the trip. The external
performance standard must inform the agent that the loss of tips is a negative contribution to
its overall performance; then the agent might be able to learn that violent maneuvers do not
contribute to its own utility. In a sense, the performance standard distinguishes part of the
incoming percept as a reward (or penalty) that provides direct feedback on the quality of the
agent's behavior. Hard-wired performance standards such as pain and hunger in animals can
be understood in this way. This issue is discussed further in Chapter 21.

In summary, agents have a variety of components, and those components can be repre-
sented in many ways within the agent program, so there appears to be great variety among

Section 2.4. The Structure of Agents 57

Aromrc
flE'RESENTATION

learning methods. There is, however, a single unifying theme. Learning in intelligent agents
can be sununarized as a process of modification of each component of the agent to bring the
components into closer agreement with the available feedback information, thereby improv-
ing the overall performance of the agent.

2.4.7 How the components of agent programs work

We have described agent programs (in very high-level terms) as consisting of various compo-
nents, whose function it is to answer questions such as: "What is the world like now?" "What
action should l do now?" "What do my actions do?" The next question for a student of AI
is, "How on earth do these components work?" It takes about a thousand pages to begin to
answer that question properly, but here we want to draw the reader's attention to some basic
distinctions among the various ways that the components can represent the environment that
the agent inhabits.

Roughly speaking, we can place the representations along an axis of increasing com-
plexity and expressive power—atomic, factored, and structured. To illustrate these ideas,
it helps to consider a particular agent component, such as the one that deals with "What my
actions do." This component describes the changes that might occur in the environment as
the result of taking an action, and Figure 2.16 provides schematic depictions of how those
transitions might be represented.

B

• 0 •
I==1
■D b

flt.(1
0 0 • • ==1
0

1..f--Thit\

Ei—m-
■

L-.1-111-1.-U

111

C

Factored (a) Atomic (b) I b) Structured

Figure 2.16 Three ways ha represent states and the transitions between them. (a) Atomic
representation: a state (such as B or C) is a black box with no internal structure; (b) Factored
representation: a state consists of a vector of attribute values; values can be Boolean, real-
valued, or one of a fixed set of symbols. (c) Structured representation: a state includes
objects, each of which may have attributes of its own as well as relationships to other objects.

In an atomic representation each state of the world is indivisible—it has no internal
structure. Consider the problem of finding a driving route from one end of a country to the
other via some sequence of cities (we address this problem in Figure 3.2 on page 68). For the
purposes of solving this problem, it may suffice to reduce the state of world to just the name
of the city we ai-e .in—a single atom of knowledge; a "black box" whose only discernible
property is that of being identical to or different from another black box. The algorithms

58 Chapter 2. Intelligent Agents

FACTORED
REPRESENTATION

VARIABLE

ATTRIBUTE

VALUE

mac-tar o
REPRESENTATION

DCFRESSIVENESS

underlying search and game-playing (Chapters 3-5), Hidden Markov models (Chapter 15),
and Markov decision processes (Chapter 17) all work with atomic rcprcscntations—or, at
least, they treat representations as if they were atomic.

Now consider a higher-fidelity description for the same pmblern, where we need to be
concerned with more than just atomic location in one city or another; we might need to pay
attention to how much gas is in the tank, our current GPS coordinates, whether or not the oil
warning light is working, how much spare change we have for toll crossings, what station is
on the radio, and so on. A factored representation splits up each state into a fixed set of
variables or attributes, each of which can have a value. While two different atomic states
have nothing in common—they are just different black boxes—two different factored states
can share some attributes (such as being at some particular GPS location) and not others (such
as having lots of gas or having no gas); this makes it much easier to work out how to turn
one state into another. With factored representations, we can also represent uncertainty—for
example, ignorance about the amount of gas in the tank can be represented by leaving that
attribute blank. Many important areas of Al are based on factored representations, including
constraint satisfaction algorithms (Chapter 6), propositional logic (Chapter 7), planning
(Chapters 10 and 11), Bayesian networks (Chapters 13-16), and the machine learning al-
gorithms in Chapters 18,20, and 21.

For many purposes, we need to understand the world as having things in it that are
related to each other, not just variables with values. For example, we might notice that a

large truck ahead of us is reversing into the driveway of a dairy farm but a cow has got loose
and is blocking the truck's path. A factored representation is unlikely to be pre-equipped
with the attribute D-ackAkeatiBackingIntoDairyFarrnDrivetuayBlackedEpLoaseCow with
value true or false Instead, we would need a structured representation, in which ob-
jects such as cows and trucks and their various and varying relationships can be described
explicitly. (See Figure 2.16(c).) Structured representations underlie relational databases
and first-order logic (Chapters 8, 9, and 12), first-order probability models (Chapter 14),
knowledge-based learning (Chapter 19) and much of natural language understanding
(Chapters 22 and 21). In fact, almost everything that humans express in natural language
concerns objects and their relationships.

As we mentioned earlier, the axis along which atomic, factored, and structured repre-
sentations lie is the axis of increasing expressiveness. Roughly speaking, a more expressive
representation can capture, at least as concisely, everything a less expressive one can capture,
plus some more. Often, the more expressive language is much more concise; for example, the
rules of chess can be written in a page or two of a structured-representation language such
as first-order logic but require thousands of pages when written in a factored-representation
language such as propositional logic. On the other hand, reasoning and learning become
more complex as the expressive power of the representation increases. To gain the benefits
of expressive representations while avoiding their drawbacks, intelligent systems for the real
world may need to operate at all points along the axis simultaneously.

Section 2.5. Summary 59

2.5 SUMMARY

This chapter has been something of a whirlwind tour of AI, which we have conceived of as
the science of agent design. The major points to recall are as follows:

• An agent is something that perceives and acts in an environment. The agent ftmction
for an avail. specifics the action taken by the agent in response to any percept sequence.

• The performance measure evaluates the behavior of the agent in an environment A
rational agent acts so as to maximize the expected value of the performance measure,
given the percept sequence it has seen so far

• A task environment specification includes the performance measure, the external en-
vironment, the actuators. and the sensors. In designing an agent, the first step must
always be to specify the task environment as fully as possible.

• Task environments vary along several significant dimensions. They can be fully or
partially observable, single-agent or multiagent, deterministic or stochastic, episodic or
sequential, static or dynamic, discrete or continuous, and known or unknown.

• The agent program implements the agent function_ There exists a variety of basic
agent-program designs reflecting the kind of information made explicit and used in the
decision process. The designs vary in efficiency, compactness, and flexibility. The
appropriate design of the agent program depends on the nature of the environment.

• Simple reflex agents respond directly to percepts, whereas model-based reflex agents
maintain internal state to track aspects of the world that are not evident in the current
percept. Goal-based agents act to achieve their goals, and utility-based agents try to
maximize their own expected "happiness."

• All agents can improve their performance through learning.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

CONTROLLER

The central role of action in intelligence—the notion of practical reasoning—goes back at
least as far as Aristotle's Niconuchean Ethics. Practical reasoning was also the subject of
McCarthy's (1958) influential paper "Programs with Common Sense." The fields of robotics
and control theory are, by their very nature, concerned principally with physical agents. The
concept of a controller in control theory is identical to that of an agent in Al. Perhaps sur-
prisingly, Al has concentrated for most of its history on isolated components of agents-
question-answering systems, theorem-provers, vision systems, and so on—rather than on
whole agents. The discussion of agents in the text by Genesereth and Nilsson (1987) was an
influential exception. The whole-agent view is now widely accepted and is a central theme in
recent texts (Poole et al., 1998: Nilsson, 1998; Padgham and Winikoff, 2004; Jones, 2007).

Chapter 1 traced the roots of the concept of rationality in philosophy and economics. In
Al, the concept was of peripheral interest until the mid-1980s, when it began to suffuse many

60 Chapter 2. Intelligent Agents

ALF10111010r
COMPUTING

M ULT1AGENT
SYSTEMS

discussions about the proper technical foundations of the field. A paper by Jon Doyle (1983)
predicted that rational agent design would come to be seen as the core mission of Al, while
other popular topics would spin off to form new disciplines.

Careful attention to the properties of the environment and their consequences for ra-
tional agent design is most apparent in the control theory tradition—for example, classical
control systems (Dorf and Bishop, 2004; Kirk, 2004) handle fully observable, deterministic
environments; stochastic optimal control (Kumar and Varaiya, 1986; Bertsekas and Shreve.
2007) handles partially observable, stochastic environments; and hybrid control (Henninger
and Sastry, 1998; Cassandras and Lygeros, 2006) deals with environments containing both
discrete and continuous elements. The distinction between fully and partially observable en-
vironments is also central in the dynamic programming literature developed in the field of
operations research (Puterman, 1994), which we discuss in Chapter 17.

Reflex agents were the primary model fur psychological behaviorists such as Skinner
(1953), who attempted to reduce the psychology of organisms strictly to input/output or stim-
ulus/response mappings. The advance from behaviorism to functionalism in psychology,
which was at least partly driven by the application of the computer metaphor to agents (Put-
nam, 1960; Lewis, 1966), introduced the internal state of the agent into the picture. Most
work in AI views the idea of pure reflex agents with state as too simple to provide much
leverage, but work by Rosenschein (1985) and Brooks (1986) questioned this assumption
(see Chapter 25). In recent years, a great deal of work has gone into finding efficient algo-
rithms for keeping track of complex environments (Hamscher et aL, 1992; Simon, 2006). The
Remote Agent program (described on page 28) that controlled the Deep Space One spacecraft
is a particularly impressive example (Muscettola et a! 1998; Jonsson et aL, 2000).

Goal-based agents are presupposed in everything from Aristotle's view of practical rea-
soning to McCarthy's early papers on logical AI. Shakey the Robot (Pikes and Nilsson.
1971; Nilsson, 1984) was the first robotic embodiment of a logical, goal-based agent. A
full logical analysis of goal-based agents appeared in Genesereth and Nilsson (1987), and a
goal-based programming methodology called agent-oriented programming was developed by
Shoham (1993). The agent-based approach is now extremely popular in software engineer-
ing (Ciancarini and Wooldridge, 2001). It has also infiltrated the area of operating systems,
where autonomic computing refers to computer systems and networks that monitor and con-
trol themselves with a perceive–act loop and machine learning methods (Kephart and Chess.
2003). Noting that a collection of agent programs designed to work well together in a true
multiagent environment necessarily exhibits modularity—the programs share no internal state
and communicate with each other only through the environment—it is common within the
field of multiagent systems to design the agent program of a single agent as a collection of
autonomous sub-agents. In some cases, one can even prove that the resulting system gives
the same optimal solutions as a monolithic design.

The goal-based view of agents also dominates the cognitive psychology tradition in the
area of problem solving, beginning with the enormously influential Human Problem Solv-
ing (Newell and Simon, 1972) and running through all of Newell's later work (Newell, 1990).
Goals, further analysed as desires (general) and intentions (currently pursued), are central Lu
the theory of agents developed by Bratman (1987). This theory has been influential both in

Exercises 61

natural language understanding and multiagent systems.
Horvitz et al. (1988) specifically suggest the use of rationality conceived as the maxi-

mization of expected utility as a basis for AI. The text by Pearl (1988) was the first in AI to
cover probability and utility theory in depth; its exposition of practical methods for reasoning
and decision making under uncertainty was probably the single biggest factor in the rapid
shift towards utility-based agents in the 1990s (see Part IV).

The general design for learning agents portrayed in Figure 2.15 is classic in the machine
learning literature (Buchanan et al., 1978; Mitchell, 1997). Examples of the design, as em-
bodied in programs, go back at least as far as Arthur Samuel's (1959, 1967) learning program
for playing checkers. Learning agents are discussed in depth in Part V.

Interest in agents and in agent design has risen rapidly in recent years, partly because of
the growth of the Internet and the perceived need for automated and mobile softbot (Etzioni
and Weld, 1994). Relevant pacers are collected in Readings in Agents (Huhns and Singh,
1998) and Foundations of Rational Agency (Wooldridge and Rao, 1999). Texts on multiagent
systems usually provide a good introduction to many aspects of agent design (Weiss, 2000a;
Wooldridge, 2002), Several conference series devoted to agents began in the 1990s, including
the International Workshop on Agent Theories, Architectures, and Languages (ATAL), the
International Conference on Autonomous Agents (AGENTS), and the International Confer-
ence on Multi-Agent Systems (ICMAS). In 2002, these three merged to form the international
Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS). The joumal
Autonomous Agents and Multi-Agent Systems was founded in 1998. Finally, Dung Beetle
Ecology (Hanski and Cambefort, 1991) provides a wealth of interesting information on the
behavior of dung beetles. YouTube features inspiring video recordings of their activities.

EXERCISES

2.1 Suppose that the performance measure is concerned with just the first T time steps of
the environment and ignores everything thereafter. Show that a rational agcnt'a action may
depend not just on the state of the environment but also on the time step it has reached.
2.2 Let us examine the rationality of various vacuum-cleaner agent functions.

a. Show that the simple vacuum-cleaner agent function described in Figure 2.3 is indeed
rational under the assumptions listed on page 38.

b. Describe a rational agent function for the case in which each movement costs one point
Does the corresponding agent program require internal state?

c. Discuss possible agent designs for the cases in which clean squares can become dirty
and the geography of the environment is unknown. Does it make sense for the agent to
learn from its experience in these cases? If so, what should it learn? If not, why not?

2.3 For each of the following assertions, say whether it is true or false and support your
answer with examples or counterexamples where appropriate.

a. An agent that senses only partial information about the state cannot be perfectly rational.

62 Chapter 2. Intelligent Agents

b. There exist task environments in which no pure reflex agent can behave rationally.
c. There exists a task environment in which every agent is rational.
d. The input to an agent program is the same as the input to the agent function.
e. Every agent function is implementable by some program/machine combination.
f. Suppose an agent selects its action uniformly aL random from the set of possible actions.

There exists a deterministic task environment in which this agent is rational.
g. It is possible for a given agent to be perfectly rational in two distinct task environments.
h. Every agent is rational in an unobservable environment.

i. A perfectly rational poker-playing agent never loses.

2.4 For each of the following activities, give a PEAS description of the task environment
and characterize it in terms of the properties listed in Section 2.3.2.

• Playing soccer.
• Exploring the subsurface oceans of Titan.
• Shopping for used AI books on the Internet.
■ Playing a tennis match.
■ Practicing tennis against a wall,
• Performing a high jump.
• K nitting a swearer.
• Bidding on an item at an auction.

2.5 Define in your own words the following terms: agent, agent function, agent program,
rationality, autonomy, reflex agent, model-based agent, goal-based agent, utility-based agent,
teaming agent.

2.6 This exercise explores the differences between agent functions and agent programs.

a. Can there be more than one agent program that implements a given agent function?
Give an example, or show why one is not possible.

b. Are there agent functions that cannot be implemented by any agent program?
c. Given a fixed machine architecture, does each agent program implement exactly one

agent function?
d. Given an architecture with n bits of storage, how many different possible agent pro-

grams are there?
e. Suppose we keep the agent program fixed but speed up the machine by a factor of two.

Does that change the agent function?

2.7 Write pseudocode agent programs for the goal-based and utility-based agents.

The following exercises all concern the implementation of environments and agents for die
vacuum-cleaner world.

Exercises 63

2.8 Implement a performance-measuring environment simulator for the vacuum-cleaner
world depicted in Figurc 2.2 and specified on pagc 38. Your implementation should be modu-
lar so that the sensors, actuators, and environment characteristics (size, shape, dirt placement,
etc.) can be changed easily. (Note: for some choices of programming language and operating
system there are already implementations in the online code repository.)

2.9 Implement a simple reflex agent for the vacuum environment in Exercise 2.8. Run the
environment with this agent fur all possible initial dirt configurations and ageut locutions.

Record the performance score for each configuration and the overall average score.

2.10 Consider a modified version of the vacuum environment in Exercise 2.8, in which the
agent is penalized one point for each movement.

a. Can a simple reflex agent be perfectly rational for this environment? Explain.
b. What about a reflex agent with state'? Design such an agent.
c_ How do your answers to a and b change if the agent's percepts give it the clean/dirty

status of every square in the environment?

2.11 Consider a modified version of the vacuum environment in Exercise 2.8, in which the
geography of the environment—its extent, boundaries, and obstacles—is unknown, as is the
initial dirt configuration. (The agent can go Up and Down as well as Left and Right.)

a. Can a simple reflex agent be perfectly rational for this environment? Explain.
h. Can a simple reflex agent with a randomized agent function outperform a simple reflex

agent? Design such an agent and measure its performance on several environments.
c. Can you design an environment in which your randomized agent will perform poorly?

Show your results.
d. Can a reflex agent with state outperform a simple reflex agent? Design such an agent

and measure its performance on several environments. Can you design a rational agent
of this type?

2.12 Repeat Exercise 2.11 for the case in which the location sensor is replaced with a
"bump" sensor that detects the agent's attempts to move into an obstacle or to cross the
boundaries of the environment. Suppose the bump sensor stops working; how should the
agent behave?

2.13 The vacuum environments in the preceding exercises have all been deterministic. Dis-
cuss possible agent programs for each of the following stochastic versions:

a. Murphy's law: twenty-five percent of the time, the Suck action fails to clean the floor if
it is dirty and deposits dirt unto the floor if the floor is clean. How is your agent program
affected if the dirt sensor gives the wrong answer 10% of the time?

b. Small children: At each time step, each clean square has a 10% chance of becoming
dirty. Can you come up with a rational agent design for this case?

