
2 INTELLIGENT AGENTS 

In which we discuss the nature of agents, perfect or otherwise, the diversity of 
environments, and the resulting menagerie of agent types. 

Chapter 1 identified the concept of rational agents as central to our approach to artificial 
intelligence. In this chapter, we make this notion more concrete. We will see that the concept 
of rationality can be applied to a wide variety of agents operating in any imaginable environ-
ment. Our plan in this book is to use this concept to develop a small set of design principles 
for building successful agents—systems that can reasonably be called intelligent. 

We begin by examining agents, environments, and the coupling between them. The 
observation that some agents hehave  Netter  than others leads naturally to the idea of a rational 
agent—one that behaves as well as possible. How well an agent can behave depends on 
the nature of the environment; some environments are more difficult than others. We give a 
crude categorization of environments and show how properties of an environment influence 
the design of suitable agents for that environment. We describe a number of basic "skeleton" 
agent designs, which we flesh out in the rest of the book. 

2.1 AGENTS AND ENVIRONMENTS 

ENVIRONMENT 

SENSOR 

ACTUATOR 

PERCEPT 

PERCEPT SEQUENCE 

An agent is anything that can be viewed as perceiving its environment through sensors and 
acting upon that environment through actuators. This simple idea is illustrated in Figure 2.1. 
A human agent has eyes, ears, and other organs for sensors and hands, legs, vocal tract, and so 
on for actuators. A robotic agent might have cameras and infrared range finders for sensors 
and various motors for actuators. A software agent receives keystrokes, file contents, and 
network packets as sensory inputs and acts on the environment by displaying on the screen, 
writing files, and sending network packets. 

We use the term percept to refer to the agent's perceptual inputs at any given instant. An 
agent's percept sequence is the complete history of everything the agent has ever perceived. 
In general, an agent's choice of action at  any given instant can depend on the entire percept 
sequence  observed to date, but not on anything it hasn't perceived. By specifying the agent's 
choice of action for every possible percept sequence, we have said more or less everything 
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Figure 2.1 Agents interact with environments through sensors and actuators. 
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there is to say about the agent. Mathematically speaking, we say that an agent's behavior is 
AGENT FUNCTION described by the agent function that maps any given percept sequence to an action. 

We can imagine tabulating the agent function that describes any given agent; for most 
agents, this would he a very large table—infinite, in fact, unless we place a bound on the 
length of percept sequences we want to consider. Given an agent to experiment with, we can, 
in principle, construct this table by trying out all possible percept sequences and recording 
which actions the agent does in response) The table is of course, an eviernal  characterization 
of the agent. Internally, the agent  function for an artificial agent will be implemented by an 

AGMIT  mown,' agent program. It is important to keep these two ideas distinct. The agent function is an 
abstract mathematical description; the agent program is a concrete implementation, running 
within some physical system. 

To illustrate these ideas, we use a very simple example—the vacuum-cleaner world 
shown in Figure 2.2. This world is so simple that we can describe everything that happens; 
it's also a made-up world, so we can invent many variations. This particular world has just two 
locations: squares A and B. The vacuum agent perceives which square it is in and whether 
there is dirt in the square. It can choose to move left, move right, suck up the dirt, or do 
nothing. One very simple agent function is the following: if the current square is dirty, then 
suck; otherwise, move to the other square. A partial tabulation of this agent function is shown 
in Figure 2.3 and an agent program that implements it appears in Figure 2.8  on page 48.  

Looking at Figure 2.3, we see that various vacuum-world agents can be defined simply 
by filling in the right-hand column in various ways. The obvious question, then, is this: Wiwi 
is the right way to fill out the table? In other words, what makes an agent good or bad, 
intelligent or stupid? We answer these questions in the next section, 

If the agent uses some randomization to choose its actions, then we would have to try each sequence many 
times to identify the probability of each action. One might imagine that acting randomly is rather silly, but we 
show later in this chapter that it can be very intelligent. 
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Figure 2.2  A vacuum-cleaner world with just two locations. 

  

Percept sequence Acticn 

[A, Clean] 
[A, Dirty] 
[B, Clean] 
[l3, Dirty] 
[A, Clean], [A, Clean] 
[A, Clean], [A, Dirty] 

.  
[A, Clean], [A, Clean], [A, Clean] 
[A, Clean], [A, Clean], [A, Dirty] 

:  

Right 
Suck 
Left 
Suck 
Right 
Suck 

:  
Right 
Snek  

.  

Figure 2.3 Partial tabulation of a simple agent function for the vacuum-cleaner world 
shown in Figure 2.2. 

Before closing this section, we should emphasize that the notion of an agent is meant to 
be a tool for analyzing systems, not an absolute characterization that divides the world into 
agents and non-agents. One could view a hand-held calculator as an agent that chooses the 
action of displaying "4" when given the percept sequence "2 t- 2 =,"  but such an analysis 
would hardly aid our understanding of the calculator. In a sense. all areas of engineering can 
be seen as designing artifacts that interact with the world; AI operates at (what the authors 
consider to he) the most interesting end of the spectrum, where the artifacts have significant 
computational resources and the task environment requires nontrivial decision making. 

2.2 GOOD B EHAVIOR:  THE CONCEPT OF RATIONALITY 

RATIONAL AGENT A rational agent is one that does the right thing—conceptually speaking, every entry in the 
table for the agent function is filled out correctly. Obviously, doing the right thing is better 
than doing the wrong thing, but what does it mean to do the right thing' 
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PERFORMANCE 
MEASURE 

DENITION  OF A 
RARONAL  AGENT 

We answer this age-old question in an age-old way: by considering the consequences 
of the agent's behavior. When an agent is plunked down in an environment, it generates a 
sequence of actions according to the percepts it receives. This sequence of actions causes the 
environment to go through a sequence of states. If the sequence is desirable, then the agent 
has performed well. This notion of desirability is captured by a performance measure that 
evaluates any given sequence of environment states. 

Notice that we said environment states, not agent states. if we define success in terms 
of agent's opinion of its own performance, an agent could achieve perfect rationality simply 
by deluding itself that its performance was perfect. Human agents in particular are notorious 
for "sour grapes"—believing  they did not really want something (e.g., a Nobel Prize) after 
not getting it 

Obviously, there is not one fixed performance measure for all tasks and agents; typically, 
a designer will devise one appropriate to the circumstances. This is not as easy  as it sounds. 
Consider, for example, the vacuum-cleaner agent from the preceding section. We might 
propose to measure performance by the amount of dirt cleaned up in a single eight-hour  shift.  
With a rational agent, of course, what you ask for is what you get. A rational agent can 
maximize this performance measure by cleaning up the dirt, then dumping it all on the floor, 
then cleaning it up again, and so on. A more suitable performance measure would reward the 
agent for having a clean floor. For example, one point could be awarded for each clean square 
at each time step (perhaps with a penalty for electricity consumed and noise generated). As 
a general rule, it is better to design performance measures according to what one actually 
wants in the environment, rather than according to how one thinks the agent should behave. 

Even when the obvious pitfalls are avoided, there remain some knotty issues to untangle. 
For example, the notion of "clean floor" in the preceding paragraph is based on average 
cleanliness over time. Yet the same average cleanliness can be achieved by two different 
agents, one of which does a mediocre job all the time while the other cleans energetically but 
takes long breaks. Which is preferable might seem to be a fine point of janitorial science, but 
in fact it is a deep philosophical question with far-reaching implications. Which is better—
a reckless life of highs and lows, or a safe but himidnim  existence? Which is better—an  
economy where everyone lives in moderate poverty, or one in which some live in plenty 
while others are very poor? We leave these questions as an exercise for the diligent reader. 

2.2.1 Rationality 

What is rational at any given time depends on four things: 
• The performance measure that defines the criterion of success. 
• The agent's prior knowledge of the environment. 
• The actions that the agent can perform. 
• The agent's percept sequence to date. 

This leads to a definition of a rational agent: 

For each possible percept sequence,  a rational agent should select an action that is ex-
pected to maximize its performance measure, given the evidence provided by the percept 
sequence and whatever built-in  knowledge the agent has. 
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OMNECENCE  

Consider the simple vacuum-cleaner agent that cleans a square if it is dirty and moves to the 
other square if not; this is the agent function tabulated in Figure 2.3. Is this a rational agent? 
That depends! First, we need to say what the performance measure is, what is known about 
the environment, and what sensors and actuators the agent has Let us assume the following: 

■ The performance measure awards one point for each clean square at each time step,  
over a "lifetime" of 1000 time steps. 

■ The "geography" of the environment is known a priori (Figure 2.2) but the dirt distri-
bution and the initial location of the agent are not. Clean squares stay clean and sucking 
cleans the current square. The Left and Hight actions move the agent left and right 
except when this would take the agent outside the environment, in which case the agent 
remains where it is. 

• The only available actions are Left, Right,  and Suck. 

■ The agent correctly perceives its location and whether that location contains dirt. 

We claim that under these circumstances the agent is indeed rational; its expected perfor-
mance is at least as high as any other agent's. Exercise 2.2 asks you to prove this. 

One can see easily that the same agent would be irrational under different circum-
stances. For example, once all the dirt is cleaned up, the agent will oscillate needlessly back 
and forth; if the performance measure includes a penalty of one point for each movement left 
or right, the agent will fare poorly. A better agent for this case would do nothing once it is 
sure that all the squares are clean. If clean squares can become dirty again, the agent should 
occasionally check and re-clean them if needed. If the geography of the environment is un-
known, the agent will nccd  to explore it rather than stick to squares A and B. Exercise 2.2 
asks you to design agents for these cases. 

2.2.2 Omniscience, learning, and autonomy 

We need to be careful to distinguish between rationality and omniscience. An omniscient 
agent knows the actual outcome of its actions and can act accordingly; but omniscience is 
impossible in reality. Consider the following example: I am walking along the Champs 
Elysees  one day and I see an old friend across the street There is no traffic nearby and I'm 
not otherwise engaged, so, being rational, I start to cross the street Meanwhile, at 33,000 
feet, a cargo door falls off a passing airliner, 2  and before I make it to the other side of the 
street I am flattened. Was I irrational to cross the street? It is unlikely that my obituary would 
read "Idiot attempts to cross street." 

This example shows that rationality is not the same as perfection. Rationality max-
imizes expected performance, while perfection maximizes actual performance. Retreating 
from a requirement of perfection is not  just a question of being fair to agents. The point is 
that if we expect an agent to do what turns out to be the best action after the fact, it will be 
impossible to design an agent to fulfill this specification—unless we improve the performance 
of crystal balls or time machines. 

2  See N. Henderson, "New door latches  urged for Boeing 747 jumbo jets," Washington Poe, August 24. 1989. 
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AUTONOMY 

Our definition of rationality does not require omniscience, then, because the rational 
choice depends only on the percept sequence to date. We must also ensure that we haven't 
inadvertently allowed the agent to engage in decidedly underintelligent activities. For exam- 
ple, if an agent does not look both ways before crossing a busy road, then its percept sequence 
will not tell it that there is a large truck approaching at high speed. Does our definition of 
rationality say that it's now OK to cross the road? Far from it! First, it would net be rational 
to cross the road given this uninformative percept sequence: the risk of accident from cross-
ing without looking is too great. Second, a rational agent should choose the "looking" action 
before stepping into the street, because looking helps maximize the expected performance. 
Doing  actions in order to modify future percepts—sometimes called information gather-
ing—is an important part of rationality and is covered in depth in Chapter 16. A second 
example of information gathering is provided by the exploration that must be undertaken by 
a vacuum-cleaning  agent in an initially unknown environment. 

Our definition requires a rational agent not only to gather information but also to learn 
as much as possible from what it perceives. The agent's initial configuration could reflect 
sonic prior knowledge of the environment, but as the agent gains experience this may be 
modified and augmented. There are extreme cases in which the environment is completely 
known a priori. In such cases, the agent need not perceive or learn; it simply acts correctly. 
Of course, such agents are fragile. Consider the lowly dung beetle. After digging its nest and 
laying its eggs, it fetches a ball of dung from a nearby heap to plug the entrance. If the hall of 

dung is removed from its grasp en route, the beetle continues its task and pantomimes plug-
ging the nest with the nonexistent dung ball, never noticing that it is missing. Evolution has 
built an assumption into the beetle's behavior, and when it is violated, unsuccessful behavior 
results. Slightly more intelligent is the sphex wasp. The female sphex will dig a burrow, go 
out and sting a caterpillar and drag it to the burrow, enter the burrow again to check all is 
well, drag the caterpillar inside, and lay its eggs. The caterpillar serves as a food source when 
the eggs hatch. So far so good, but if an entomologist moves the caterpillar a few inches 
away while the sphex is doing the check, it will revert to the "drag" step of its plan and will 
continue the plan without modification, even after dozens of caterpillar-moving interventions_  
The sphex is unable to learn that its innate plan is failing, and thus will not change it. 

To the extent that an agent relies on the prior knowledge of its designer rather than 
on its own percepts, we say that the agent lacks autonomy. A rational agent should be 
autonomous—it should learn what it can to compensate for partial or incorrect prior knowl-
edge. For example, a vacuum-cleaning agent that learns to foresee where and when additional 
dirt will appear will do better than one that does not. As a practical matter, one seldom re-
quires complete autonomy from the start: when the agent has had little or no experience, it 
would have to act randomly unless the designer gave some assistance. So, just as evolution 
provides animals with enough built-in reflexes to survive long enough to learn for themselves, 
it would be reasonable to provide an artificial intelligent agent with some initial knowledge 
as well as an ability to learn. After sufficient experience of its environment, the behavior 
of a rational agent can become effectively independent of its prior knowledge. Hence, the 
incorporation of learning allows one  to design a single rational agent that will succeed in a 
vast variety of environments. 

INFORMATICN  
GATHERING 

EXPLORATION  

LEARNING 
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2.3 THE NATURE OF ENVIRONMENTS 

Now that we have a definition of rationality, we are almost ready to think about building 
TAa  ENVIRCNMENT  rational agents. First, however, we must think about task environments, which are essen-

tially the "problems" to which rational agents are the "solutions." We begin by showing how 
to specify a task environment, illustrating the process with a number of examples. We then 
show that task environments come in a variety of flavors. The flavor of the task environment 
directly affects the appropriate design for the agent program_ 

2.3.1 Specifying the task environment 

In our discussion of the rationality of the simple vacuum-cleaner agent, we had to specify 
the performance measure. the environment, and the agent's actuators and sensors. We group 
all these under the heading of the task environment. For the acronymically minded, we call 

PEAS 

	

	 this the PEAS (Performance, Environment, Actuators, Sensors) description. In designing an 
agent, the first step must always be to specify the task environment as filly as possible 

The vacuum world was a simple example; let us consider a more complex problem: an 
automated taxi driver. We should point out, before the reader becomes alarmed, that a fully 
automated taxi is currently somewhat beyond the capabilities of existing technology. (page 28 
describes an existing driving robot.) The full driving task is extremely open-ended. There is 
no limit to the novel combinations of circumstances that can arise—another reason we chose 
it as a focus for discussion Figure 2A summarizes the PEAS description for the taxi's task 
environment. We discuss each element in more detail in the following paragraphs. 

Agent Type Performance 
Measure 

Environment Actuators Sensors 

Taxi driver Safe, fast, legal, 
comfortable trip, 
maximize profits 

Roads, other 
traffic, 
pedestrians, 
customers 

Steering, 
accelerator, 
brake, signal, 
horn, display 

Cameras, sonar, 
speedometer, 
GPS,  odometer, 
accelerometer, 
engine sensors, 

keyboard 

Figure 2.4 PEAS description of the task environment for an automated taxi. 

First, what is the performance measure to which we would like our automated driver 
to aspire? Desirable qualities include getting to the correct destination; minimizing fuel con-
sumption and wear and tear; minimizing the trip time or cost; minimizing violations of traffic 
laws and disturbances to other drivers; maximizing safety and passenger comfort; maximiz-
ing profits.  Obviously, some of these goals conflict, so tradeoffs will be required. 

Next, what is the driving environment that the taxi will face? Any taxi driver must 
deal with a variety of roads, ranging from rural lanes and urban alleys to 12-lane freeways. 
The roads contain other traffic, pedestrians, stray animals, road works, police cars, puddles, 
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and potholes. The taxi must also interact with potential and actual passengers. There are also 
some optional choices. The taxi might need to operate in Southern California, where snow 
is seldom a problem, or in Alaska, where it seldom is not. It could always be driving on the 
right, or we might want it to be flexible enough to drive on the left when in Britain or Japan. 
Obviously, the more restricted the environment, the easier the design problem. 

The actuators for an automated taxi include those available to a human driver: control 
over the engine through the accelerator and control over steering and braking. In addition, it 
will need output to a display screen or voice synthesizer to talk back to the passengers, and 
perhaps some way to communicate with other vehicles, politely or otherwise. 

The basic sensors for the taxi will include one or more controllable video cameras so 
that it can see the road; it might augment these with infrared or sonar sensors to detect dis-
tances to other cars and obstacles. To avoid speeding tickets, the taxi should have a speedome-
ter, and Lu  consul  the vehicle properly, especially on curves, it should have an accelerometer. 
To determine the mechanical state of the vehicle, it will need the usual array of engine, fuel, 
and electrical system sensors. Like many human drivers, it might want a global positioning 
system (GPS) so that it doesn't get lost. Finally, it will need a keyboard or microphone for 
the passenger to request a destination. 

In Figure 2.5.  we have sketched the basic PEAS elements for a number of additional 
agent types. Further examples appear in Exercise 2.4. It may come as a surprise to some read- 
ers that our list of agent types includes some programs that operate in the entirely artificial 
environment defined by keyboard input and character output on a screen. "Surely," one might 
say, "this is not a real environment, is it?" In fact, what matters is not the distinction between 
"real" and "artificial" environments, but the complexity of the relationship among the behav-
ior of the agent, the percept sequence generated by the environment, and the performance 
measure. Some "real" environments are actually quite simple. For example, a robot designed 
to inspect parts as they come by on a conveyor belt can make use of a number of simplifying 
assumptions: that the lighting is always just so, that the only thing on the conveyor belt will 
be parts of a kind that it knows about, and that only two actions (accept or reject) are possible. 

SCMYARE  AGENT In contrast, some software agents (or software robots or softhots)  exist in rich, unlitm- 
S0=TBOT ited domains. Imagine a softbot Weh  site operator designed to scan Internet news sources and 

show the interesting items to its users, while selling advertising space to generate revenue. 
To do well, that operator will need some natural language processing abilities, it will need 
to learn what each user and advertiser is interested in, and it will need to change its plans 
dynamically—for  example, when the connection for one news source goes down or when a 
new one comes online. The Internet is an environment whose complexity rivals that of the 
physical world and whose inhabitants include many artificial and human agents. 

2.3.2 Properties of task environments 

The range of task environments that might arise in AI is obviously vast. We can, however, 
identify a fairly small number of dimensions along which task environments can be catego- 
rized. These dimensions determine, to a large extent, the appropriate  agent design and the 
applicability of each of the principal families of techniques for agent implementation. First, 
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Agent Type Performance 
Measure 

Environment Actuators Sensors 

Medical 
diagnosis system 

Healthy patient, 
reduced costs 

Patient, hospital, 
staff 

Display of 
questions, tests, 
diagnoses, 
treatments, 
referrals 

Keyboard entry 
of symptoms, 
findings, patient's 
answers 

Satellite image 

analysis system 
Correct image 

categorization 
Downlink from 

orbiting satellite 
Display of scene 

categorization 
Color pixel 

arrays 

Part-picking 
robot 

Percentage cf  
parts in correct 
bins 

Conveyor belt 
with parts: bins 

Jointed arm and 
hand 

Camera, joint 
angle sensors 

Refinery 

controller 
Purity, yield, 

safety 
Refinery, 

operators 
Valves, pumps, 

beaters, displays 
Temperature, 

pressure, 
chemical sensors 

Interactive 
English tutor 

Student's score 
on test 

Set of students, 
testing agency 

Display of 
exercises. 
suggestions, 
corrections 

Keyboard entry 

Figure 2.5 Examples of agent types and their PEAS descriptions. 

we list the dimensions, then we analyze several task environments to illustrate the ideas. The 
definitions here are  informal; later chapters provide more precise statements and examples of 
each kind of environment. 

Fully observable vs. partially observable: If an agent's sensors give it access to the 
complete state of the environment at each point in time, then we say that the task environ-
ment is fully observable. A task environment is effectively fully observable if the sensors 
detect all aspects that are relevant to the choice of action; relevance, in turn, depends on the 
performance measure. Fully observable environments are convenient because the agent need 
not maintain any internal state to keep track of the world. An environment might be partially 
observable because of noisy and inaccurate sensors or because parts of the state are simply 
missing from the sensor data—for example, a vacuum agent with only a local dirt sensor 
cannot tell whether there is dirt in other squares, and an automated taxi cannot see what other 
diners  are thinking If the agent has no sensors at all then the environment is unobserv- 
able. One might think that in such cases the agent's plight is hopeless, but, as we discuss in 
Chapter 4, the agent's goals may still be achievable, sometimes with certainty. 

Single agent vs. multiagent: The distinction between single-agent and multiagent en- 

FULLY OGGEKVA6LE  

PAFTIALLY  
OBSERVABLE 

UNOBSERVABLE 

SINGLE  AGENT 

MUILTIAGENF  
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vironments may seem simple enough. For example, an agent solving a crossword puzzle by 
itself is clearly in a single-agent  environment, whereas an agent playing chess is in a two-
agent environment. There are, however, some subtle issues. First, we have described how an 
entity may be viewed as an agent, but we have not explained which entities must be viewed 
as agents. Does an agent A (the taxi driver for example) have to treat an object B (another 
vehicle) as an agent. or can it be treated merely as an object behaving according to the laws of 
physics, analogous to waves at the beach or leaves blowing in the wind? The key distinction 
is whether B's behavior is best described as maximizing a performance measure whose value 
depends on agent A's behavior. For example, in chess, the opponent entity B is trying to 
maximize its performance measure, which, by the rules of chess, minimizes agent As per- 

COMPETITIVE 

	

	formance measure. Thus, chess is a competitive multiagent environment. In the taxi-driving 
environment, on the other hand, avoiding collisions maximizes the performance measure of 

CLEHEHAEIVE 
 all agents, so it is a partially cooperative rnultiagent environment. It is also partially com-

petitive because, for example, only one car can occupy a parking space. The agent-design 
problems in multiagent environments are often quite different from those in single-agent en-
vironments; for example, communication often emerges as a rational behavior in multiagent 
environments; in some competitive environments, randomized behavior is rational because 
it avoids the pitfalls of predictability. 

DETERMINISTIC Deterministic vs. stochastic. If the next state of the environment is completely deter- 
STOCHASTIC mined by the current state and the action executed by the agent, then we say the environment 

is deterministic; otherwise, it is stochastic. In principle, an agent need not worry about uncer-
tainty in a fully observable, deterministic environment. (In our definition, we ignore uncer-
tainty that arises purely from the actions of other agents in a multiagent environment: thus, 
a game can be deterministic even though each agent may be unable to predict the actions of 
the others.) If the environment is partially observable, however, then it could appear to be 
stochastic. Most real situations are so complex that it is impossible to keep track of all the 
unobserved aspects; for practical purposes, they must be treated as stochastic. Taxi driving is 
clearly stochastic in this sense, because one can never predict the behavior of traffic exactly; 
moreover, one's tires blow out and one's engine seizes up without warning_  The vacuum 
world as we described it is deterministic, but variations can include stochastic elements such 
as randomly appearing dirt and an unreliable suction mechanism (Exercise 2.13). We say an 

UNIT  RTAIN 

	

	 environment is uncertain if it is not fully observable or not deterministic. One final note: 
our use of the word "stochastic"  generally implies that uncertainty about outcomes is quan- 

NCNDETERMINISTIC 
 tified in terms of probabilities; a nondeterministic environment is one in which actions are 

characterized by their possible outcomes, but no probabilities are attached to them. Nonde-
tenninistic environment descriptions are usually associated with performance measures that 
require the agent to succeed for all possible outcomes of its actions. 

EPLSOLIIC Episodic vs. sequential: In an episodic task environment, the agent's experience is 
SEQUENTIAL divided into atomic episodes. In each episode the agent receives a percept and then performs 

a single action. Crucially, the next episode does not depend on the actions taken in previous 

episodes. Many classification tasks are episodic. For example, an agent that has to spot 
defective parts on an assembly line bases each decision on the current part, regardless of 
previous decisions; moreover, the current decision doesn't affect whether the next part is 
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STATIC 

DYSAMIC  

SEMIDYNAMIC  

DISCRETE 

CONI1NUDLIS  

KNOWN 

UNKNOWN 

defective. In sequential environments, on the other hand, the current decision could affect 
all future clecisions. 3  Chess and taxi driving arc sequential: in both cases, short-term actions 
can have long-term consequences. Episodic environments are much simpler than sequential 
environments because the agent does not need to think ahead. 

Static vs. dynamic: If the environment can change while an agent is deliberating, then 
we say the environment is dynamic for that agent; otherwise, it is static. Static environments 
are easy to deal with because the agent need not keep looking at the world while it is deciding 
on an action, nor need it worry about the passage of time. Dynamic environments, on the 
other hand. are continuously asking the agent what it wants to do; if it hasn't decided yet. 
that counts as deciding to do nothing. If the environment itself does not change with the 
passage of time but the agent's performance score does, then we say the environment is 
semidynamic. Taxi driving is clearly dynamic: the other cars and the taxi itself keep moving 
while the driving algorithm dithers about what to  do next. Chess, when played with a clock,  
is semidynamic. Crossword puzzles are static. 

Discrete vs. continuous: The discrete/continuous distinction applies to the state of the 
environment, to the way time is handled, and to the percepts and actions of the agent. For 
example, the chess environment has a finite number of distinct states (excluding the clock), 
Chess also has a discrete set of percepts and actions. Taxi driving is a continuous-state and 
continuous-time problem: the speed and location of the taxi and of the other vehicles sweep 
through a range of continuous values and do so smoothly over time. Taxi-driving actions are 
also continuous (steering angles, etc.). Input from digital cameras is discrete, strictly speak-
ing, but is typically treated as representing continuously varying intensities and locations. 

Known vs. unknown: Strictly speaking, this distinction refers not to the environment 
itself but to the agent's or designer's) state of knowledge about the "laws of physics" of 
the environment. In a known environment, the outcomes (or outcome probabilities if the 
environment is stochastic) for all actions are given. Obviously, if the environment is unknown, 
the agent will have to learn how it works in order to make good decisions. Note that the 
distinction between known and unknown environments is not the same as the one between 
fully and partially observable environments. It is quite possible for a known environment 
to be partially observable—for example, in solitaire card games, I know the rules but am 
still unable to see the cards that have not yet been turned over. Conversely, an unknown 

environment can be fully observable—in a new video game, the screen may show the entire 
game state but I still don't know what the buttons do until I try them. 

As one might expect, the hardest case is partially observable, multiagent,  stochastic,  
sequential, dynamic, continuous, and unknown. Taxi driving is hard in all these senses, except 
that for the most pan the driver's environment is known. Driving a rented car in a new country 
with unfamiliar geography and traffic laws is a lot more exciting. 

Figure 2.6 lists the properties of a number of familiar environments. Note that the 
answers are not always cut and dried. For example, we describe the part-picking robot as 
episodic, because it normally considers each part in isolation. But if one day there is a large 

s  The word "sequential" is also used in computer science as the antonym of "parallel." The two meanings are  
largely unrelated. 
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ENAIONMEVT  
CLASS.  

Task Environment Observable Agents Deterministic Episodic Static Discrete 

Crossword puzzle 
Chess with a clock 

Fully Single Deterministic Sequential Static Discrete 
Fully Multi Deterministic Sequential Semi Discrete 

Poker 
Backgammon 

Partially Multi Stochastic Sequential Static Discrete 
Fully Multi Stochastic Sequential Static Discrete 

Taxi driving 

Medical diagnosis 
Partially Multi Stochastic. Sequential Dynamic Continuous 

Partially Single Stochastic Sequential Dynamic Continuous 

Image analysis 
Part-picking robot 

Fully Single Deterministic Episodic Semi Continuous 
Partially Single Stochastic Episodic Dynamic Continuous 

Refinery controller 
Interactive. English tutor 

Partially Single Stochastic Sequential Dynamic Continuous 
Partially Multi Stochastic Sequential Dynamic Discrete 

Figure 2.6 Examples of task environments and their characteristics. 

batch of defective parts, the robot should learn from several observations that the distribution 
of defects has changed, and should modify its behavior for subsequent parts. We have not 
included a "known/unknown" column because, as explained earlier, this is not strictly a prop- 
erty of the environment. For some environments, such as chess and poker, it is quite easy to 
supply the agent with full knowledge of the rules, but it is nonetheless interesting to consider 
how an agent might learn to play these games without such knowledge. 

Several of the answers in the table depend on how the task environment is defined. We 
have listed the medical-diagnosis task as single-agent because the disease process in a patient 
is not profitably modeled as an agent; but a medical-diagnosis system might also have to 
deal with recalcitrant patients and skeptical staff, so the environment could have a multiagent 
aspect. Furthermore, medical diagnosis is episodic if one conceives of the task as selecting a 
diagnosis given a list of symptoms; the problem is sequential if the task can include proposing 
a series of tests, evaluating progress over the course of treatment, and so on. Also, many 
environments are episodic at higher levels than the agent's individual actions. For example, 
a chess tournament consists of a sequence of games; each game is an episode because (by 
and large) the contribution of the moves in one game to the agent's overall performance is 
not affected by the moves in its previous game. On the other hand, decision making within a 
single game is certainly sequential. 

The code repository associated with this book (aima.cs.berkeley.edu)  includes imple-
mentations of a number of environments, together with a general-purpose environment simu-
lator that places one or more agents in a simulated environment, observes their behavior over 
time, and evaluates them according to a given performance measure. Such experiments are 
often carried out not for a single environment but for many environments drawn from an en•  
vironment  class. For example, to evaluate a taxi driver in simulated traffic, we would want to 
run many simulations with different traffic, lighting, and weather conditions. If we designed 
the agent fur a single scenario, we might be able to take advantage of specific properties 
of the particular case but might not identify a good design for driving in general. For this 
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ENVIRONMENT 
GENERATOR reason, the code repository also includes an environment generator for each environment 

class that selects particular environments (with certain likelihoods) in which to run the agent. 
For example, the vacuum environment generator initializes the dirt pattern and agent location 
randomly. We are then interested in the agent's average performance over the environment 
class. A rational agent for a given environment class maximizes this average performance.  
Exercises 2.8 to 2.13 take you through the process of developing an environment class and 
evaluating various agents therein. 

2.4 THE STRUCTURE OF AGENTS 

So far we have talked about agents by describing behavior—the action that is performed after 
any given sequence of percepts. Now we must bite the bullet and talk about how the insides 

AGENT PRIX RAM work. The joh of Al is to design an agent program that implements the agent function— 
the mapping from percepts to actions. We assume this program will run on some sort of 

Anc  I II-MOTU1C computing device with physical sensors and actuators—we call this the architecture: 

agent = architecture  +  program .  

Obviously, the program we choose has to be one that is appropriate for the architecture. If the 
program is going to recommend actions like Walk, the architecture had better have legs. The 
architecture might be just an ordinary PC, or it might be a robotic car with several onboard 
computers, cameras, and other sensors. In general, the architecture makes the percepts from 
the sensors available to the program, runs the program, and feeds the program's action choices 
to the actuators as they are generated. Most of this book is about designing agent programs, 
although Chapters 24 and 25 deal directly with the sensors and actuators_ 

2.4.1 Agent programs 

The agent programs that we design in this book all have the same skeleton: they take the 
current percept as input from the sensors and return an action to the actuators. 4  Notice the 
difference between the agent program, which takes the current percept as input, and the agent 
function, which takes the entire percept history. The agent program takes just the current 
percept as input because nothing more is available from the environment; if the agent's actions 
need to depend on the entire percept sequence, the agent will have to remember the percepts. 

We describe the agent programs in the simple pseudocode language that is defined in 
Appendix B. (The online code repository contains implementations in real programming 
languages.) For example, Figure 2.7 shows a rather trivial agent program that keeps track of 
the percept sequence and then uses it to index into a table of actions to decide what to do, 
The table—an example of which is given for the vacuum world in Figure 2.3—represents 
explicitly the agent function that the agent program embodies_  To huild a rational agent in 

4  There are other choices for the agent program skeleton; for example, we could have the agent programs be 
coruutines  that run asynchronously with the environment. Each such coroutine  has an input and output port and 
consists of a loop that reads the input port for percepts and writes actions to the output port. 
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function TABLE-DRIVEN-AGENT(percept)  returns an action 
persistent percepts, a sequence, initially empty 

tablc,  a table of actions, indexed by percept sequences, initially fully specified 

append percept to the end of percepts 
action  LOOKUP( percepts,table)  
return action, 

Figure 2.7  The TABLE DRIVEN AGENT program is invoked for each new percept and 
returns an action each time. It retains the complete percept sequence in memory. 

this way, we as designers must construct a table that contains the appropriate action for every 
possible percept sequence. 

It is instructive to consider why the table-driven approach to agent construction is 
doomed to failure. Let  be the set of possible percepts and let T be the lifetime of the 
agent (the total number of percepts it will receive). The lookup table will contain ET„IPrt  
entries. Consider the automated taxi: the visual input from a single camera comes in at the 
rate of roughly 27 megabytes per second (30 frames per second, 690  x 4B0  pixels with 24 
bits of color information). This gives a lookup table with over 102500WuPM  entries for an 
hour's driving. Even the lookup table for chess—a tiny, well-behaved fragment of the real 
world—would have at least 1015n  entries. The daunting size of these tables (the number of 
atoms in the observable  universe is less than 1 00 )  means that (a) no physical agent in this 
universe will have the space to store the table, (b) the designer would not have time to create 
the table, (c) no agent could ever learn all the right table entries from its experience, and (d) 
even if the environment is simple enough to yield a feasible table size, the designer still has 
no guidance about how to fill in the table entries. 

Despite all this, TARLE-DRIVEN-AGFNT  does do what we want: it implements the 
desired agent function. The key challenge for AI is to find out how to write programs that, 
to the extent possible, produce rational behavior from a smallish program rather than from 
a vast table. We have many examples showing that this can be done successfully in other 
areas: for example, the huge tables of square roots used by engineers and schoolchildren prior 
to the 1970s have now been replaced by a five-line program for Newton's method naming 
on electronic calculators. The question is, can AI do for general intelligent behavior what 
Newton did for square roots? We believe the answer is yes. 

In the remainder of this section, we outline four basic kinds of agent programs that 
embody the principles underlying almost all intelligent systems: 

• Simple reflex agents; 
• Model-based reflex agents; 
• Goal-based agents; and 
• Utility-based agents. 

Each kind of agent program combines particular components in particular ways to generate 
actions. Section 2.4.6 explains in general terms how to convert all these agents into learning 
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function REFLEx- VACUUM-AsENT(  ilocation,statual)  returns an action 
if stratus  = Dirty  then return Suck 
else if location = A then return Right 
else if location = B then return Left 

Figure 2.1i The agent program for a simple reflex agent in the two-state vacuum environ- 

ment. This program implements the agent function tabulated in Figure 2.3. 

agents that can improve the performance of their components so as to generate better actions. 
Finally, Section /  4.7 describes the variety of ways in which the components themselves can 
be represented within the agent. This variety provides a major organizing principle for the 
field and for the book itself. 

2.4.2 Simple reflex agents 

The simplest kind of agent is the simple reflex agent. These agents select actions on the basis 
of the current percept, ignoring the rest of the percept history. For example, the vacuum agent 
whose agent function is tabulated in Figure 2.3 is a simple reflex agent, because its decision 
is based only on the current location and on whether that location contains dirt. Art agent 
program for this agent is shown in Figure 2.8. 

Notice that the vacuum agent program is very small indeed compared to the correspond-
ing table. The most obvious reduction comes from ignoring the percept history, which cuts 
down the number of possibilities from 4 T  to just 4. A further, small reduction comes from 
the fact that when the current square is dirty, the action does not depend on the location. 

Simple reflex behaviors occur even in more complex environments. Imagine yourself 
as the driver of the automated taxi. If the car in front brakes and its brake lights come on, then 
you should notice this and initiate braking. In other words, some processing is done on the 
visual input to establish the condition we call "The car in front is braking." Then, this triggers 
some established connection in the agent program to the action "initiate braking." We call 
such a connection a condition-action ritle, 5  written as 

if car- in-front - is-braking then initiate-braking.  

Humans also have many such connections, some of which are learned responses (as for driv-
ing) and some of which are innate reflexes (such as blinking when something approaches the 
eye). In the course of the book, we show several different ways in which such connections 
can be learned and implemented. 

The program in Figure 2,8  is specific to one particular vacuum environment. A more 
general and flexible approach is first to build a general-purpose interpreter for condition-
action rules and then to create rule sets for specific task environments. Figure 2.9 gives the 
structure of this general program in schematic form, showing how the condition-action rules 
allow the agent to make the connection from percept to action. (Do not worry if this seems 

Also called situation-actiou  rules, productions, or if-then roles.  

SIMPLE  REFLEX 
AGENT 

CONDMON-ACTION  
RULE 



Agent SeRFOrS  

What action I 
should do now t  

Condom/I-action  rules)  

wuild  
is like HOW 

ActonLon:  

Figure 2.9  Schematic diagram of a simple reflex agent. 
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function  SIMPLE-REFLEX-AGENT(  percept) returns an action 
persistent, rates,  a set of condition—action rules 

state  INTERPRET-INPUT(percept)  
rule  RULE-MATen(state,  ruie)  
action 4— rule.ACTION  
return action 

Figure 2_10 A simple reflex agent It acts according to a vile whose condition matches 
the current state, as defined by the percept. 

Section 2.4. The Structure of Agents 49 

trivial; it gets more interesting shortly) We use  rectangles to denote the current internal state 
of the agent's decision process, and ovals to represent the background information used in 
the process. The agent program, which is also very simple, is shown in Figure 2.10. The 
INTERPRET-INPUT function generates an abstracted description of the current slate from the 
percept, and the RULE-MATCH function returns the first rule in the set of rules that matches 
the given state description. Note that the description in terms of "rules" and "matching" is 
purely conceptual; actual implementations can be as simple as a collection of logic gates 
implementing a Boolean circuit. 

Simple reflex agents have the admirable property of being simple, but they turn out to be 
of limited intelligence. The agent in Figure 2.10 will work only if the correct decision can be 
made on the basis of only the current percept—that is. only if the environment is fully observ- 
able. Even a little bit of unobservability  can cause serious trouble. For example, the braking 
rule given earlier assumes that the condition car- in -front - is -braking can be determined from 
the current percept—a  single frame of video. This works if the car in front has a centrally 

mounted brake Light. Unfortunately, older models have different configurations of taillights, 
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RAR➢OMIZAllON  

brake lights, and turn-signal lights, and it is not always possible to tell from a single image 
whether the car is braking. A simple reflex agent driving behind such a car would either brake 
continuously and unnecessarily, or, worse, never brake at all. 

We can see a similar problem arising in the vacuum world. Suppose that a simple reflex 
vacuum agent is deprived of its location sensor and has only a dirt sensor. Such an agent 
has just two possible percepts: [ Dirty!  and [ Clean]. It can Suck in response to [Dirty[;  what 
should it do in response to [Clean]? Moving Left fails (forever) if it happens to start in square 
A, and moving Right fails (forever) if it happens to start in square B. Infinite loops are often 
unavoidable for simple reflex agents operating in partially observable environments. 

Escape from infinite loops is possible if the agent can randomize its actions. For ex-
ample, if the vacuum agent perceives [ Clean], it might flip a coin to choose between Left and 
Right. It is easy to show that the agent will reach the other square in an average of two steps. 
Then, if that square is dirty, the agent will clean it and the task will be complete. Hence, a 
randomized simple reflex agent might outperform a deterministic simple reflex agent. 

We mentioned in Section 2.3 that randomized behavior of the right kind can be rational 
in some multiagent environments. In single-agent environments, randomization is usually not 
rational. It is a useful trick that helps a simple reflex agent in some situations, but in most 
cases we can do much better with more sophisticated deterministic agents. 

2.4.3 Model-based reflex agents 

The most effective way to handle partial observability is for the agent to keep track of the 
parr of the world it can't see now. That is, the agent should maintain some sort of internal 

INTERNAL  STATE  state that depends on the percept history and thereby reflects at least some of the unobserved 
aspects of the current state. For the braking problem, the internal state is not too extensive—
just the previous frame from the camera, allowing the agent to detect when two red lights at 
the edge of the vehicle go on or off simultaneously. For other driving tasks such as changing 
lanes, the agent needs to keep track of where the other cars are if it can't see them all at once. 
And for any driving to he possible at all, the agent needs to keep track of where its keys are 

Updating this internal state information as time goes by requires two kinds of knowl-
edge to be encoded in the agent program. First, we need some information about how the 
world evolves independently of the agent—for example, that an overtaking car generally will 
be closer behind than it was a moment ago. Second, we need some information about how 
the agent's own actions affect the world—for example, that when the agent turns the steering 
wheel clockwise, the car turns to the right, or that after driving for five minutes northbound 
on the freeway, one is usually about five miles north of where one was five minutes ago. This 
knowledge about "how the world works"—whether implemented in simple Boolean circuits 
or in complete scientific theories—is called a model of the world. An agent that uses such a 

MODELNT  
MODEL-BASED model is called a model-based agent. -BASED 

 

Figure 2.11 gives the structure of the model-based reflex agent with internal state, show-

ing how the current percept is combined with the old internal state to generate the updated 
description of the current state, based on the agent's model of how the world works. The agent 
program is shown in Figure 2.12. The interesting part is the function UPDATE-STATE, which 
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Figure 2.11 A model-based reflex agent. 

function ivIODEL-BASED-REFLEX-AGENr(pc.rc:ept.)  returns an action 
persistent state, the agent's current conception of the world state 

model, a description of how the next state depends on current state and action 
rules, a set of condition—action rules 
action, the most recent action, initially none 

state 4—  UPDATE-STATE(state,  action, percept, model) 
rule. 4—  RULE MATCH(siate,  
action  Tyde.AcTioN  
return action 

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world, 
using an internal model. It then chooses an action in the same way as the reflex agent. 
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is responsible for creating the new internal state description. The details of how models and 
states are represented vary widely depending on the type of environment and the particular 
technology used in the agent design. Detailed examples of models and updating algorithms 
appear in Chapters 4, 12, 11, 15. 17, and 25. 

Regardless of the kind of representation used, it is seldom possible for the agent to 
determine the current state of a partially observable environment exactly. Instead, the box 
labeled "what the world is like now" (Figure 2.11) represents the agent's "best guess" (or 
sometimes best guesses). For example, an automated taxi may not be able to see around the 
large truck that has stopped in front of it and can only guess about what may be causing the 
hold -up. Thus, uncertainty about the current state may be unavoidable, but the agent still has 
to make a decision. 

A perhaps less obvious point about the internal  "state" maintained by a model - based 
agent is that it does not have to describe "what the world is like now" in a literal sense. For 
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Figure 2.13 A model-based.  goal-based agent. It keeps track of the world stale as well as 
a set of goals it is trying to achieve, and chooses an action that will (eventually) lead to the 
achievement of its goals. 
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example, the taxi may be driving back home, and it may have a rule telling it to fill up with 
gas on the way home unless it has at least half a tank. Although "driving back home" may 
seem to an aspect of the world state, the fact of the taxi's destination is actually an aspect of 
the agent's internal state. if you find this puzzling, consider that the taxi could be in exactly 
the same place at the same time, but intending to reach a different destination. 

2.4.4 Goal-haserl  agen ts  

Knowing something about the current state of the environment is not always enough to decide 
what to do. For example. at a road junction, the taxi can turn left, turn right, or go straight 
on. The correct decision depends nn where the taxi is trying to get to. In other words, as well 

Goa  as a current state description, the agent needs some sort of goal information that describes 
situations that are desirable—for  example, being at the passenger's destination. The agent 
program can combine this with the model (the same information as was used in the model-
based reflex agent) to choose actions that achieve the goal. Figure 2.13 shows the goal-based 
agent's structure. 

Sometimes goal-based action selection is straightforward—for example, when goal sat-
isfaction results immediately from a single action. Sometimes it will be more tricky—for 
example, when the agent has to consider long sequences of twists and turns in order to find a 
way to achieve the goal. Search (Chapters 3 to 5) and planning (Chapters 10 and 11) are the 
subfields of Al devoted to finding action sequences that achieve the agent's goals. 

Notice that decision making of this kind is fundamentally different from the condition- 
action rules described earlier, in that it involves consideration of the future—both "What will 
happen if I do such-and-such?" and "Will that make me happy?" In the reflex agent designs ;  
this information is not explicitly represented, because the built-in rules map directly from 
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percepts to actions. The reflex agent brakes when it sees brake lights. A goal-based agent, in 
principle, could reason that if the car in front has its brake lights on, it will slow down. Given 
the way the world usually evolves, the only action that will achieve the goal of not hitting 
other cars is to brake. 

Although the goal-based agent appears less efficient, it is more flexible because the 
knowledge that supports its decisions is represented explicitly and can be modified. If it starts  
to rain, the agent can update its knowledge of how effectively its brakes will operate; this will 
automatically cause all of the relevant behaviors to be altered to suit the new conditions. 
For the reflex agent, on the other hand, we would have to rewrite many condition–action 
rules. The goal-based agent's behavior can easily be changed to go to a different destination, 
simply by specifying that destination as the goal. The reflex agent's rules for when to turn 
and when to go straight will work only for a single destination; they must all be replaced to 
go somewhere new. 

UTILITY  

UTILITY  FUNCTION 

2.4.5 Utility -based agents 

Goals alone are not enough to generate high-quality behavior in most environments. For 
example, many action sequences will get the taxi to its destination (thereby achieving the 
goal) but some are quicker, safer, more reliable, or cheaper than others. Goals just provide a 
crude binary distinction between "happy" and "unhappy" states. A more general performance 
measure should allow a comparison of different world states according to exactly how happy 
they would make the agent. Because "happy" does not sound very scientific, economists and 
computer scientists use the term utility instead.6  

We have already seen that a performance measure assigns a score to any given sequence 
of environment states, so it can easily distinguish between more and less desirable ways of 
getting to the taxi's destination. An agent's utility function is essentially an internalization 
of the performance measure. If the internal utility function and the external performance 
measure are in agreement, then an agent that chooses actions to maximize its utility will be 
rational according to the external performance measure. 

Let us emphasize again that this is not the only way to be rational—we have already 
seen a rational agent program for the vacuum world (Figure 2,8) that has no idea what its  
utility function is—but,  like goal-based agents, a utility-based agent has many advantages in 
terms of flexibility and learning. Furthermore, in two kinds of cases, goals are inadequate but 
a utility-based agent can still make rational decisions. First, when there are conflicting goals, 
only some of which can be achieved (for example, speed and safety), the utility function 
specifies the appropriate tradeoff. Second, when there are several goals that the agent can 
aim for, none of which can be achieved with certainty, utility provides a way in which the 
likelihood of success can be weighed against the importance of the goals. 

Partial observability and stochasticity are ubiquitous in the real world, and so, therefore, 
is decision making under uncertainty. Technically speaking, a rational utility-based agent 
chooses the action that maximizes the expected utility of the action outcomes—that is, the 
utility the agent expects to derive, on average, given the probabilities and utilities of each 

EXPECTED UTILITY 

 

6  The word "utility" here refers to "the quality of being useful," not to the electric company or waterworks. 
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Figure 2.14 A model-based,  utility-based agent. It uses a model of the world, along with 
a utility function that measures its preferences among states of the world. Then it chooses the 
action that leads to the best expected utility, where expected utility is computed by averaging 
over all possible outcome states, weighted by the probability of the outcome. 
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outcome. (Appendix A defines expectation more precisely.) In Chapter 16, we show that any 
rational agent must behave as if it possesses a utility function whose expected value it tries 
to maximize. An agent that possesses an erplieli  utility fiinctinn  can make rational decisions 
with a general-purpose algorithm that does not depend on the specific utility function being 
maximized_  In this way, the "global" definition of rationality—designating as rational those 
agent functions that have the highest performance—is  turned into a "local" constraint on 
rational-agent designs that can be expressed in a simple program. 

The utility-based agent stnichire  appears in Figure 2.14. Iltility-based  agent programs 
appear in Part IV, where we design decision-making agents that must handle the uncertainty 
inherent in stochastic or partially observable environments. 

At this point, the reader may be wondering, "Is  it that simple? We just build agents that 
maximize expected utility, and we're done?" It's true that such agents would be intelligent, 
but it's not simple. A utility-based agent has to model and keep track of its environment, 
tasks that have involved a great deal of research on perception, representation, reasoning, 
and learning. The results of this research fill many of the chapters of this book. Choosing 
the utility-maximizing course of action is also a difficult task, requiring ingenious algorithms 
that fill several more chapters, Even with these algorithms, perfect rationality is usually 
unachievable in practice because of computational complexity, as we noted in Chapter 1. 

2.4.6 Learning agents 

We have described agent programs with various methods for selecting actions. We have 
not, so far, explained how the agent programs come into being. In his famous early paper, 
Turing (1950) considers the idea of actually programming his intelligent machines by hand. 
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Figure 2.15 A general learning agent. 

He estimates how much work this might take and concludes "Some more expeditious method 
seems desirable." The method he proposes is to build learning machines and then to teach 
them. In many areas of AI, this is now the preferred method for creating state-of-the-art 
systems. Learning has another advantage, as we noted earlier it allows the agent to operate 
in initially unknown environments and to become more competent than its initial knowledge 
alone might allow. In this section, we briefly introduce the main ideas of learning agents. 
Throughout the book, we comment on opportunities and methods for learning in particular 
kinds of agents. Part V goes into much more depth on the learning algorithms themselves. 

A learning agent can be divided into four conceptual components, as shown in Fig-
ure 2.15. The most important distinction is between the learning element, which is re-
sponsible for making improvements, and the performance element, which is responsible for 
selecting external actions. The performance element is what we have previously considered 
to be the entire agent: it takes in percepts and decides on actions. The learning element uses 
feedback from the critic on how the agent is doing and determines how the performance 
element should be modified to do better in the future. 

The design of the learning element depends very much on the design of the performance 
element. When trying to design an agent that learns a certain capability, the first question is 
not "How am I going to get it to team  this?" but "What kind of performance element will my 
agent need to do this once it has learned how?" Given an agent design, learning mechanisms 
can be constructed to improve every part of the agent. 

The critic tells the learning element how well the agent is doing with respect to a fixed 
performance standard. The critic is necessary because the percepts themselves provide no 
indication of the agent's success. For example, a chess program could receive a percept 
indicating that it has checkmated its opponent, bin  it  needs a performance standard to know 
that this is a good thing; the percept itself does not say so. It is important that the performance 
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PROBLEM 
GENERATOR 

standard be fixed. Conceptually, one should think of it as being outside the agent altogether 
because the agent must not modify it to  fit its own behavior. 

The last component of the learning agent is the problem generator. It is responsible 
for suggesting actions that will lead to new and informative experiences. The point is that 
if the performance element had its way, it would keep doing the actions that are best ;  given 
what it knows. But if the agent is willing to explore a little and do some perhaps suboptimal 
actions in the short run, it might discover much better actions for the long run. The problem 
generator's job is to suggest these exploratory actions. This is what scientists do when they 
carry out experiments. Galileo did not think that dropping rocks from the top of a tower in 
Pisa was valuable in itself. He was not trying to break the rocks or to modify the brains of 
unfortunate passers-by. His aim was to modify his own brain by identifying a better theory 
of the motion of objects. 

To make the overall design more concrete, let us return to the automated taxi example. 
The performance element consists of whatever collection of knowledge and procedures the 
taxi has for selecting its driving actions. The taxi goes out on the road and drives, using 
this performance element. The critic observes the world and passes information along to the 
learning element. For example, after the taxi makes a quick left turn across three lanes of traf-
fic, the critic observes the shocking language used by other drivers. From this experience. the 
learning element is able to formulate a rule saying this was a bad action, and the performance 
element is modified by installation of the new rule. The problem generator might identify 
certain areas of behavior in need of improvement and suggest experiments, such as trying out 
the brakes on different road surfaces under different conditions. 

The learning element can make changes to any of the "knowledge" components shown 
in the agent diagrams (Figures 2.9, 2.11, 2.13, and 2.14). The simplest cases involve learning 
directly from the percept sequence. Observation of pairs of successive states of the environ-
ment can allow the agent to learn "How the world evolves," and observation of the results of 
its actions can allow the agent to learn "What my actions do." For example, if the taxi exerts 
a certain braking pressure when driving on a wet road, then it will soon find out how much 
deceleration is actually achieved_ Clearly, these two learning tasks are more difficult if the 
environment is only partially observable. 

The forms of learning in the preceding paragraph do not need to access the external 
performance standard—in a sense, the standard is the universal one of making predictions 
that agree with experiment. The situation is slightly more complex for a utility-based agent 
that wishes to learn utility information. For example, suppose the taxi-driving agent receives 
no tips from passengers who have been thoroughly shaken up during the trip. The external 
performance standard must inform the agent that the loss of tips is a negative contribution to 
its overall performance; then the agent might be able to learn that violent maneuvers do not 
contribute to its own utility. In a sense, the performance standard distinguishes part of the 
incoming percept as a reward (or penalty) that provides direct feedback on the quality of the 
agent's behavior. Hard-wired performance standards such as pain and hunger in animals can 
be understood in this way. This issue is discussed further in Chapter 21. 

In summary, agents have a variety of components, and those components can be repre-
sented in many ways within the agent program, so there appears to be great variety among 
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learning methods. There is, however, a single unifying theme. Learning in intelligent agents 
can be sununarized  as a process of modification of each component of the agent to bring the 
components into closer agreement with the available feedback information, thereby improv-
ing  the overall performance of the agent. 

2.4.7 How the components of agent programs work 

We have described agent programs (in very high-level terms) as consisting of various compo- 
nents, whose function it is to answer questions such as: "What is the world like now?" "What 
action should l  do now?" "What do my actions do?" The next question for a student of AI 
is, "How on earth do these components work?" It takes about a thousand pages to begin to 
answer that question properly, but here we want to draw the reader's attention to some basic 
distinctions among the various ways that the components can represent the environment that 
the agent inhabits. 

Roughly speaking, we can place the representations along an axis of increasing com-
plexity and expressive power—atomic, factored, and structured. To illustrate these ideas, 
it helps to consider a particular agent component, such as the one that deals with "What my 
actions do." This component describes the changes that might occur in the environment as 
the result of taking an action, and Figure 2.16 provides schematic depictions of how those 
transitions might be represented. 
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Figure 2.16 Three ways ha  represent states and the transitions between them. (a) Atomic 
representation: a state (such as B or C) is a black box with no internal structure; (b)  Factored 
representation: a state consists of a vector of attribute values; values can be Boolean, real- 
valued, or one of a fixed set of symbols. (c) Structured representation: a state includes 
objects, each of which may have attributes of its own as well as relationships to other objects. 

In an atomic representation each state of the world is indivisible—it has no internal 
structure. Consider the problem of finding a driving route from one end of a country to the 
other via some sequence of cities (we address this problem in Figure 3.2 on page 68).  For the 
purposes of solving this problem, it may suffice to reduce the state of world to just the name 
of the city we ai-e  .in—a  single atom of knowledge; a "black box" whose only discernible 
property is that of being identical to or different from another black box. The algorithms 
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underlying search and game-playing (Chapters 3-5), Hidden Markov models (Chapter 15), 
and Markov decision processes (Chapter 17) all work with atomic rcprcscntations—or,  at 
least, they treat representations as if they were atomic. 

Now consider a higher-fidelity description for the same pmblern,  where we need to be 
concerned with more than just atomic location in one city or another; we might need to pay 
attention to how much gas is in the tank, our current GPS coordinates, whether or not the oil 
warning light is working, how much spare change we have for toll crossings, what station is 
on the radio, and so on. A factored representation splits up each state into a fixed set of 
variables or attributes, each of which can have a value. While two different atomic states 
have nothing in common—they are just different black boxes—two different factored states 
can share some attributes (such as being at some particular GPS location) and not others (such 
as having lots of gas or having no gas); this makes it much easier to work out how to turn 
one state into another. With factored representations, we can also represent uncertainty—for 
example, ignorance about the amount of gas in the tank can be represented by leaving that 
attribute blank. Many important areas of Al are based on factored representations, including 
constraint satisfaction algorithms (Chapter 6), propositional logic (Chapter 7), planning 
(Chapters 10 and 11), Bayesian networks (Chapters 13-16), and the machine learning al-
gorithms in Chapters 18,20,  and 21.  

For many purposes, we need to understand the world as having things in it that are 
related to each other, not just variables with values. For example, we might notice that a 

large truck ahead of us is reversing into the driveway of a dairy farm but a cow has got loose 
and is blocking the truck's path. A factored representation is unlikely to be pre-equipped 
with the attribute D-ackAkeatiBackingIntoDairyFarrnDrivetuayBlackedEpLoaseCow  with 
value true  or false Instead, we would need a structured representation, in which ob- 
jects such as cows and trucks and their various and varying relationships can be described 
explicitly. (See Figure 2.16(c).) Structured representations underlie relational databases 
and first-order logic (Chapters 8, 9, and 12), first-order probability models (Chapter 14),  
knowledge-based learning (Chapter 19) and much of natural language understanding 
(Chapters 22 and 21).  In fact, almost everything that humans express in natural language 
concerns objects and their relationships. 

As we mentioned earlier, the axis along which atomic, factored, and structured repre-
sentations lie is the axis of increasing expressiveness. Roughly speaking, a more expressive 
representation can capture, at least as concisely, everything a less expressive one can capture, 
plus some more. Often, the more expressive language is much more concise; for example, the 
rules of chess can be written in a page or two of a structured-representation language such 
as first-order logic but require thousands of pages when written in a factored-representation 
language such as propositional logic. On the other hand, reasoning and learning become 
more complex as the expressive power of the representation increases. To gain the benefits 
of expressive representations while avoiding their drawbacks, intelligent systems for the real 
world may need to operate at all points along the axis simultaneously. 
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2.5 SUMMARY 

This chapter has been something of a whirlwind tour of AI, which we have conceived of as 
the science of agent design. The major points to recall are as follows: 

• An agent is something that perceives and acts in an environment. The agent ftmction  
for an avail.  specifics the action taken by the agent in response to any percept sequence.  

• The performance measure evaluates the behavior of the agent in an environment A 
rational agent acts so as to maximize the expected value of the performance measure, 
given the percept sequence it has seen so far 

• A task environment specification includes the performance measure, the external en-
vironment, the actuators. and the sensors. In designing an agent, the first step must 
always be to specify the task environment as fully as possible. 

• Task environments vary along several significant dimensions. They can be fully or 
partially observable, single-agent or multiagent, deterministic or stochastic, episodic or 
sequential, static or dynamic, discrete or continuous, and known or unknown. 

• The agent program implements the agent function_ There exists a variety of basic 
agent-program designs reflecting the kind of information made explicit and used in the 
decision process. The designs vary in efficiency, compactness, and flexibility. The 
appropriate design of the agent program depends on the nature of the environment. 

• Simple reflex agents respond directly to percepts, whereas model-based reflex agents 
maintain internal state to track aspects of the world that are not evident in the current 
percept. Goal-based agents act to achieve their goals, and utility-based agents try to 
maximize their own expected "happiness."  

• All agents can improve their performance through learning. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

CONTROLLER 

The central role of action in intelligence—the notion of practical reasoning—goes back at 
least as far as Aristotle's Niconuchean  Ethics. Practical reasoning was also the subject of 
McCarthy's (1958) influential paper "Programs with Common Sense." The fields of robotics 
and control theory are, by their very nature, concerned principally with physical agents. The 
concept of a controller in control theory is identical to that of an agent in Al. Perhaps sur-
prisingly, Al has concentrated for most of its history on isolated components of agents-
question-answering systems, theorem-provers, vision systems, and so on—rather than on 
whole agents. The discussion of agents in the text by Genesereth  and Nilsson (1987) was an 
influential exception. The whole-agent view is now widely accepted and is a central theme in 
recent texts (Poole et al., 1998: Nilsson, 1998; Padgham and Winikoff, 2004; Jones, 2007). 

Chapter  1 traced the roots of the concept of rationality in philosophy and economics. In 
Al, the concept was of peripheral interest until the mid-1980s,  when it began to suffuse many 
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discussions about the proper technical foundations of the field. A paper by Jon Doyle (1983) 
predicted that rational agent design would come to be seen as the core mission of Al, while 
other popular topics would spin off to form new disciplines. 

Careful attention to the properties of the environment and their consequences for ra-
tional agent design is most apparent in the control theory tradition—for example, classical 
control systems (Dorf and Bishop, 2004; Kirk, 2004) handle fully observable, deterministic 
environments; stochastic optimal control (Kumar and Varaiya,  1986; Bertsekas and Shreve. 
2007) handles partially observable, stochastic environments; and hybrid control (Henninger 
and Sastry,  1998; Cassandras and Lygeros,  2006) deals with environments containing both 
discrete and continuous elements. The distinction between fully and partially observable en-
vironments is also central in the dynamic programming literature developed in the field of 
operations research (Puterman, 1994), which we discuss in Chapter 17. 

Reflex agents were the primary model fur psychological behaviorists such as Skinner 
(1953), who attempted to reduce the psychology of organisms strictly to input/output or stim-
ulus/response  mappings. The advance from behaviorism to functionalism in psychology, 
which was at least partly driven by the application of the computer metaphor to agents (Put-
nam, 1960; Lewis, 1966), introduced the internal state of the agent into the picture. Most 
work in AI views the idea of pure reflex agents with state as too simple to provide much 
leverage, but work by Rosenschein (1985) and Brooks (1986) questioned this assumption 
(see Chapter 25). In recent years, a great deal of work has gone into finding efficient algo-
rithms for keeping track of complex environments (Hamscher et aL, 1992; Simon, 2006). The 
Remote Agent program (described on page 28) that controlled the Deep Space One spacecraft 
is a particularly impressive example (Muscettola et a! 1998; Jonsson et aL,  2000). 

Goal-based agents are presupposed in everything from Aristotle's view of practical rea-
soning to McCarthy's early papers on logical AI. Shakey the Robot (Pikes and Nilsson. 
1971; Nilsson, 1984) was the first robotic embodiment of a logical, goal-based agent. A 
full logical analysis of goal-based agents appeared in Genesereth and Nilsson (1987), and a 
goal-based programming methodology called agent-oriented programming was developed by 
Shoham (1993).  The agent-based approach is now extremely popular in software engineer-
ing (Ciancarini and Wooldridge, 2001). It has also infiltrated the area of operating systems, 
where autonomic computing refers to computer systems and networks that monitor and con-
trol themselves with a perceive–act loop and machine learning methods (Kephart and Chess. 
2003). Noting that a collection of agent programs designed to work well together in a true 
multiagent environment necessarily exhibits modularity—the programs share no internal state 
and communicate with each other only through the environment—it is common within the 
field of multiagent systems to design the agent program of a single agent as a collection of 
autonomous sub-agents. In some cases, one can even prove that the resulting system gives 
the same optimal solutions as a monolithic design.  

The goal-based view of agents also dominates the cognitive psychology tradition in the 
area of problem solving, beginning with the enormously influential Human Problem Solv-
ing  (Newell and Simon, 1972) and running through all of Newell's later work (Newell, 1990). 
Goals, further analysed  as desires (general) and intentions (currently pursued), are central Lu  
the theory of agents developed by Bratman (1987). This theory has been influential both in 
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natural language understanding and multiagent systems. 
Horvitz et al. (1988)  specifically suggest the use of rationality conceived as the maxi-

mization of expected utility as a basis for AI. The text by Pearl (1988) was the first in AI to 
cover probability and utility theory in depth; its exposition of practical methods for reasoning 
and decision making under uncertainty was probably the single biggest factor in the rapid 
shift towards utility-based agents in the 1990s (see Part IV). 

The general design for learning agents portrayed in Figure 2.15 is classic in the machine 
learning literature (Buchanan et al., 1978; Mitchell, 1997). Examples of the design, as em-
bodied in programs, go back at least as far as Arthur Samuel's (1959, 1967) learning program 
for playing checkers. Learning agents are discussed in depth in Part V. 

Interest in agents and in agent design has risen rapidly in recent years, partly because of 
the growth of the Internet and the perceived need for automated and mobile softbot (Etzioni 
and Weld, 1994). Relevant pacers are collected in Readings in Agents (Huhns and Singh, 
1998) and Foundations of Rational Agency (Wooldridge and Rao, 1999). Texts on multiagent 
systems usually provide a good introduction to many aspects of agent design (Weiss, 2000a; 
Wooldridge, 2002), Several conference series devoted to agents began in the 1990s, including 
the International Workshop on Agent Theories, Architectures, and Languages (ATAL), the 
International Conference on Autonomous Agents (AGENTS), and the International Confer-
ence on Multi-Agent Systems (ICMAS). In 2002, these three merged to form the international 
Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS). The joumal  
Autonomous Agents and Multi-Agent Systems was founded in 1998. Finally, Dung Beetle 
Ecology (Hanski  and Cambefort,  1991) provides a wealth of interesting information on the 
behavior of dung beetles. YouTube  features inspiring video recordings of their activities. 

EXERCISES 

2.1 Suppose that the performance measure is concerned with just the first T time steps of 
the environment and ignores everything thereafter. Show that a rational agcnt'a  action  may 
depend not just on the state of the environment but also on the time step it has reached. 
2.2 Let us examine the rationality of various vacuum-cleaner agent functions. 

a. Show that the simple vacuum-cleaner agent function described in Figure 2.3 is indeed 
rational under the assumptions listed on page 38. 

b. Describe a rational agent function for the case in which each movement costs one point 
Does the corresponding agent program require internal state? 

c. Discuss possible agent designs for the cases in which clean squares can become dirty 
and the geography of the environment is unknown.  Does it make sense for the agent to 
learn from its experience in these cases? If so, what should it learn? If not, why not? 

2.3 For each of the following assertions, say whether it is true or false and support your 
answer with examples or counterexamples where appropriate. 

a. An agent that senses only partial information about the state cannot be perfectly rational. 
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b. There exist task environments in which no pure reflex agent can behave rationally. 
c. There exists a task environment in which every agent is rational. 
d. The input to an agent program is the same as the input to the agent function. 
e. Every agent function is implementable  by some program/machine combination. 
f. Suppose an agent selects its action uniformly aL  random from the set of possible actions. 

There exists a deterministic task environment in which this agent is rational. 
g. It is possible for a given agent to be perfectly rational in two distinct task environments. 
h. Every agent is rational in an unobservable environment. 

i. A perfectly rational poker-playing agent never loses. 

2.4 For each of the following activities, give a PEAS description of the task environment 
and characterize it in terms of the properties listed in Section 2.3.2.  

• Playing soccer. 
• Exploring the subsurface oceans of Titan. 
• Shopping for used AI books on the Internet. 
■ Playing a tennis match. 
■ Practicing tennis against a wall, 
• Performing a high jump.  
• K nitting a swearer. 
• Bidding on an item at an auction. 

2.5 Define in your own words the following terms: agent, agent function, agent program, 
rationality, autonomy, reflex agent, model-based agent, goal-based agent, utility-based agent,  
teaming  agent. 

2.6 This exercise explores the differences between agent functions and agent programs. 

a. Can there be more than one agent program that implements a given agent function? 
Give an example, or show why one is not possible. 

b. Are there agent functions that cannot be implemented by any agent program? 
c. Given a fixed machine architecture, does each agent program implement exactly one 

agent function? 
d. Given an architecture with n bits of storage, how many different possible agent pro-

grams are there? 
e. Suppose we keep the agent program fixed but speed up the machine by a factor of two. 

Does that change the agent function? 

2.7 Write pseudocode  agent programs for the goal-based and utility-based agents. 

The following exercises all concern the implementation of environments  and agents for die 
vacuum-cleaner world. 
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2.8 Implement a performance-measuring environment simulator for the vacuum-cleaner 
world depicted in Figurc 2.2 and specified on pagc 38. Your implementation should be modu-
lar so that the sensors, actuators, and environment characteristics (size, shape, dirt placement, 
etc.) can be changed easily. (Note: for some choices of programming language and operating 
system there are already implementations in the online code repository.) 

2.9 Implement a simple reflex agent for the vacuum environment in Exercise 2.8. Run the 
environment with this agent fur all possible initial dirt configurations and ageut  locutions. 

Record the performance score for each configuration and the overall average score. 

2.10 Consider a modified version of the vacuum environment in Exercise 2.8, in which the 
agent is penalized one point for each movement. 

a. Can a simple reflex agent be perfectly rational for this environment? Explain. 
b. What about a reflex agent with state'? Design such an agent. 
c_ How do your answers to a and b change if the agent's percepts give it the clean/dirty 

status of every square in the environment? 

2.11 Consider a modified version of the vacuum environment in Exercise 2.8, in which the 
geography of the environment—its  extent, boundaries, and obstacles—is unknown, as is the 
initial dirt configuration. (The agent can go Up and Down as well as Left and Right.) 

a. Can a simple reflex agent be perfectly rational for this environment? Explain. 
h. Can a simple reflex agent with a randomized  agent function outperform a simple reflex 

agent? Design such an agent and measure its performance on several environments. 
c. Can you design an environment in which your randomized agent will perform poorly? 

Show your results. 
d. Can a reflex agent with state outperform a simple reflex agent? Design such an agent 

and measure its performance on several environments. Can you design a rational agent 
of this type? 

2.12 Repeat Exercise 2.11 for the case in which the location sensor is replaced with a 
"bump" sensor that detects the agent's attempts to move into an obstacle or to cross the 
boundaries of the environment. Suppose the bump sensor stops working; how should the 
agent behave? 

2.13 The vacuum environments in the preceding exercises have all been deterministic. Dis-
cuss possible agent programs for each of the following stochastic versions: 

a. Murphy's law: twenty-five percent of the time, the Suck action fails to clean the floor if 
it is dirty and deposits dirt  unto the floor if the floor is clean. How is your agent program 
affected if the dirt sensor gives the wrong answer 10% of the time? 

b. Small children: At each time step, each clean square has a 10% chance of becoming 
dirty. Can you come up with a rational agent design for this case? 


