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Question
This assignment involves implementing a search procedure for a simple geometric
problem where local search can be effective.

The tetrominoes are shapes made from four squares (here ‘tetra’ meaning four,
‘-ominoes’ from dominoes). There are five basic shapes and you are likely famil-
iar with them from the classic game tetris. Like tetris, we will consider shifts
and rotations (by multiples of 90◦); unlike tetris, we also allow the inclusion of
a reflection. Figure 1 shows the five basic shapes: T, I, and O are invariant under
reflection. While J/L and S/Z) are not.

Figure 1: The set of tetrominoes
has five pieces made of 4 blocks.
In this assignment we consider the
tetrominoes to be ‘free’ to that
translations, rotations by multi-
ples of 90◦, and reflections are all
allowed.

One complete collection of tetrominoes fills 5 × 4 = 20 units. Given some
rectangle of height h and length `, such that area h× ` = 20 · k for some k ∈ N,
is there a way to pack exactly k collections of tetrominoes into the rectangle?
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Task
In a language of your own choosing, implement code that given ` and h will
attempt to answer this question in the affirmative by seeking a suitable packing.

We are interested in a method which is fast and effective, so it is not required
that your code be complete, i.e., that it determine and report that no packing exists.

Submission
Generate a sequence of queries of increasing size (with differing aspect ratios),
and fix a reasonable timeout (say ±5 minutes), and then run your code on each
query for that timeout.

Write a report showing a few examples of your code being run and the solu-
tions it finds. Your report should be no more than a couple of pages of the main
content, but that should include:

• Your name and UIN.

• Notes that can help explain the algorithm and approach taken so that it is
easy to understand your code.

• If you did something especially cunning, or had a clever idea you wish to
share, document this fact.

• Specific notes about known bugs, issues, limitations, or errors. If you had
some parameters or items to tune (e.g., a GA with a population size, or SA
with a cooling schedule) provide some description of what you tried in order
to obtain your final version.

• Documentation of resources used and/or help received.

• Affix your code as an appendix. (Not counted toward the page quota.)

Submission of the document (as a PDF) will be facilitated via the canvas site.
The deadline posted on the course webpage will be the official date.
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