
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

CSCE625: Artificial Intelligence
Programming Assignment 5: Packing Puzzle

Dylan Shell

This is posted the week of March 10, 2022. The intended submission date is
April 6, 2022. Submission details are on the third page.

Question
This assignment involves implementing a search procedure for a simple geometric
problem where local search can be effective.

The tetrominoes are shapes made from four squares (here ‘tetra’ meaning four,
‘-ominoes’ from dominoes). There are five basic shapes and you are likely famil-
iar with them from the classic game tetris. Like tetris, we will consider shifts
and rotations (by multiples of 90◦); unlike tetris, we also allow the inclusion of
a reflection. Figure 1 shows the five basic shapes: T, I, and O are invariant under
reflection. While J/L and S/Z) are not.

Figure 1: The set of tetrominoes
has five pieces made of 4 blocks.
In this assignment we consider the
tetrominoes to be ‘free’ to that
translations, rotations by multi-
ples of 90◦, and reflections are all
allowed.

One complete collection of tetrominoes fills 5 × 4 = 20 units. Given some
rectangle of height h and length `, such that area h× ` = 20 · k for some k ∈ N,
is there a way to pack exactly k collections of tetrominoes into the rectangle?

1



Task
In a language of your own choosing, implement code that given ` and h will
attempt to answer this question in the affirmative by seeking a suitable packing.

We are interested in a method which is fast and effective, so it is not required
that your code be complete, i.e., that it determine and report that no packing exists.

Submission
Generate a sequence of queries of increasing size (with differing aspect ratios),
and fix a reasonable timeout (say ±5 minutes), and then run your code on each
query for that timeout.

Write a report showing a few examples of your code being run and the solu-
tions it finds. Your report should be no more than a couple of pages of the main
content, but that should include:

• Your name and UIN.

• Notes that can help explain the algorithm and approach taken so that it is
easy to understand your code.

• If you did something especially cunning, or had a clever idea you wish to
share, document this fact.

• Specific notes about known bugs, issues, limitations, or errors. If you had
some parameters or items to tune (e.g., a GA with a population size, or SA
with a cooling schedule) provide some description of what you tried in order
to obtain your final version.

• Documentation of resources used and/or help received.

• Affix your code as an appendix. (Not counted toward the page quota.)

Submission of the document (as a PDF) will be facilitated via the canvas site.
The deadline posted on the course webpage will be the official date.

2


