## CSCE625: Artificial Intelligence Programming Assignment 5: Packing Puzzle

Dylan Shell

This is posted the week of March 10, 2022. The intended submission date is April 6, 2022. Submission details are on the third page.

## Question

This assignment involves implementing a search procedure for a simple geometric problem where local search can be effective.

The tetrominoes are shapes made from four squares (here 'tetra' meaning four, '-ominoes' from dominoes). There are five basic shapes and you are likely familiar with them from the classic game tetris. Like tetris, we will consider shifts and rotations (by multiples of  $90^{\circ}$ ); unlike tetris, we also allow the inclusion of a *reflection*. Figure 1 shows the five basic shapes: **T**, **I**, and **O** are invariant under reflection. While **J/L** and **S/Z**) are not.



Figure 1: The set of tetrominoes has five pieces made of 4 blocks. In this assignment we consider the tetrominoes to be 'free' to that translations, rotations by multiples of  $90^{\circ}$ , and reflections are all allowed.

One complete collection of tetrominoes fills  $5 \times 4 = 20$  units. Given some rectangle of height h and length  $\ell$ , such that area  $h \times \ell = 20 \cdot k$  for some  $k \in \mathbb{N}$ , is there a way to pack exactly k collections of tetrominoes into the rectangle?

## Task

In a language of your own choosing, implement code that given  $\ell$  and h will attempt to answer this question in the affirmative by seeking a suitable packing.

We are interested in a method which is fast and effective, so it is not required that your code be complete, i.e., that it determine and report that no packing exists.

## **Submission**

Generate a sequence of queries of increasing size (with differing aspect ratios), and fix a reasonable timeout (say  $\pm 5$  minutes), and then run your code on each query for that timeout.

Write a report showing a few examples of your code being run and the solutions it finds. Your report should be no more than a couple of pages of the main content, but that should include:

- Your name and UIN.
- Notes that can help explain the algorithm and approach taken so that it is easy to understand your code.
- If you did something especially cunning, or had a clever idea you wish to share, document this fact.
- Specific notes about known bugs, issues, limitations, or errors. If you had some parameters or items to tune (e.g., a GA with a population size, or SA with a cooling schedule) provide some description of what you tried in order to obtain your final version.
- Documentation of resources used and/or help received.
- Affix your code as an appendix. (Not counted toward the page quota.)

Submission of the document (as a PDF) will be facilitated via the canvas site. The deadline posted on the course webpage will be the official date.