D* Lite

Sven Koenig
College of Computing
Georgia Institute of Technology
Atlanta, GA 30312-0280
skoenig@cc.gatech.edu

Abstract

Incremental heuristic search methods use heuristics to focus
their search and reuse information from previous searches to
find solutions to series of similar search tasks much faster
than is possible by solving each search task from scratch. In
this paper, we apply Lifelong Planning A* to robot navigation
in unknown terrain, including goal-directed navigation in un-
known terrain and mapping of unknown terrain. The resulting
D* Lite algorithm is easy to understand and analyze. It im-
plements the same behavior as Stentz’ Focussed Dynamic A*
but is algorithmically different. We prove properties about
D* Lite and demonstrate experimentally the advantages of
combining incremental and heuristic search for the applica-
tions studied. We believe that these results provide a strong
foundation for further research on fast replanning methods in
artificial intelligence and robotics.

I ntroduction

Incremental search methods, such as DynamicSWSF-FP
(Ramalingam & Reps 1996), are currently not much used in
artificial intelligence. They reuse information from previous
searches to find solutions to series of similar search tasks
much faster than is possible by solving each search task
from scratch. An overview is given in (Frigioni, Marchetti-
Spaccamela, & Nanni 2000). Heuristic search methods,
such as A* (Nilsson 1971), on the other hand, use heuristic
knowledge in form of approximations of the goal distances
to focus the search and solve search problems much faster
than uninformed search methods. An overview is given in
(Pearl 1985). We recently introduced LPA* (Lifelong Plan-
ning A*), that generalizes both DynamicSWSF-FP and A*
and thus uses two different techniques to reduce its planning
time (Koenig & Likhachev 2001). In this paper, we apply
LPA* to robot navigation in unknown terrain. The robot
could use conventional graph-search methods when replan-
ning its paths after discovering previously unknown obsta-
cles. However, the resulting planning times can be on the
order of minutes for the large terrains that are often used,
which adds up to substantial idle times (Stentz 1994). Fo-
cussed Dynamic A* (D*) (Stentz 1995) is a clever heuris-
tic search method that achieves a speedup of one to two or-
ders of magnitudes(!) over repeated A* searches by mod-

Copyright (© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Maxim Likhachev
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
maxim+@cs.cmu.edu

ifying previous search results locally. D* has been exten-
sively used on real robots, including outdoor HMMWVs
(Stentz & Hebert 1995). It is currently also being inte-
grated into Mars Rover prototypes and tactical mobile robot
prototypes for urban reconnaissance (Matthies et al. 2000;
Thayer et al. 2000). However, it has not been extended by
other researchers. Building on LPA*, we therefore present
D* Lite, a novel replanning method that implements the
same navigation strategy as D* but is algorithmically dif-
ferent. D* Lite is substantially shorter than D*, uses only
one tie-breaking criterion when comparing priorities, which
simplifies the maintenance of the priorities, and does not
need nested if-statements with complex conditions that oc-
cupy up to three lines each, which simplifies the analysis of
the program flow. These properties also allow one to extend
it easily, for example, to use inadmissible heuristics and dif-
ferent tie-breaking criteria to gain efficiency. To gain insight
into its behavior, we present various theoretical properties of
LPA* that also apply to D* Lite. Our theoretical properties
show that LPA* is efficient and similar to A*, a well known
and well understood search algorithm. Our experimental
properties show that D* Lite is at least as efficient as D*.
We also present an experimental evaluation of the benefits of
combining incremental and heuristic search across different
navigation tasks in unknown terrain, including goal-directed
navigation and mapping. We believe that our theoretical and
empirical analysis of D* Lite will provide a strong founda-
tion for further research on fast replanning methods in arti-
ficial intelligence and robotics.

Motivation

Consider a goal-directed robot-navigation task in unknown
terrain, where the robot always observes which of its eight
adjacent cells are traversable and then moves with cost one
to one of them. The robot starts at the start cell and has to
move to the goal cell. It always computes a shortest path
from its current cell to the goal cell under the assumption
that cells with unknown blockage status are traversable. It
then follows this path until it reaches the goal cell, in which
case it stops successfully, or it observes an untraversable
cell, in which case it recomputes a shortest path from its cur-
rent cell to the goal cell. Figure 1 shows the goal distances
of all traversable cells and the shortest paths from its current
cell to the goal cell both before and after the robot has moved

Knowledge Before the First Move of the Robot

4 0 7
4 0 7 5[5]5
4131211110/ 9 8| 716161 alalal a4l alal4a]
4 0 7 4
4 0 7 4 2
4 10 7 4 1
14 113 | 12 | 11 . ! 7 4 Seoal
4
4 8 7 4
4 4
4 4] 4
4 5
4
18 |sqzl161-151-14 | 1 8888 88888
Knowledge After the First Move of the Robot

5| 5 51555
4444l ala]4

0
0
0
0
0

N ENNRNEE

&
B

oo~~~

Figure 1: Simple Example.

along the path and discovered the first blocked cell it did not
know about. Cells whose goal distances have changed are
shaded gray. The goal distances are important because one
can easily determine a shortest path from its current cell of
the robot to the goal cell by greedily decreasing the goal dis-
tances once the goal distances have been computed. Notice
that the number of cells with changed goal distances is small
and most of the changed goal distances are irrelevant for re-
calculating a shortest path from its current cell to the goal
cell. Thus, one can efficiently recalculate a shortest path
from its current cell to the goal cell by recalculating only
those goal distances that have changed (or have not been cal-
culated before) and are relevant for recalculating the shortest
path. This is what D* Lite does. The challenge is to identify
these cells efficiently.

Lifelong Planning A*

Lifelong Planning A* (LPA¥*) is shown in Figure 2. LPA*
is an incremental version of A*. It applies to finite graph
search problems on known graphs whose edge costs in-
crease or decrease over time (which can also be used to
model edges or vertices that are added or deleted). S de-
notes the finite set of vertices of the graph. Succ(s) C S
denotes the set of successors of vertex s € S. Similarly,
Pred(s) C S denotes the set of predecessors of vertex
s € 8.0 < ¢(s,s") < oo denotes the cost of moving from
vertex s to vertex s’ € Succ(s). LPA* always determines
a shortest path from a given start vertex sgor¢ € S 10 a
given goal vertex sg.q; € S, knowing both the topology of
the graph and the current edge costs. We use g*(s) to de-
note the start distance of vertex s € S, that is, the length
of a shortest path from sge¢ t0 s. Like A*, LPA* uses
heuristics h(s, sg0a:) that approximate the goal distances of
the vertices s. The heuristics need to be nonnegative and
consistent (Pearl 1985), that is, obey the triangle inequality
h(sgoala sgoal) = 0 and h(S, Sgoal) < C(S; 31) + h(sla Sgoal)
for all vertices s € S and s’ € Succ(s) With s # sgea-

The pseudocode uses the following functions to manage the priority queue: U.Top() returns a
vertex with the smallest priority of all vertices in priority queue U. U.TopKey() returns the smallest
priority of all vertices in priority queue U. (If U is empty, then U.TopKey() returns [co; co].)
U.Pop() deletes the vertex with the smallest priority in priority queue U and returns the vertex.
U.Insert(s, k) inserts vertex s into priority queue U with priority k. U.Update(s, k) changes the
priority of vertex s in priority queue U to k. (It does nothing if the current priority of vertex s
already equals k.) Finally, U.Remove(s) removes vertex s from priority queue U.

procedure CalculateKey(s)

{01} retur [min(g(s), hs(s)) + h(s, 8 goar)s min(g(s), rhs(s))];
procedure Initialize()

{02} U = 0;

{03} forall s € S rhs(s) = g(s) = oo;

{04} rhs(sstart) = 0;

{05} U.Insert(s s¢qrt , CalculateKey(sstart));

procedure UpdateVertex(u)

{06} if (u # sstart) rhs(u) = min €Pred(u) (g(s") +e(s",u));
{07} if (v € U) U.Remove(u);

{08} if (9(w) # rhs(u)) U.Insert(w, CalculateKey(u));

procedure ComputeShortestPath()

{09} while (U.TopKey() < CalculateKey(s goq1) OR 1h8(Sgoat) # 9(Sgoat))
{10} w = U.Pop();

{11} if(g(u) > rhs(u))

{12} g(u) = rhs(u);

{13} forall s € Suce(u) UpdateVertex(s);

{14} else

{15} g(u) = oo;

{16} forall s € Suce(u) U {w} UpdateVertex(s);

procedure Main()

{17} Initialize();

{18} forever

{19} ComputeShortestPath();

{20} Wait for changes in edge costs;

{21} forall directed edges (w, v) with changed edge costs
{22} Update the edge cost ¢(u, v);

{23} UpdateVertex(v);

Figure 2: Lifelong Planning A*.

Lifelong Planning A*: The Variables

LPA* maintains an estimate g(s) of the start distance g*(s)
of each vertex s. These values directly correspond to the
g-values of an A* search. LPA* carries them forward from
search to search. LPA* also maintains a second kind of es-
timate of the start distances. The rhs-values are one-step
lookahead values based on the g-values and thus potentially
better informed than the g-values. They always satisfy the
following relationship (Invariant 1):

_ 0 if s = Sstart
he) = { miny preao (9(s)) + e(s,5) otherwise. (1)

A vertex is called locally consistent iff its g-value equals
its rhs-value, otherwise it is called locally inconsistent. Iff
all vertices are locally consistent, then the g-values of all
vertices equal their respective start distances. In this case
one can trace back a shortest path from sg;,,; to any vertex
u by always transitioning from the current vertex s, starting
at u, to any predecessor s’ that minimizes g(s') + ¢(s', s)
(ties can be broken arbitrarily) until ss,.¢ is reached. (This
is different from Figure 1, where the goal distances instead
of the start distances are used to determine a shortest path
and one can follow a shortest path from ss;4,¢ 10 S404: Dy al-
ways moving from the current vertex s, starting at ssqr,
to any successor s’ that minimizes ¢(s, s') + g(s'), until
Sgoal 1S reached.) However, LPA* does not make all ver-
tices locally consistent after some edge costs have changed.
Instead, it uses the heuristics to focus the search and updates
only the g-values that are relevant for computing a shortest
path. To this end, LPA* maintains a priority queue. The

priority queue always contains exactly the locally inconsis-
tent vertices (Invariant 2). These are the vertices whose
g-values LPA* potentially needs to update to make them
locally consistent. The priority of a vertex in the priority
queue is always the same as its key (Invariant 3), which
is a vector with two components: k(s) = [k1(s); k2(s)],
where k1 (s) = min(g(s), rhs(s))+h(s, sgoar) and ka2(s) =
min(g(s),rhs(s)) {01} (numbers in brackets refer to line
numbers in Figure 2). The first component of the keys
k1(s) corresponds directly to the f-values f(s) := g*(s) +
h(s,s40a1) Used by A* because both the g-values and rhs-
values of LPA* correspond to the g-values of A* and the
h-values of LPA* correspond to the h-values of A*. The sec-
ond component of the keys k2 (s) corresponds to the g-values
of A*. Keys are compared according to a lexicographic or-
dering. For example, a key k(s) is less than or equal to a
key k'(s), denoted by k(s)<k'(s), iff either k1 (s) < ki (s)
or (k1(s) = ki(s) and k2(s) < kb(s)). LPA* always ex-
pands the vertex in the priority queue with the smallest key
(by expanding a vertex, we mean executing {10-16}). This
is similar to A* that always expands the vertex in the priority
queue with the smallest f-value if it breaks ties towards the
smallest g-value. The resulting behavior of LPA* and A* is
also similar. The keys of the vertices expanded by LPA* are
nondecreasing over time just like the f-values of the vertices
expanded by A* (since the heuristics are consistent).

Lifelong Planning A*: The Algorithm

The main function Main() of LPA™* first calls Initialize() to
initialize the search problem {17}. Initialize() sets the g-
values of all vertices to infinity and sets their rhs-values ac-
cording to Equation 1 {03-04}. Thus, initially ss¢qr¢ is the
only locally inconsistent vertex and is inserted into the oth-
erwise empty priority queue {05}. This initialization guar-
antees that the first call to ComputeShortestPath() performs
exactly an A* search, that is, expands exactly the same ver-
tices as A* in exactly the same order. Note that, in an actual
implementation, Initialize() only needs to initialize a vertex
when it encounters it during the search and thus does not
need to initialize all vertices up front. This is important be-
cause the number of vertices can be large and only a few of
them might be reached during the search. LPA* then waits
for changes in edge costs {20}. To maintain Invariants 1-3 if
some edge costs have changed, it calls UpdateVertex() {23}
to update the rhs-values and keys of the vertices potentially
affected by the changed edge costs as well as their member-
ship in the priority queue if they become locally consistent
or inconsistent, and finally recalculates a shortest path {19}
by calling ComputeShortestPath(), that repeatedly expands
locally inconsistent vertices in the order of their priorities.
A locally inconsistent vertex s is called locally overcon-
sistent iff g(s) > rhs(s). When ComputeShortestPath() ex-
pands a locally overconsistent vertex {12-13}, then it sets
the g-value of the vertex to its rhs-value {12}, which makes
the vertex locally consistent. A locally inconsistent ver-
tex s is called locally underconsistent iff g(s) < rhs(s).
When ComputeShortestPath() expands a locally undercon-
sistent vertex {15-16}, then it simply sets the g-value of the
vertex to infinity {15}. This makes the vertex either locally

consistent or overconsistent. If the expanded vertex was lo-
cally overconsistent, then the change of its g-value can affect
the local consistency of its successors {13}. Similarly, if the
expanded vertex was locally underconsistent, then it and its
successors can be affected {16}. To maintain Invariants 1-
3, ComputeShortestPath() therefore updates rhs-values of
these vertices, checks their local consistency, and adds them
to or removes them from the priority queue accordingly {06-
08}. ComputeShortestPath() expands vertices until sgoq; IS
locally consistent and the key of the vertex to expand next is
no less than the key of sg04;. This is similar to A* that ex-
pands vertices until it expands sg.q; at which point in time
the g-value of s, equals its start distance and the f-value
of the vertex to expand next is no less than the f-value of
8g0a1- T g(sg0a1) = oo after the search, then there is no
finite-cost path from s, 0 5404;. Otherwise, one can
trace back a shortest path from sgqr¢ 10 sgoar DY always
transitioning from the current vertex s, starting at sg4, t0
any predecessor s’ that minimizes g(s') + ¢(s', s) (ties can
be broken arbitrarily) until s, is reached. This is similar
to what A* can do if it does not use backpointers.

Analytical Results

We now present some properties of LPA* to show that it
terminates, is correct, similar to A*, and efficient. All proofs
can be found in (Likhachev & Koenig 2001).

Termination and Correctness
Our first theorem shows that LPA* terminates and is correct:

Theorem 1 ComputeShortestPath() expands each vertex at
most twice, namely at most once when it is locally undercon-
sistent and at most once when it is locally overconsistent,
and thus terminates. After ComputeShortestPath() termi-
nates, one can trace back a shortest path from sszer¢ t0 Sgoas
by always transitioning from the current vertex s, starting at
Sg0al, 10 @ny predecessor s’ that minimizes g(s') + c(s', s)
until ssqr¢ IS reached (ties can be broken arbitrarily).

Similarity to A*

When we described LPA*, we already pointed out strong al-
gorithmic similarities between LPA* and A*. We now show
additional similarities between LPA* and A*. Theorem 1
already showed that ComputeShortestPath() expands each
vertex at most twice. This is similar to A*, that expands
each vertex at most once. Moreover, the next theorem states
that the keys of the vertices expanded by ComputeShortest-
Path() are monotonically nondecreasing over time. This is
similar to the nondecreasing order of f-values of the vertices
expanded by A*.

Theorem 2 The keys of the vertices that ComputeShortest-
Path() selects for expansion on line {10} are monotonically
nondecreasing over time until ComputeShortestPath() ter-
minates.

The next three theorems show that ComputeShortest-
Path() expands locally overconsistent vertices in a way very
similar to how A* expands vertices. The next theorem, for
example, shows that the first component of the key of a

locally overconsistent vertex at the time ComputeShortest-
Path() expands it is the same as the f-value of the vertex.
The second component of its key is its start distance.

Theorem 3 Whenever ComputeShortestPath() selects a lo-
cally overconsistent vertex s for expansion on line {10},
then its key is k(s)=[f(s); g*(s)].

Theorems 2 and 3 imply that ComputeShortestPath() ex-
pands locally overconsistent vertices in the order of mono-
tonically nondecreasing f-values and vertices with the same
f-values in the order of monotonically nondecreasing start
distances. A* has the same property provided that it breaks
ties in favor of vertices with smaller start distances.

Theorem 4 ComputeShortestPath() expands locally over-
consistent vertices with finite f-values in the same order as
A*, provided that A* always breaks ties among vertices with
the same f-values in favor of vertices with the smallest start
distances and breaks remaining ties suitably.

The next theorem shows that ComputeShortestPath() ex-
pands at most those locally overconsistent vertices whose
f-values are less than the f-value of the goal vertex and those
vertices whose f-values are equal to the f-value of the goal
vertex and whose start distances are less than or equal to the
start distances of the goal vertex. A* has the same property
provided that it breaks ties in favor of vertices with smaller
start distances.

Theorem 5 ComputeShortestPath() expands at
most those locally overconsistent vertices s with

[f(s); g (8)]§[f(sgoal)§ g*(sgoal)]-

Efficiency

We now show that LPA* expands many fewer vertices than
suggested by Theorem 1. The next theorem shows that LPA*
is efficient because it performs incremental searches and
thus calculates only those g-values that have been affected
by cost changes or have not been calculated yet in previous
searches.

Theorem 6 ComputeShortestPath() does not expand any
vertices whose g-values were equal to their respective start
distances before ComputeShortestPath() was called.

Our final theorem shows that LPA* is efficient because
it performs heuristic searches and thus calculates only the
g-values of those vertices that are important to determine a
shortest path. Theorem 5 has already shown how heuristics
limit the number of locally overconsistent vertices expanded
by ComputeShortestPath(). The next theorem generalizes
this result to all locally inconsistent vertices expanded by
ComputeShortestPath().

Theorem 7 The keys of the vertices that ComputeShort-
estPath() selects for expansion on line {10} never exceed
[f(sgoal)§g*(3goal)]-

To understand the implications of this theorem on the ef-
ficiency of LPA* remember that the key &(s) of a vertex s is
k(s)=[min(g(s),rhs(s)) +h(s, Sgoar); min(g(s),rhs(s))].
Thus, the more informed the heuristics are and
thus the larger they are, the fewer vertices satisfy
k(s)<[f(sgoal); 9" (Sg0ar)] and thus are expanded.

procedure CalculateKey(s)

{01’} return [min(g(s), 7hs(s)) + h(sstart,s) + km;min(g(s), rhs(s))];
procedure Initialize()

{02} U = 0;

{03’} ks = 0;

{04’} foralls € S rhs(s) = g(s) = oo;

{05} 7hs(sgoar) = O;

{067} U.Insert(s goq1, CalculateKey(s goat));

procedure UpdateVertex(u)

{07} if (u # 8goar) Ths(u) = ming ¢ gy ooqu) (c(u, 8') + 9(s)));
{08’} if (v € U) U.Remove(u);

{09} if (g(u) # rhs(w)) U.Insert(u, CalculateKey(u));

procedure ComputeShortestPath()

{10} while (U.TopKey () < CalculateKey(sstant) OR 7hs(sstart) # 9(Sstart))
{11'} ko1a = U.TopKey();

{12’} w = U.Pop();

{13’} if (ko1a <CalculateKey(w))

{14’} U.Insert(w, CalculateKey(u));

{15’} elseif (g(u) > rhs(u))

{16} g(u) = rhs(u);

{17} foralls € Pred(u) UpdateVertex(s);

{18’} else

{19’} g(u) = oo;

{20°} foralls € Pred(u) U {u} UpdateVertex(s);

procedure Main()

{21} 8140t = Sstart;

{22’} Initialize();

{23’} ComputeShortestPath();

{24’} while (sstart # Sgoal)

{25’} /*if(g(sstart) = oo) then there is no known path */

{26’} sstart = argMing cgyco(s,,ang) (C(Sstart, sy 4+ g(s"));
{27’} Moveto sstart;

{28’} Scan graph for changed edge costs;

{29’} ifany edge costs changed

{30’} km = km + h(31ast, Sstart);

{31} Slast = Sstart}

{32’} for all directed edges (u, v) with changed edge costs

{33’} Update the edge cost ¢(u, v);

{34’} UpdateVertex(u);

{35’} ComputeShortestPath();

Figure 3: D* Lite.

D* Lite

So far, we have described LPA*, that repeatedly determines
shortest paths between the start vertex and the goal vertex
as the edge costs of a graph change. We now use LPA* to
develop D* Lite, that repeatedly determines shortest paths
between the current vertex of the robot and the goal vertex
as the edge costs of a graph change while the robot moves
towards the goal vertex. D* Lite is shown in Figure 3. It
does not make any assumptions about how the edge costs
change, whether they go up or down, whether they change
close to the current vertex of the robot or far away from it, or
whether they change in the world or only because the robot
revised its initial estimates. D* Lite can be used to solve the
goal-directed navigation problem in unknown terrain (as de-
scribed in the section on “Motivation™). The terrain is mod-
eled as an eight-connected graph. The costs of its edges are
initially one. They change to infinity when the robot discov-
ers that they cannot be traversed. One can implement the
robot-navigation strategy by applying D* Lite to this graph
With s, being the current vertex of the robot and 5404
being the goal vertex.

Search Direction

We first need to switch the search direction of LPA*. The
version of LPA* presented in Figure 2 searches from the
start vertex to the goal vertex and thus its g-values are esti-
mates of the start distances. D* Lite searches from the goal
vertex to the start vertex and thus its g-values are estimates

of the goal distances. It is derived from LPA* by exchang-
ing the start and goal vertex and reversing all edges in the
pseudo code. Thus, D* Lite operates on the original graph
and there are no restrictions on the graph except that it needs
to be able to determine the successors and predecessors of
the vertices, just like LPA*. After ComputeShortestPath()
returns, one can then follow a shortest path from sg4.¢ t0
540a1 Dy always moving from the current vertex s, starting
at ssqr¢, 10 @Ny successor s’ that minimizes c(s, s') + g(s')
until sy,4; is reached (ties can be broken arbitrarily).

Heap Reordering

To solve robot navigation problems in unknown terrain,
Main() now needs to move the robot along the path deter-
mined by CalculatePath(). Main() could recalculate the pri-
orities of the vertices in the priority queue every time the
robot notices a change in edge costs after it has moved. Un-
less the priorities are recalculated, they do not satisfy In-
variant 3 since they are based on heuristics that were com-
puted with respect to the old vertex of the robot. However,
the repeated reordering of the priority queue can be expen-
sive since the priority queue often contains a large number
of vertices. D* Lite therefore uses a method derived from
D* (Stentz 1995) to avoid having to reorder the priority
queue, namely priorities that are lower bounds on the pri-
orities that LPA* uses for the corresponding vertices. The
heuristics h(s,s’) now need to be nonnegative and satisfy
h(s,s") < ¢*(s,s') and h(s,s") < h(s,s") + h(s',s") for
all vertices s, s, s"” € S, where ¢*(s, s") denotes the cost of
a shortest path from vertex s € S to vertex s’ € S. This
requirement is not restrictive since both properties are guar-
anteed to hold if the heuristics are derived by relaxing the
search problem, which will almost always be the case and
holds for the heuristics used in this paper. After the robot
has moved from vertex s to some vertex s’ where it detects
changes in edge costs, the first element of the priorities can
have decreased by at most h(s,s’). (The second compo-
nent does not depend on the heuristics and thus remains un-
changed.) Thus, in order to maintain lower bounds, D* Lite
needs to subtract h(s, s') from the first element of the pri-
orities of all vertices in the priority queue. However, since
h(s, s'") is the same for all vertices in the priority queue, the
order of the vertices in the priority queue does not change
if the subtraction is not performed. Then, when new priori-
ties are computed, their first components are by A(s, ¢) too
small relative to the priorities in the priority queue. Thus,
h(s, s") has to be added to their first components every time
some edge costs change. If the robot moves again and then
detects cost changes again, then the constants need to get
added up. We do this in the variable k,,, {30°}. Thus, when-
ever new priorities are computed, the variable &,, has to be
added to their first components, as done in {01°}. Then, the
order of the vertices in the priority queue does not change
after the robot moves and the priority queue does not need
to get reordered. The priorities, on the other hand, are al-
ways lower bounds on the corresponding priorities of LPA*
after the first component of the priorities of LPA* has been
increased by the current value of k,,. We exploit this prop-
erty by changing ComputeShortestPath() as follows. Af-

procedure CalculateKey(s)
{017} return [min(g(s), 7hs(s)) + h(sstart, s) + km;min(g(s), rhs(s))];

procedure Initialize()

{02} U = 0;

{03} km = 0;

{04} foralls € Srhs(s) = g(s) = oo;

{05"} rhs(sgoar) = 0;

{067} U.Insert(s goals [R(sstarts Sgoar); 01);

procedure UpdateVertex(u)

{07} if (g(u) # rhs(u) ANDu € U) U.Update(u, Calculate Key(u));
{08”} else if (g(u) # rhs(u) ANDu ¢ U) U.lnsert(u, Calculate Key(u));
{09”} else if (g(u) = rhs(u) ANDw € U) U.Remove(u);

procedure ComputeShortestPath()

{107} while (U.TopKey()< CalculateKey(sstart) OR rhs(Sstart) > g(Sstart))
{11} w = U.Top();

{12"} ko1a = U.TopKey();

{13"} knew = CalculateKey(u));

{14} if(ko1g<knew)

{15"} U.Update(u, knew);

{16} elseif (g(u) > rhs(w))

{177} g(u) = rhs(u);

{18"} U.Remove(u);

{197} foralls € Pred(u)

{207} if (s # $goq1) Ths(s) = min(rhs(s), c(s, u) + g(u));
{217} UpdateVertex(s);
{227} else

{23} go1a = g(u);
{2} g{u) = oo;
{257} foralls € Pred(u) U {u}

{267} if (rhs(s) = c(s,u) + gord)
{277} if (s # sgoa1) rhs(s) = minS’ESucc(s)(c(Sis’) + 9(s"):;
{287} UpdateVertex(s);

procedureMain()

{29"} s1ast = Sstart;

{30"} Initialize();

{31"} ComputeShortestPath();

{327} while (sstart # Sgoal)

{33"} /*if (rhs(sstart) = 00) then there is no known path */

{34"} sstart = arg mins’eSucc(ssmM) (c(sstart,s') +g(s"));
{35"} Movetosstart;

{36”} Scan graph for changed edge costs;

{37"} ifany edge costs changed

{387} km = km + h(siqst> Sstart);

{39"} Ssiast = Sstart;

{40"} for all directed edges (u, v) with changed edge costs

{417} Cotd = c(u,v);

{427} Update the edge cost ¢(u, v);

{437} if (cora > c(u,v))

{44"} if (u # sg0a1) Ths(u) = min(rhs(u), c(u,v) + g(v));
{45”} else if (rhs(uw) = co1q + g(v))

{467} if (u # 8 goar) Tha(w) = mings g gy eeu) (©(u, ') +9(s));
{477} UpdateVertex(w);

{48} ComputeShortestPath();

Figure 4: D* Lite (optimized version).

ter ComputeShortestPath() has removed a vertex u with
the smallest priority k,;q = U.TopKey() from the priority
queue {12}, it now uses CalculateKey() to compute the
priority that it should have had. If k,;q<CalculateKey(u)
then it reinserts the removed vertex with the priority cal-
culated by CalculateKey() into the priority queue {13’-
14’}. Thus, it remains true that the priorities of all ver-
tices in the priority queue are lower bounds on the cor-
responding priorities of LPA* after the first components
of the priorities of LPA* have been increased by the cur-
rent value of k,,. If ky,4>CalculateKey(u), then it holds
that k.;q=CalculateKey(u) since k.4 was a lower bound
of the value returned by CalculateKey(). In this case,
ComputeShortestPath() expands vertex u (by expanding a
vertex, we mean executing {15°-20}) in the same way as
LPA™*.

Optimizations

Figure 4 shows D* Lite with several optimizations. An
example is the termination condition of ComputeShortest-
Path() that can be changed to make ComputeShortestPath()
more efficient. As stated, ComputeShortestPath() terminates
when the start vertex is locally consistent and its key is
less than or equal to U.TopKey() {10’}. However, Com-
puteShortestPath() can already terminate when the start ver-
tex is not locally underconsistent and its key is less than or
equal to U.TopKey(). To understand why this is so, assume
that the start vertex is locally overconsistent and its key is
less than or equal to U.TopKey(). Then, its key must be
equal to U.TopKey() since U.TopKey() is the smallest key
of any locally inconsistent vertex. Thus, ComputeShort-
estPath() could expand the start vertex next, in which case
it would set its g-value to its rhs-value. The start vertex
then becomes locally consistent, its key is less than or equal
to U.TopKey(), and ComputeShortestPath() thus terminates.
At this point in time, the g-value of the start vertex equals
its goal distance. Thus, ComputeShortestPath() can already
terminate when the start vertex is not locally underconsistent
and its key is less than or equal to U.TopKey() {10}. In this
case, the start vertex can remain locally inconsistent after
ComputeShortestPath() terminates and its g-value thus may
not be equal to its goal distance (but its rhs-value is). This
is not a problem since the g-value is not used to determine
how the robot should move.

Analytical Results

ComputeShortestPath() of D* Lite is similar to Com-
puteShortestPath() of LPA* and thus shares many properties
with it. For example, ComputeShortestPath() of D* Lite ex-
pands each vertex at most twice until it returns. The follow-
ing theorem shows that ComputeShortestPath() of D* Lite
terminates and is correct.

Theorem 8 ComputeShortestPath() of D* Lite always ter-
minates and one can then follow a shortest path from s¢4.¢
t0 54041 Dy always moving from the current vertex s, starting
at ssiqr¢, t0 @Ny successor s’ that minimizes c(s, s') + g(s)
until sy, is reached (ties can be broken arbitrarily).

Experimental Results

We now compare D* and various versions of the optimized
version of D* Lite. We implemented all methods using stan-
dard binary heaps as priority queues (although using more
complex data structures, such as Fibonacci heaps, as prior-
ity queues could possibly make U.Update() more efficient).
The robot always observed which of its eight adjacent cells
were traversable and then moved to one of them. We used
the maximum of the absolute differences of the x and y co-
ordinates of any two cells as approximations of their dis-
tance. Since all methods move the robot in the same way
and D* has already been demonstrated with great success
on real robots, we only need to perform a simulation study.
We need to compare the total planning time of the methods.
Since the actual planning times are implementation and ma-
chine dependent, they make it difficult for others to repro-
duce the results of our performance comparison. We there-

percent of extra vertex expansions
60

50
Overhead of Focussed D* Relative 40
to the Final Optimized Version

of D* Lite (in percent) 30

20

10

0"10xi0 20520 _30x30 40x40
maze size
percent of extra vertex accesses percent of extra heap percolates

55 120
50

110
45

40 100

35 90
30

80
25

20 70

10x10 20x20 30x30 40x40 10x10 20x20 30x30 40x40
maze size maze size

Figure 5: Comparison of D* Lite and D*.

fore used three measures that all correspond to common op-

erations performed by the methods and thus heavily influ-

ence their planning times, yet are implementation and ma-

chine independent: the total number of vertex expansions,

the total number of heap percolates (exchanges of a parent

and child in the heap), and the total number of vertex ac-

cesses (for example, to read or change their values). Figure 5

compares D* Lite and D* for goal-directed navigation in un-

known terrain (as described in the section on “Motivation™)

of seven different sizes, averaged over 50 randomly gener-

ated terrains of each size whose obstacle density varies from

10 to 40 percent. The terrain is discretized into cells with

uniform resolution. The figure graphs the three performance
measures of D* as percent difference relative to D* Lite.

Thus, D* Lite always scores zero and methods that score

above zero perform worse than D* Lite. D* Lite performs

better than D* with respect to all three measures, justifying

our claim that it is at least as efficient as D*. The figure also
shows the corresponding 95 percent confidence intervals to
demonstrate that our conclusions are statistically significant.
In the following, we study to which degree the combination

of incremental and heuristic search that D* Lite implements

outperforms incremental or heuristic searches individually.

We do this for two different but related tasks, namely goal-

directed navigation in unknown terrain and mapping of un-

known terrain, using similar setups as in the previous exper-

iment.

Goal-Directed Navigation in Unknown Terrain

Figure 6 compares D* Lite, D* Lite without heuristic search,
and D* Lite without incremental search (that is, A*) for
goal-directed navigation in unknown terrain, using the same
setup as in the previous experiment. We decided not to in-
clude D* Lite without both heuristic and incremental search
in the comparison because it performs so poorly that graph-
ing its performance becomes a problem. D* Lite outper-

percent of extra vertex expansions
1000

Performance of D* Lite 800
without Incremental Search (A*)

and D* Lite without Heuristic Search B
Relative to D* Lite (in percent) 600
A - D* Lite without incremental search (A*) 400
B - D* Lite without heuristic search f
200 A

10x10 20x20 30x30 40x40
maze size

percent of extra vertex accesses
300 200

percent of extra heap percolates

250 150

200
\\ 100
150

100 %
f

50 A 0

H

0

10x10 20x20 . 30x30 40x40 10x10 20x20 . 30x30 40x40
maze size maze size

Figure 6: Goal-Directed Navigation (Uniform).

percent of extra vertex expansions

Performance of D* Lite
without Incremental Search (A*) 400
and D* Lite without Heuristic Search

Relative to D* Lite (in percent) 300

A - D* Lite without incremental search (A*) 200
B - D* Lite without heuristic search

100

-« §>

100x100 200x200 300x300
environment size

percent of extra vertex accesses percent of extra heap percolates

400 500
A
300 A 400
300
200
200
100
B 100
A ?
°)

-100

-100

100x100 200x200 300x300

100x100 200x200 300x300
environment size

environment size

Figure 7: Goal-Directed Navigation (Adaptive).

forms the other two search methods according to all three
performance measures, even by more than a factor of seven
for the vertex expansions. Moreover, its advantage seems to
increase as the terrain gets larger. Only for the number of
heap percolates for terrain of size 10 by 10 and 15 by 15 is
the difference between D* Lite and D* Lite without heuris-
tic search statistically not significant. These results also con-
firm earlier experimental results that D* can outperform A*
for goal-directed navigation in unknown terrain by one order
of magnitude or more (Stentz 1995).

The terrain can also be discretized with nonuniform reso-
lution. Uniform discretizations can prevent one from find-
ing a path if they are too coarse-grained (for example,
because the resolution prevents one from noticing small
gaps between obstacles) and result in large graphs that

cannot be searched efficiently if they are too fine-grained.

Researchers have therefore developed adaptive resolution

percent of extra vertex expansions
180

Performance of D* Lite 160
without Incremental Search (A*)
and D* Lite without Heuristic Search 140
Relative to D* Lite (in percent) ’/ A
A - D* Lite without incremental search (A*) 120
B - D* Lite without heuristic search
100 \
B
80
0 5 10 15 20 25
sensor range
percent of extra vertex accesses percent of extra heap percolates
80 80

B
60 j 60
40 40
A
20 / 20
0 M 0
—20 -20
5 10 15 20 25 0 5 10 15 20 25
sensor range sensor range

¥>
o

Figure 8: Mapping (Uniform).

schemes (Moore & Atkeson 1995; Yahja et al. 1998). We
therefore used D* Lite to implement a deterministic version
of the parti-game algorithm (Moore & Atkeson 1995) with
adaptive discretization that discretizes terrain into cells with
nonuniform resolution. In this context, Figure 7 compares
D* Lite, D* Lite without heuristic search, and D* Lite with-
out incremental search (that is, A*) for goal-directed naviga-
tion in unknown terrain terrains of six different sizes, aver-
aged over 25 randomly generated terrains of each size with
an obstacle density of 30 percent each. D* Lite outperforms
D* Lite without incremental search (that is, A*) according
to all three performance measures, even more than a factor
of four for the vertex expansions. On the other hand, differ-
ent from goal-directed navigation in unknown terrain with
uniform discretization, D* Lite and D* Lite without heuris-
tic search perform about equally well.

Mapping of Unknown Terrain

D* Lite can also be used to implement greedy mapping
(Koenig, Tovey, & Halliburton 2001), a simple but power-
ful mapping strategy that has repeatedly been used on mo-
bile robots by different research groups (Thrun et al. 1998;
Koenig, Tovey, & Halliburton 2001; Romero, Morales, &
Sucar 2001). Greedy mapping discretizes the terrain into
cells with uniform resolution and then always moves the
robot from its current cell to the closest cell with unknown
traversability, until the terrain is mapped. In this case, the
graph is an eight-connected grid. The costs of its edges are
initially one. They change to infinity when the robot dis-
covers that they cannot be traversed. There is one additional
vertex that is connected to all grid vertices. The costs of
these edges are initially one. They change to infinity once
the corresponding grid vertex has been visited. One can im-
plement greedy mapping by applying D* Lite to this graph
With s+ being the current vertex of the robot and 5464
being the additional vertex.

Figure 8 compares D* Lite, D* Lite without heuristic
search, and D* Lite without incremental search (that is, A*)

for greedy mapping with different sensor ranges, averaging
over 50 randomly generated grids of size 64 by 25. The ter-
rain is discretized into cells with uniform resolution. We var-
ied the sensor range of the robot to simulate both short-range
and long-range sensors. For example, if the sensor range is
four, then the robot can sense all untraversable cells that are
up to four cells in any direction away from the robot as long
as they are not blocked from view by other untraversable
cells. The number of vertex expansions of D* Lite is always
far less than that of the other two methods. This also holds
for the number of heap percolates and vertex accesses, with
the exception of sensor range four for the heap percolates
and the number of vertex accesses of D* Lite without incre-
mental search.

Conclusions

In this paper, we have presented D* Lite, a novel fast replan-
ning method for robot navigation in unknown terrain that
implements the same navigation strategies as Focussed Dy-
namic A* (D*). Both algorithms search from the goal vertex
towards the current vertex of the robot, use heuristics to fo-
cus the search, and use similar ways to minimize having to
reorder the priority queue. D* Lite builds on our LPA*, that
has a solid theoretical foundation, a strong similarity to A*,
is efficient (since it does not expand any vertices whose g-
values were already equal to their respective goal distances)
and has been extended in a number of ways. Thus, D* Lite
is algorithmically different from D*. It is easy to understand
and extend, yet at least as efficient as D*. We believe that our
experimental and analytical results about D* Lite provide a
strong algorithmic foundation for further research on fast re-
planning methods in artificial intelligence and robotics and
complement the research on symbolic replanning methods
in artificial intelligence (Hanks & Weld 1995) as well as the
research on incremental search methods in both algorithm
theory (Frigioni, Marchetti-Spaccamela, & Nanni 2000) and
artificial intelligence (Edelkamp 1998).

Acknowledgments

We thank Anthony Stentz for his support of this work.
The Intelligent Decision-Making Group is partly supported
by NSF awards under contracts 11S-9984827, 11S-0098807,
and ITR/AP-0113881 as well as an IBM faculty fellowship
award. The views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted
as representing the official policies, either expressed or im-
plied, of the sponsoring organizations and agencies or the
U.S. government.

References

Edelkamp, S. 1998. Updating shortest paths. In Proceedings of
the European Conference on Artificial Intelligence, 655-659.

Frigioni, D.; Marchetti-Spaccamela, A.; and Nanni, U. 2000.
Fully dynamic algorithms for maintaining shortest paths trees.
Journal of Algorithms 34(2):251-281.

Hanks, S., and Weld, D. 1995. A domain-independent algorithm
for plan adaptation. Journal of Artificial Intelligence Research
2:319-360.

Koenig, S., and Likhachev, M. 2001. Incremental A*. In Pro-
ceedings of the Neural Information Processing Systems.

Koenig, S.; Tovey, C.; and Halliburton, W. 2001. Greedy map-
ping of terrain. In Proceedings of the International Conference
on Robotics and Automation, 3594-3599.

Likhachev, M., and Koenig, S. 2001. Lifelong Planning A* and
Dynamic A* Lite: The proofs. Technical report, College of Com-
puting, Georgia Institute of Technology, Atlanta (Georgia).
Matthies, L.; Xiong, Y.; Hogg, R.; Zhu, D.; Rankin, A.; Kennedy,
B.; Hebert, M.; Maclachlan, R.; Won, C.; Frost, T.; Sukhatme, G.;
McHenry, M.; and Goldberg, S. 2000. A portable, autonomous,
urban reconnaissance robot. In Proceedings of the International
Conference on Intelligent Autonomous Systems.

Moore, A., and Atkeson, C. 1995. The parti-game algorithm for
variable resolution reinforcement learning in multidimensional
state-spaces. Machine Learning 21(3):199-233.

Nilsson, N. 1971. Problem-Solving Methods in Artificial Intelli-
gence. McGraw-Hill.

Pearl, J. 1985. Heuristics: Intelligent Search Strategies for Com-
puter Problem Solving. Addison-Wesley.

Ramalingam, G., and Reps, T. 1996. An incremental algorithm
for a generalization of the shortest-path problem. Journal of Al-
gorithms 21:267-305.

Romero, L.; Morales, E.; and Sucar, E. 2001. An exploration and
navigation approach for indoor mobile robots considering sen-
sor’s perceptual limitations. In Proceedings of the International
Conference on Robotics and Automation, 3092-3097.

Stentz, A., and Hebert, M. 1995. A complete navigation sys-
tem for goal acquisition in unknown environments. Autonomous
Robots 2(2):127-145.

Stentz, A. 1994. Optimal and efficient path planning for partially-
known environments. In Proceedings of the International Confer-
ence on Robotics and Automation, 3310-3317.

Stentz, A. 1995. The focussed D* algorithm for real-time re-
planning. In Proceedings of the International Joint Conference
on Artificial Intelligence, 1652-1659.

Thayer, S.; Digney, B.; Diaz, M.; Stentz, A.; Nabbe, B.; and
Hebert, M. 2000. Distributed robotic mapping of extreme en-
vironments. In Proceedings of the SPIE: Mobile Robots XV
and Telemanipulator and Telepresence Technologies VII, volume
4195.

Thrun, S.; Blicken, A.; Burgard, W.; Fox, D.; Frohlinghaus, T;
Hennig, D.; Hofmann, T.; Krell, M.; and Schmidt, T. 1998. Map
learning and high-speed navigation in RHINO. In Kortenkamp,
D.; Bonasso, R.; and Murphy, R., eds., Artificial Intelligence
Based Mobile Robotics: Case Studies of Successful Robot Sys-
tems. MIT Press. 21-52.

Yahja, A.; Stentz, A.; Brumitt, B.; and Singh, S. 1998. Framed-
quadtree path planning for mobile robots operating in sparse envi-
ronments. In International Conference on Robotics and Automa-
tion.

