
Formal Proof
Thomas C. Hales

There remains but one course for
the recovery of a sound and healthy
condition—namely, that the entire
work of the understanding be com-
menced afresh, and the mind itself
be from the very outset not left to
take its own course, but guided at
every step; and the business be done
as if by machinery.

—F. Bacon, 1620
Novum Organum

D
aily, we confront the errors of com-
puters. They crash, hang, succumb
to viruses, run buggy software, and
harbor spyware. Our tabloids report
bizarre computer glitches: the library

patron who is fined US$40 trillion for an overdue
book, because a barcode is scanned as the size
of the fine; or the dentist in San Diego who was
delivered over 16,000 tax forms to his doorstep
when he abbreviated “suite” in his address as “su”.

On average, a programmer introduces 1.5 bugs
per line while typing. Most are typing errors that
are spotted at once. About one bug per hundred
lines of computer code ships to market without
detection. Bugs are an accepted part of program-
ming culture. The book that describes itself as
the “bestselling software testing book of all time”
states that “testers shouldn’t want to verify that
a program runs correctly” [17]. Another book on
software testing states “Don’t insist that every
bug be fixed . . . When the programmer fixes a
minor bug, he might create a more serious one.”
Corporations may keep critical bugs off the books
to limit legal liability. Only those bugs should be
corrected that affect profit. The tools designed to

Thomas C. Hales is Mellon Professor of Mathematics at
the University of Pittsburgh. His email address is hales@
pitt.edu.
The author’s research on the Formal Foundations of
Discrete Geometry has been supported by NSF grant
0503447. He thanks Mark Adams, K. Parkinson,
B. Casselman, and F. Wiedijk for helpful comments. This
article is dedicated to N. G. de Bruijn.

root out bugs are themselves full of bugs. “Indeed,
test tools are often buggier than comparable (but
cheaper) development tools” [18]. As for hardware
reliability, former Intel President Andy Grove him-
self said “I have come to the conclusion that no
microprocessor is ever perfect; they just come
closer to perfection . . .” [20, p. 221].

Bugs can be far-reaching. The bug causing the
explosion of the Ariane 5 rocket cost hundreds of
millions of dollars. As long ago as 1854, Thoreau
wrote that “by the error of some calculator the
vessel often splits upon a rock that should have
reached a friendly pier.” Last year, the New York
Times reported Shamir’s warning that even a small
math error in a widely used computer chip could be
exploited to defeat cryptography and would place
“the security of the global electronic commerce
system at risk . . .” [27].

Mathematical Certainty
By contrast, philosophers tell us that mathematics
consists of analytic truths, free of all imperfection.
We prove that 1+ 1 = 2 by recalling the definition
of 1 as the successor of 0, 2 as the successor of 1,
and then invoking twice the recursive definition of
addition:

1+ 1 = 1+ S(0) = S(1+ 0) = S(1) = 2.
If only all proofs were so simple. Mathematical

error is as old as mathematics itself. Euclid’s
very first proposition asks, “on a given straight
line to construct an equilateral triangle.” Euclid’s
construction makes the implicit assumption—not
justified by the axioms—that two circles, each
passing through the other’s center, must intersect.
We revere Euclid, not because he got everything
right, but because he set us on the right path.

We have entered an era of proofs of extraordi-
nary complexity. Take, for example, F. Almgren’s
masterpiece in geometric measure theory, called
appropriately enough the “Big Paper”. The preprint
is 1728 pages long. Each line is a chore. He spent
over a decade writing it in the 1970s and early
1980s. It was not published until 2000. Yet the
theorem is fundamental. It establishes the reg-
ularity of minimizing rectifiable currents, up to
codimension two; in basic terms, it shows that

1370 Notices of the AMS Volume 55, Number 11

higher dimensional soap bubbles are smooth rather
than jagged—just as one would naturally expect.
How am I to develop enough confidence in the
proof that I am willing to cite it in my own research?
Do the stellar reputations of the author and editors
suffice, or should I try to understand the details of
the proof? I would consider myself very fortunate
if I could work through the proof in a year.

Computer proofs, which are sprouting up in
many fields, compound the complexity: the non-
existence of a projective plane of order 10, the proof

Three Early Milestones
1954 – M. Davis programs the Presburger
algorithm for additive arithmetic into the “Joh-
niac” computer at the Institute for Advanced
Study. Johniac proves that the sum of two
even numbers is even, to usher in the era of
computer proof.

1956 – The automation of Russell and White-
head’s Principia Mathematica begins [26]. By
the end of 1959, Wang’s procedure had gener-
ated proofs of every theorem of the Principia
in the predicate calculus [30].

1968 – N.G. de Bruijn designs the first
computer program to check the validity of
general mathematical proofs. His program Au-
tomath eventually checked every proposition
in a primer that Landau had written for his
daughter on the construction of real numbers
as Dedekind cuts.

N. G. de Bruijn
On April 24, 2008, F. Wiedijk and I visited
N. G. de Bruijn at his home in Nuenen, shortly
before his ninetieth birthday. (Nuenen is the
Dutch town where Vincent van Gogh lived when
he painted The Potato Eaters.) We discussed
Automath, Brouwer, Heyting, and some of his
coauthors (Knuth and Erdös). De Bruijn has
contributed to many fields of mathematics,
including analytic number theory, Penrose
tilings, quasicrystals, and optimal control.

De Bruijn indices give a notation that elimi-
nates all dummy variables from formulas with
quantifiers: ∀x. P(x) becomes (∀ P 1). This
notation solves the problem of free variable
capture.

De Bruijn observed that the ratio of lengths
of a formal proof to the corresponding con-
ventional proof is remarkably stable across
different proofs. The ratio, called the de Bruijn
factor, has become the standard benchmark
to measure the overhead of a formal proof.

that the Lorenz equations have a strange attractor,
the double-bubble problem for minimizing soap
bubbles enclosing two equal volumes, the optimali-
ty of the Leech lattice among 24-dimensional lattice
packings, hyperbolic 3-manifolds, and the one that
got it all started: the four-color theorem. What
assurance of correctness do complex computer
proofs provide?

Formal Proof
Traditional mathematical proofs are written in a
way to make them easily understood by mathe-
maticians. Routine logical steps are omitted. An
enormous amount of context is assumed on the
part of the reader. Proofs, especially in topology
and geometry, rely on intuitive arguments in sit-
uations where a trained mathematician would be
capable of translating those intuitive arguments
into a more rigorous argument.

A formal proof is a proof in which every logical
inference has been checked all the way back to
the fundamental axioms of mathematics. All the
intermediate logical steps are supplied, without
exception. No appeal is made to intuition, even if
the translation from intuition to logic is routine.
Thus, a formal proof is less intuitive, and yet less
susceptible to logical errors.

There is a wide gulf that separates traditional
proof from formal proof. For example, Bourbaki’s
Theory of Sets was designed as a purely theoretical
edifice that was never intended to be used in the
proof of actual theorems. Indeed, Bourbaki declares
that “formalized mathematics cannot in practice be
written down in full” and calls such a project “abso-
lutely unrealizable”. The basic trouble with various
foundational systems is that meta-mathematical
arguments (for example, abbreviations that are
external to the system or inductions over the
syntactical form of an expression) are usually
introduced early on, and without these simplifying
meta-arguments, the vehicle stalls, never making it
up the steep incline from primitive notions to high-
level concepts. The gulf can be extreme: A. Matthias
has calculated that to expand the definition of the
number “1” fully in terms of Bourbaki primitives
requires over 4 trillion symbols. In Bourbaki’s
view, the foundations of mathematics are roped-off
museum pieces to be silently appreciated, but not
handled directly.

There is an opposing view that regards the
foundational enterprise as unfinished until it is
realized in practice and written down in full. This
article sketches the current state of this endeav-
or. It has been necessary to commence afresh,
and to retool the foundations of mathematics for
practical efficiency, while preserving its reliability
and austere beauty. For anything beyond a trivial
proof, the number of logical inferences is so large
that a computer is used to ensure that no steps

December 2008 Notices of the AMS 1371

Year Theorem Proof System Formalizer Traditional Proof

1986 First Incompleteness Boyer-Moore Shankar Gödel
1990 Quadratic Reciprocity Boyer-Moore Russinoff Eisenstein
1996 Fundamental - of Calculus HOL Light Harrison Henstock
2000 Fundamental - of Algebra Mizar Milewski Brynski
2000 Fundamental - of Algebra Coq Geuvers et al. Kneser
2004 Four-Color Coq Gonthier Robertson et al.
2004 Prime Number Isabelle Avigad et al. Selberg-Erdös
2005 Jordan Curve HOL Light Hales Thomassen
2005 Brouwer Fixed Point HOL Light Harrison Kuhn
2006 Flyspeck I Isabelle Bauer-Nipkow Hales
2007 Cauchy Residue HOL Light Harrison classical
2008 Prime Number HOL Light Harrison analytic proof

Table 1. Examples of formal proofs.

are omitted. This raises basic questions about
trust in computers. This article also places formal
proofs within a broader context of automating
more general mathematical tasks.

As the art is currently practiced, each formal
proof starts with a traditional mathematical proof,
which is rewritten in a greatly expanded form,
where all the assumptions are made explicit and all
cases are treated in full. For example, a traditional
mathematical proof might show that a graph is
planar by drawing the graph on a sheet of paper.
The expanded form of the proof replaces the
picture by careful argument. From the expanded
text, a computer script is prepared, which gener-
ates all the logical inferences of the proof. The
transcription of a single traditional proof into a
formal proof is a major undertaking.

Examples

Computer proof assistants have been under devel-
opment for decades (see Box “Early Milestones”),
but only recently has it become a practical mat-
ter to prove major theorems formally. The most
spectacular example is Gonthier’s formal proof
of the four-color theorem. His starting point is
the second-generation proof by Robertson et al.
Although the traditional proof uses a computer
and Gonthier uses a computer, the two computer
processes differ from one another in the same way
that a traditional proof differs from a formal proof.
They differ in the same way that adding 1+ 1 = 2
on a calculator differs from the mathematical
justification of 1+ 1 = 2 by definitions, recursion,
and a rigorous construction of the natural numbers.
In short, a large logical gulf separates them. As a
result of Gonthier’s formalization, the proof of the
four-color theorem has become one of the most
meticulously verified proofs in history.

In recent years, several other significant theo-
rems have been formally verified. See Table 1. The
table lists the theorems, which proof assistant was
used (there are many to choose from), the person
who produced a formal proof, and the mathemati-
cians who produced the original proof. The Prime
Number Theorem, asserting that the number of
primes less than n is asymptotic to n/ log n, has
two essentially different proofs: the elementary
proof of Selberg and Erdös and the analytic proof
of Hadamard and de la Vallée Poussin. Formal
versions of both proofs have been produced. More
ambitious projects are in store: Gonthier’s team
is now formalizing the Feit-Thompson odd order
theorem, and the leading problem of the document
Ten Challenging Research Problems for Computer
Science is the formalization of the proof of Fermat’s
Last Theorem [3].

The Formal Jordan Curve Theorem
∀C. simple_closed_curve top2 C ⇒

(∃AB. top2 A∧ top2 B ∧
connected top2 A∧connected top2 B ∧
A 6= ∅∧ B 6= ∅∧
A∩ B = ∅∧A∩ C = ∅∧ B ∩ C = ∅∧
A∪ B ∪ C = euclid 2)

The box above displays the statement of the
Jordan Curve theorem, in computer readable form,
as it appears in the formal proof. The complete
specification of the theorem should also list all
definitions, all the way back to the primitives.
Without giving the detailed definitions here, we
note that top2 refers to the standard topology on
the plane; top2 A indicates that A is an open set
in the plane; euclid 2 is the Euclidean plane; and

1372 Notices of the AMS Volume 55, Number 11

connected top2 A means that A is a connected set
in the plane.

A large library is maintained of all previously
established proofs in the system, and anyone may
use any result that has been previously established.
Although every step of every proof is always
checked, as researchers contribute to the system,
interaction with the system gradually moves away
from the primitive foundations towards something
more closely resembling the high-level practice of
mathematicians. The hope is the system will even-
tually become sufficiently user-friendly to become
a familiar part of the mathematical workplace,
much as email, TEX, computer algebra systems, and
Web browsers are today.

HOL Light
This section gives a brief introduction to one foun-
dational system designed for doing mathematical
proofs on a computer. The system is called HOL
Light (an acronym for a lightweight implementation
of Higher Order Logic). I have singled it out because
of its simple design and because it is the system
that I understand the best. Some understanding
of the design of a simple system is helpful before
turning to questions of soundness in the next
section. HOL Light by itself is only a small part
of the overall formal-theorem-proving landscape.
There are several competing systems to choose
from, built on various logical foundations, and
with their own powerful features. People argue
about the relative merits of the different systems
much in the same way that people argue about
the relative merits of operating systems, political
loyalties, or programming languages. To some
extent, preferences show a geographical bias: HOL
in the UK, Mizar in Poland, Coq in France, and
Isabelle in Germany and the UK.

The basic components of the HOL Light system
are its types, terms, theorems, rules of inference,
and axioms. Each is briefly described in turn. The
HOL Light System box (next page) gives a summary
of the entire system.

Types

Much day-to-day mathematics is written at a level
of abstraction that is indifferent to its exact repre-
sentation as sets. For example, it does not matter
how an ordered pair is encoded as a set, as long as
the ordered pair has the characteristic property

(x, y) = (x′, y ′) a x = x′ and y = y ′.
It is bad style to break the abstraction to write
2 ∈ (0,1). This layer of abstraction is good news,
because it allows us to shift from Zermelo-Fraenkel-
Choice (ZFC) set theory to a different foundational
system with equanimity and ease.

Many proof assistants are based on types.
Types are familiar to computer programmers. In

a typed computer language, 3 is an integer and
[1.0; 2.0; 3.0] is an array of floating point numbers.
An attempt to add 3 to this array results in a
type mismatch error, and the computer program
will not compile. The type checking mechanism
of programming languages conveniently detects
many bugs at the time of compilation.

ZFC set theory has no such type checking
mechanism. As de Bruijn puts it, “Theoretically,
it seems perfectly legitimate to ask whether the
union of the cosine function and the number e
(the basis of natural logarithms) contains a finite
geometry” [6]. Mathematicians have the good sense
not to ask such questions. However, when moving
mathematics to a computer, which is lacking in
common sense, it is useful to introduce types into
the foundations to prevent this kind of nonsense.
By convention, a colon is written before the name
of a type. For instance, we write the type of the
real number e as :R, or simply e : R, to indicate
that e is a real number. The cosine function has
a different type :R → R, or cos : R → R. The type
of the union operator forces its two arguments to
have the same type, so that an attempt to take the
union of the cosine function with e is then flat out
rejected.

HOL Light is a new axiomatic foundation with
types, different from the usual ZFC. The types are
presented in the HOL Light System box. There are
only two primitive types, the boolean type :bool
and an infinite type :ind. The rest are formed with
type variables joined by arrows. A mechanism is
also provided for creating a new type that is in
bijection with a nonempty subset of an existing
type, allowing the system to be extended with
types for ordered pairs, integers, rational numbers,
real numbers, and so forth.

Terms

Terms are the basic mathematical objects of the
HOL Light system. The syntax is based on Church’s
λ-calculus, which uses the notation

λx. f (x)

to represent the function that takes x to f (x),
what a mathematician would write as f : N → N,
x, f (x). The name λ-calculus is derived from the
use of the letter λ to mark function arguments. The
HOL Light System box lays out the construction of
terms.

In ZFC set theory, there is a bijection of sets

ZX×Y ' (ZY)X .
In other words, a function (x, y) , f (x, y) from
the Cartesian product X × Y to Z can be viewed
as a function on X that maps x to a function
f (x, ·) : Y → Z. The right-hand side of this bijec-
tion is called the curried form of the function
(named after the logician Haskell Curry). In typed

December 2008 Notices of the AMS 1373

The HOL Light System
HOL Light (Lightweight Higher Order Logic) is a foundational system designed for doing mathematical proofs on
a computer. The notation is based on a typed λ-calculus.

1. Types: The collection of types is freely generated from type variables :A, :B, . . . and type constants :bool
(boolean), :ind (infinite type), joined by arrows (→). The colon is used as a notational device to indicate a type. For
example, :bool, :bool → A, and :(bool → A)→ (ind → B) are types.

2. Terms: The collection of terms is freely generated from variables x, y, . . . and constants 0, . . . using abstraction
(λx.t where x is a variable and t a term) and application (f (x) for compatibly typed terms x and f). Each term has a
type. The notation x:A indicates that the type of term x is :A. Variables and constants are assigned a type at the
moment of creation; the types of abstractions and applications are defined recursively: the type of λx.t is :A→ B
when x:A and t :B; the type of f (x) is :B if f :A→ B and x:A.

3. Theorems: A theorem is a sequent {p1, . . . , pk} ` q, where p1, . . . , pk, q are terms of type :bool. The terms
p1, . . . , pk are called the assumptions and q is called the conclusion of the sequent. The design of the system
prevents the construction of theorems except through inferences from existing theorems, new definitions, and
axioms.

4. Inference Rules: The system has ten inference rules and a mechanism for defining new constants and types.
Each inference rule is depicted as a fraction; the inputs to the rule are listed in the numerator, and the output in
the denominator. The inputs to the rules may be terms or other theorems. In the following rules, we assume that
p and p′ are equal, up to a renaming of bound variables, and similarly for b and b′. (Such terms are called
α-equivalent.)

On first reading, ignore the assumption lists Γ and ∆. They propagate silently through the inference rules, but
are really not what the rules are about. When taking the union Γ ∪∆, α-equivalent assumptions should be
considered as equal.

Equality is reflexive: The application of the function x, a to x gives a:

a
` a = a

(λx. a) x
` (λx. a) x = a

Equality is transitive: Assume p, then conclude p:

Γ ` a = b; ∆ ` b′ = cΓ ∪∆ ` a = c p:bool
p ` p

Equal functions applied to equals are equal: An “equality-based” rule of modus ponens holds:

Γ ` f = g; ∆ ` a = bΓ ∪∆ ` f a = gb Γ ` p; ∆ ` p′ = qΓ ∪∆ ` q
The rule of abstraction holds. Equal terms give If the assumption q gives conclusion p and the
equal functions: assumption p gives q, then they are equivalent:

x; Γ ` a = bΓ ` λx. a = λx. b (if x is not free in Γ) Γ ` p; ∆ ` q
(Γ \ q)∪ (∆ \ p) ` p = q

Type variable substitution holds. If arbitrary types are substituted in parallel for type variables in a sequent, a
theorem results. Term variable substitution holds. If arbitrary terms are substituted in parallel for term variables
in a sequent, a theorem results.

5. Mathematical Axioms: There are only three mathematical axioms.

Axiom of Extensionality: ∀f . (λx. f x) = f .

Axiom of Infinity: ∃f :ind → ind. (ONE_ONE f)∧¬(ONTO f).

Axiom of Choice: ∀P x. Px⇒ P(εP).

Extensionality asserts that every function is determined by its input-output relation. Dedekind’s axiom of infinity
asserts the existence of a function that is one-to-one but not onto. The Hilbert choice operator ε applied to a
predicate P chooses a term that satisfies the predicate, provided the predicate is satisfiable.

1374 Notices of the AMS Volume 55, Number 11

systems, the curried form of multivariate func-
tions is generally preferred. Treating X,Y ,Z as
types, we write the type of the curried function as
f : X → (Y → Z), or simply f : X → Y → Z .

The system has only two primitive constants.
One of them1 is the equality symbol (=) of type
:A→ A→ bool. That is, equality is a curried func-
tion that takes two arguments of the same type
and returns the boolean type.

Axioms, Inference, and Theorems

There are three mathematical axioms: an axiom
of extensionality that asserts that a function is
determined by the values that it takes on all inputs,
an axiom of infinity that asserts that the type :ind
is not finite, and an axiom of choice. The system
has ten rules of inference, as described in the HOL
Light System box. For example, the first two state
that equality is reflexive and transitive. The final
two rules of inference allow one to substitute new
terms for the free variables in a theorem and allow
one to substitute new types for the type variables
in a theorem. Beyond these ten rules of inference
are mechanisms for defining new constants and
new types. A theorem is expressed in sequent form;
that is, as a set of assumptions, followed by a
conclusion.

Extending the Primitive System

This primitive system lacks the customary logical
operators. There are no symbols for “and”, “or”,
“not”, and “implies.” There are no universal or exis-
tential quantifiers. The set membership operator
is absent. It is remarkable none of this is needed
to express the rules of inference.

Logical operators are defined later. For example,
the boolean constant T (true) can be defined as
the conclusion of any theorem that has no assump-
tions. The most accessible yet jarringly iconoclast
theorem comes from the reflexive law applied to
equality itself:

` (=)(=)(=).
Each new definition becomes a theorem. So then `
T = ((=)(=)(=)). Conjunction (∧) is roundaboutly
defined as the curried function that on boolean
inputs p and q returns (λf . f p q) = (λf . f T T);
that is, conjunction yields true exactly when no
curried function f is able to distinguish (p, q) from
(T , T). The other logical operations are built with
similar tricks.

1The second constant is the Hilbert choice operator (ε).
Recall that every term that is not a variable, a function
application, or λ-abstraction is a constant. “Constancy”
is thus a broader notion here than in first-order logic,
and includes terms such as equality that take argu-
ments. Parentheses are drawn around the equality symbol
(=) to denote the prefixed curried form, with (=) xx an
alternative syntax for x = x.

The inference rules and axioms become bits
of data that are processed by other computer
procedures. For example, to give a formal proof
that

26824404+153656394+187967604 = 206156734

a human is not required to type each primitive
inference. An automated procedure takes any
arithmetic identity as input, generates the infer-
ences, and produces the theorem as output. A
large number of such small decision procedures
have been programmed into the system to handle
routine tasks such as polynomial simplification,
basic tautologies in logic, and decidable fragments
of arithmetic. Procedures that automatically search
for steps in a proof are also programmed into the
computer. New procedures may be contributed by
any user at any time to automate further tasks.
The design of the kernel of the system prevents a
rogue user from writing computer code that could
compromise the soundness of the system.

All the basic theorems of mathematics up
through the Fundamental Theorem of Calculus are
proved from scratch on the user’s laptop in about
two minutes every time the system loads, so that
the casual user does not need to be concerned
with the low-level details. Basic facts of logic and
elementary mathematics are simply there in the
system to be used as needed.

Soundness
HOL Light is both an axiomatic system for do-
ing mathematics and a computer program that
implements the system. How trustworthy is it?

If the computer is set aside for a moment,
and the axiomatic system alone analyzed, it is
known to be consistent relative to ZFC. That is,
an inconsistency in the HOL Light system would
imply the inconsistency of ZFC.

Computer Implementation

You’ve got to prove the theorem-proving pro-
gram correct. You’re in a regression aren’t
you?

—A. Robinson [20, p. 288].

The more pressing question is the soundness
and reliability of the computer program that im-
plements the logic. An earlier section reported
that a typical software program has approximately
one bug per 100 lines of computer code. The
most reliable software ever created, for example
mission-critical software written for the space
shuttle, has fewer than one bug per 10,000 lines
of computer code. Various proof assistants vary
widely in reliability, ranging from some of the
world’s most carefully crafted code at the upper
end, to rubbish at the lower end. I confine my
attention to the upper end.

December 2008 Notices of the AMS 1375

The computer code that implements the axioms
and rules of inference is referred to as the kernel
of the system. It takes fewer than 500 lines of
computer code to implement the kernel of HOL
Light. (By contrast, a Linux distribution contains
approximately 283 million lines of computer code.)

A bug anywhere in the kernel of this system
might have fatal consequences. For example, if one
of the axioms is incorrectly typed, it might lead to
an inconsistent system.

Yes, it is a regress; but a rather manageable
regress. The kernel is a tiny amount of computer
code, but hundreds of thousands of lines of code
are verified by the kernel. Eventually, there may
be many millions of lines that are verified by this
small kernel. The same kernel verifies everything
from the prime number theorem to the correctness
of hardware designs.

Since the kernel is so small, it can be checked on
many different levels. The code has been written
in a friendly programming style for the benefit of
a human audience. The source code is available for
public scrutiny. Indeed, the code has been studied
by eminent logicians. By design, the mathematical
system is spartan and clean. The computer code has
these same attributes. A powerful type-checking
mechanism within the programming language pre-
vents a user from creating a theorem by any means
except through this small fixed kernel. Through
type-checking, soundness is ensured, even after
a large community of users contributes further
theorems and computer code. I wish to see a
poster2 of the lines of the kernel, to be taught in
undergraduate courses, and published throughout
the world, as the bedrock of mathematics. It is
math commenced afresh as executable code.

Experience from other top-tier theorem-proving
systems has been that about three to five bugs
have been found in each system over a period of
15-20 years of use. After decades of use on many
different systems, to my knowledge, only one proof
has ever had to be retracted as a result of a bug in a
theorem-proving system, and this in a system that I
do not rank in the top-tier: in 1995 a heap overflow
error led to the false claim that the theorem-prover
REVEAL had solved the Robbins conjecture. We can
assert with utmost confidence that the error rates
of top-tier theorem-proving systems are orders
of magnitude lower than error rates in the most
prestigious mathematical journals. Indeed, since a
formal proof starts with a traditional proof, then
does strictly more checking even at the human
level, it would be hard for the outcome to be
otherwise.

As an extra check, J. Harrison gave what can
almost be described as a formal proof in HOL
Light of its own soundness [15]. To get around
the self-referential limitations imposed by Gödel,

2A T-shirt has already been made!

he gave two separate proofs. In the first proof, a
weakened version of HOL Light is created, without
the axiom of infinity. The standard version is
used to give a formal proof of the soundness
of the weakened version. In the second proof, a
strengthened version of HOL Light is created, with
an additional axiom giving a large cardinal. The
strengthened version then proves the standard
version sound. These proofs go beyond traditional
relative consistency proofs in logic in two respects.
First of all, they are formal proofs, rather than
conventional proofs. Second, the proofs establish
not only the soundness of the logic, but also
the underlying soundness of the computer code
implementing the logic.3

Export

In the past few years, a number of programs have
been written to automatically translate a proof writ-
ten in one system into a proof in another system.
If a proof in one system is incorrect because of an
underlying flaw in the theorem-proving program it-
self, then the export to a different system fails, and
the underlying flaw is exposed. (Except of course,
unless the second theorem-proving program also
has a bug that is perfectly aligned with the bug in
the first system. Since these systems are largely
independently designed and implemented, the
events of failure in different systems are treated
as nearly independent, so that the probability of
a perfect alignment of failures across n systems,
goes to zero roughly as pn, where p is the individual
failure rate.)

Consider what happens when the proof of the
soundness of HOL Light is exported. (This has
not happened yet, but should happen soon.) The
exported proof is a formal proof within a second
theorem-prover that the HOL Light logic and im-
plementation are sound. It will soon be within
reach for several systems to give proofs of one
another’s soundness. When this is achieved, the
probability of a false certification of a pseudo-proof
is pushed an order of magnitude closer to zero.
With a computer—indeed with any physical artifact,
whether a codex, transistor, or a flash drive made
of proteins from salt-marsh bacteria—it is never a
matter of achieving philosophical certainty. It is
a scientific knowledge of the regularity of nature
and human technology, akin to the scientific evi-
dence that Planck’s constant � lies reliably within
its experimental range. Technology can push the
probability of a false certification ever closer to
zero: 10−6, 10−9, 10−12, The intent is that one

3The soundness of the computer code is considered rela-
tive to a semantic model of the underlying programming
language. This model may differ from the real-world be-
havior of the programming language, a reminder that the
task of verification is never complete.

1376 Notices of the AMS Volume 55, Number 11

day a system will store a million proofs without so
much as a misplaced semicolon.

A bug in the compiler, operating system, or
underlying hardware has the potential to com-
promise a formal proof. To minimize such bugs,
formal proofs can be made about the correctness
of the ambient computational environment. Indeed,
verification of hardware design, compilers, and
computer languages has long been one of the
principal aims of formal methods. HOL itself was
initially created for hardware verification. As early
as 1989, a simple computer system from high-level
language down to microprocessor was “formally
specified and mechanically verified” [4]. Today,
the semantics of various high-level programming
languages have been defined with complete mathe-
matical rigor [23]. In recent work that is nothing
short of spectacular, X. Leroy has developed a
formally verified compiler for the C programming
language [19]. (When the target of a formal veri-
fication is a piece of computer code, rather than
a standard mathematical text, the formalization
checks that the computer code conforms to a
precise specification of the algorithm; certifying
that the computer code is bug free.)

Full Automation
Formal proofs are part of a larger project of
automating all mechanizable mathematical tasks,
from conjecture making to concept formation. This
section touches on the problem of fully automat-
ed proofs—the discovery of proofs entirely by
computer without any human intervention. The
next section briefly describes the ultimate chal-
lenge of producing an automated mathematician.
Progress has been gradual. Fifty years ago it was
famously predicted that within a decade “a digital
computer will discover and prove an important
new mathematical theorem.” This did not happen
as scheduled.

Most success has been with the development of
algorithms to solve special classes of problems. The
WZ algorithm gives automated proofs of identities
of hypergeometric sums. Gröbner basis methods
solve ideal membership problems. Wu’s geometry
algorithm proves theorems such as Pappus’ theo-
rem and Pascal’s theorem on the ellipse. Tarski’s
algorithm solves problems that can be formulated
in the first-order language of the real numbers. The
list of specialized algorithms is in fact enormous.

The most widely acclaimed example of a ful-
ly automated computer proof is the solution of
the Robbins conjecture in 1996. The conjecture
asserts that an alternative definition is equivalent
to the usual definition of a Boolean algebra. It is
remarkable because the solution does not involve
any human assistance, specialized algorithms, or
software designed with this particular problem
in mind. Just type the problem into W. McCune’s

general purpose theorem prover EQN, hit return,
and wait eight days for the solution to appear [21],
[22].

Yet the story is only a qualified success. It has
remained almost an isolated example, rather than
the first in a torrent of results. The conjecture itself
has the rather special form of a word problem in
an abstractly defined algebraic system—a type of
problem particularly suited for computer search.
The proof that was found by computer can be
expressed as a short yet non-obvious sequence of
substitutions. (See box on next page.)

Overall, the level today of fully automated
computer proof (lying outside special purpose
algorithms) remains that of undergraduate home-
work exercises: a group in which every element has
order two is necessarily abelian; Cantor’s theorem
asserting that a set is not in bijection with its
powerset; if some iterate of a function has a unique
fixed point, then the function has a fixed point; the
base e for natural logarithms is irrational [1], [2].
Because of current limitations, fully automated
proof tools generally serve to fill in intermediate
steps of a larger formal proof. They are not ready
to take on the Riemann hypothesis.

Automated Discovery
What happens if one sets aside rigor, and lets
a computer explore? A groundbreaking project
was D. Lenat’s 1976 Stanford thesis. His computer
program AM (for Automated Mathematician) was
designed to discover new mathematical concepts.
When AM was set loose to explore in the wild, it
discovered the concepts of natural number, addi-
tion, multiplication, prime numbers, Pythagorean
triples, and even the fundamental theorem of
arithmetic. The thesis touched off a firestorm of
criticism and praise.

To put AM in context, consider a hypothetical
program that is instructed to discover new con-
cepts by deleting conditions from the list of axioms
defining a finite abelian group. The computer will
then immediately discover the concepts of infinite
group, nonabelian group, monoid, and so forth
because these concepts all arise as subsets of the
axioms. These discoveries could be sensationalized:
A program in Artificial Intelligence has made the
ultimate leap from the finite to infinite, and from
the abelian to the nonabelian, rediscovering fun-
damental concepts in seconds that mathematicians
have grappled with for centuries. There are nagging
questions about the emptiness of AM’s discoveries;
a suggestive representation of the problem gives
the answer away.

More recent projects stir the imagination, even
if the field is still young. Computer programs
have generated over one thousand conjectures
in graph theory, expressing numerical relation-
ships between different graph invariants. One

December 2008 Notices of the AMS 1377

Full Automation of the Robbins Conjecture

Let S be a nonempty set with an associative commutative binary operation (x, y), xy and a unary
operation x, [x] (which, for convenience, we write synonymously as x, x̄). The Robbins conjecture
(in Winker form) asserts that the general Robbins identity

[[ab][ab̄]] = a
implies the existence of c, d ∈ S such that [cd] = c̄. Here is the original proof that EQN discovered,
as reconstructed in [10].

Proof. A solution is c = x3u, d = xu, where u = [xx̄] and x is arbitrary. Abbreviate j = [cd], e = u[x2]c̄.
Over the equality sign, a prime indicates a direct application of the Robbins identity; a superscript
indicates a substitution of the numbered line; no superscript indicates a rewriting of abbreviations
c, d, e, j, u.

0 : [u[x2]] = [[xx̄][xx]] =′ x.
1 : [xu[xu[x2]c̄]] =′ [[[xux2][xu[x2]]][xu[x2]c̄]] = [[c̄[xu[x2]]][c̄xu[x2]]] =′ c̄.
2 : [uc̄] = [u[x2ux]] =0 [u[x2u[u[x2]]]] =′ [[[ux2][u[x2]]][x2u[u[x2]]]]

=′ [u[x2]] =0 x.
3 : [ju] = [[xcu]u] =′ [[xcu][[uc][uc̄]]] =2 [[xcu][x[cu]]] =′ x
4 : [x[x[x2]uc̄]] =′ [[[x[uc̄]][xuc̄]][x[x2]uc̄]] =2 [[[x2][xuc̄]][[x2]xuc̄]] =′ [x2]
5 : [xc̄] =1 [x[xu[xu[x2]c̄]]] =0 [[u[x2]][xu[xu[x2]c̄]]]

= [[u[x2]][ux[xe]]] =4 [[u[x[xe]]][ux[xe]]] =′ u
6 : [jx] =′ [j[[xc][xc̄]]] =5 [j[[xc]u]] = [[uxc][u[xc]]] =′ u
7 : [cd] = j =′ [[j[xc̄]][jxc̄]] =5 [[ju][jxc̄]] =3 [x[jxc̄]] =2 [[c̄u][c̄jx]]

=6 [[c̄[jx]][c̄jx]] =′ c̄.
�

open conjecture is described in the box “An Open
Computer-Generated Conjecture”. No technological
barriers prevent us from unleashing conjecturing
machines in all branches of mathematics, to see
what moonshine they reveal.

Flyspeck
My interest in formal proofs grows out of a practi-
cal desire for a thorough verification of my own
research that goes beyond what the traditional
peer review process has been able to provide. A
few years ago, I launched a project called Flyspeck
to give a formal proof of the Kepler conjecture,
asserting that no packing of congruent balls in
three-dimensional Euclidean space can have den-
sity greater than the density of the face-centered
cubic packing (also known as the cannonball
arrangement). The name Flyspeck, which quite
appropriately can mean to scrutinize, is derived
from the acronym FPK, for the Formal Proof of the
Kepler conjecture.

The original proof of this theorem was unusually
difficult to check. In a letter of qualified acceptance
for publication in the Annals of Mathematics, an
editor described the process, “The referees put a
level of energy into this that is, in my experience,
unprecedented. They ran a seminar on it for a long
time. A number of people were involved, and they
worked hard. They checked many local statements
in the proof, and each time they found that what

you claimed was in fact correct. Some of these
local checks were highly non-obvious at first, and
required weeks to see that they worked out…They
have not been able to certify the correctness of
the proof, and will not be able to certify it in the
future, because they have run out of energy to
devote to the problem.” In addition to a 300-page
text, the proof relies on about forty thousand
lines of custom computer code. To the best of my
knowledge, the computer code was never carefully
examined by the referees. The policy of the Annals
of Mathematics states, “The human part of the
proof, which reduces the original mathematical
problem to one tractable by the computer, will be
refereed for correctness in the traditional manner.
The computer part may not be checked line-by-line,
but will be examined for the methods by which
the authors have eliminated or minimized possible
sources of error. . .”

Ultimately, the mathematical corpus is no more
reliable than the processes that assure its quality. A
formal proof attains a much higher level of quality
control than can be achieved by “local checks” and
an “examination of methods”.

Flyspeck may take as many as twenty work-years
to complete. S. Obua and G. Bauer have already
defended Ph.D. theses on the project. Together
with the work of their advisor T. Nipkow (one of the
principal architects of the Isabelle proof assistant),

1378 Notices of the AMS Volume 55, Number 11

nearly half of the computer code used in the proof
of the Kepler conjecture is now certified.

An Open Computer-Generated
Conjecture
Let G be a finite graph with the following
properties:

(1) It has at least two vertices.
(2) The graph is simple; that is, there are

no loops or multiple joins.
(3) It is regular; that is, every vertex has

the same degree.
(4) The graph is connected.

For example, the complete graph (the graph
with an edge between every two vertices) on
n vertices has these properties, when n ≥ 2.
Define the total domination number of G to
be the size of the smallest subset of vertices
such that every vertex of G is adjacent to
some vertex in the subset. The path covering
number is the size of the smallest partition of
the vertices into subsets, such that there exists
a path confined to each subset S that steps
through each vertex of S exactly once (that
is, the induced graph on S has a Hamiltonian
path).

The computer program Graffiti.pc conjec-
tures that the total domination number of G is
at least twice the path covering number of G.
For example, the complete graph on n vertices
has path covering number one, because it
has a Hamiltonian path. Its total domination
number is two (take any two vertices). The
conjecture is sharp in this case by these direct
observations [9].

QED
The Flyspeck project is a minute speck in the
overarching Q.E.D. project (an anonymous mani-
festo declaring that all significant mathematical
results should be preserved in a vast library of
formal proofs). The labor required to realize such
a library would be staggering. In the Notices in
1991, de Bruijn proposed an assembly line to
turn mathematical ideas into formally verified
proofs [7]. The standard benchmark for the human
labor to transcribe one printed page of textbook
mathematics into machine-verified formal text is
one week, or US$150 per page at an outsourced
wage. To undertake the formalization of just
100,000 pages of core mathematics would be one
of the most ambitious collaborative projects ever
undertaken in pure mathematics, the sequencing
of a mathematical genome. One might imagine a
massive wiki collaboration that settles the text of
the most significant theorems in contemporary
mathematics from Poincaré to Sato-Tate.

Outsourcing is the brute force solution to the
Q.E.D. manifesto. Most researchers, however, prefer
beauty over brute force; we may hope for advances
in our understanding that will permit us someday
to convert a printed page of textbook mathematics
into machine-verified formal text in a matter of
hours, rather than after a full week’s labor. As
long as transcription from traditional proof into
formal proof is based on human labor rather
than automation, formalization remains an art
rather than a science. Until that day of automation,
we fall short of a practical understanding of the
foundations of mathematics.

Recommended Reading and Software
By far the best overview of the subject is the book
Mechanizing Proof, winner of the 2003 Merton
Book Award of the American Sociological Associa-
tion [20]. The Q.E.D. Manifesto can be found at [29].
Historical surveys include [5], [13], [11], and [25].
For something more comprehensive, see [14].

Several theorem proving systems are extensive-
ly documented and are available for download,
including HOL Light [12], Isabelle [16], Coq [8],
Mizar [24], TPS, PVS, ACL2, NuPRL, and MetaPRL. A
Web-browser version of Coq allows one to experi-
ment with a proof assistant without downloading
any software [28].

References
[1] P. B. Andrews and C. Brown, Proving theorems and

teaching logic with TPS and ETPS, Bulletin of Symbolic
Logic 11(1), March 2005.

[2] Michael Beeson, Automatic generation of a proof
of the irrationality of e, Journal of Symbolic
Computation, 32(4) (2001), 333–349.

[3] J. Bergstra, Nationale Onderzoeksagenda Informatie
en Communicatietechnologie (NOAG-ict) 2005–2010,
Albani drukkers, Den Haag, 2005.

[4] W. R. Bevier, W. A. Hunt Jr., J. Strother Moore, and
W. D. Young, An approach to ssystems verification,
Journal of Automated Reasoning 5 (1989); 411–428,
at pp. 422–423.

[5] W. W. Bledsoe and D. W. Loveland (eds.), Automat-
ed Theorem Proving: After 25 Years, Contemporary
Mathematics, Vol. 29, AMS, Providence, RI, 1984.

[6] N. G. de Bruijn, On the Role of Types in Mathematics,
http://www.win.tue.nl/~wsdwnb/, 1995.

[7] , Checking mathematics with computer
assistance, Notices of the AMS 38(1), January 1991.

[8] The Coq proof assistant, http://coq.inria.fr/.
[9] E. DeLaVina, Q. Liu, R. Pepper, B. Waller and

D. B. West, On some conjectures of Graffiti.pc on to-
tal domination, Congressus Numerantium 185 (2007),
81–95.

[10] B. Fitelson, Using Mathematica to Understand the
Computer Proof of the Robbins Conjecture, Math-
ematica in Education and Research (Winter 1998,
Volume 7, No. 1).

[11] M. Gordon, From LCF to HOL: A short history, Proof,
language, and interaction: Essays in honour of Robin
Milner, 169–185, MIT, 2000.

December 2008 Notices of the AMS 1379

http://www.win.tue.nl/~wsdwnb/
http://coq.inria.fr/

[12] J. Harrison, The HOL Light theorem prover,
http://www.cl.cam.ac.uk/~jrh13/hol-light/
index.html.

[13] , A short survey of automated reasoning,
Proceedings of AB 2007, the Second International Con-
ference on Algebraic Biology, Springer LNCS vol. 4545,
pp. x–x, 2007.

[14] , Handbook of Practical Logic and Automat-
ed Reasoning, Cambridge University Press, to appear
2009, 704 pp.

[15] , Towards self-verification of HOL Light.
[16] Isabelle, http://isabelle.in.tum.de/.
[17] C. Kaner, J. Falk, and H. Nguyen, Testing Computer

Software, Wiley, 1999.
[18] C. Kaner, J. Bach, B. Pettichord, Lessons Learned

in Software Testing, Wiley, 2001.
[19] X. Leroy, Formal certification of a compiler back-end,

or: programming a compiler with a proof assistant, in
33rd ACM Symposium on Principles of Programming
Languages, ACM Press, 2006, pp. 42–54.

[20] D. MacKenzie, Mechanizing Proof, MIT Press,
Cambridge, MA, 2001.

[21] W. McCune, Robbins Algebras are Boolean, http:
//www.cs.unm.edu/~mccune/papers/robbins/.

[22] , Solution of the Robbins Problem, JAR 19(3)
(1997), 263–276.

[23] R. Milner, M. Tofte, and R. Harper, The Definition
of Standard ML, MIT Press, 1990.

[24] Mizar Home Page, http://mizar.org/.
[25] R. Murawski, The present state of mechanized de-

duction, and the present knowledge of limitations,
Studies in Logic, Grammar and Rhetoric 9(22) (2006),
pp. 31–60.

[26] A. Newell, J. C. Shaw and H. A. Simon, 1956, Em-
pirical explorations of the Logic Theory Machine: A
case study in heuristics, Proc. Western Joint Comput-
er Conf., 15, pp. 218–239. Also in: Feigenbaum and
Feldman (eds.), Computers and Thought, McGraw-Hill,
1963.

[27] John Markoff, Adding math to list of security
threats, New York Times, November 17, 2007.

[28] ProofWeb, http://prover.cs.ru.nl/login.php.
[29] The QED Manifesto, Automated deduction–CADE

12, Springer-Verlag, Lecture Notes in Artificial Intel-
ligence, Vol. 814 (1994), pp. 238–251. http://www.
cs.ru.nl/~freek/qed/qed.html.

[30] H. Wang, Computer Theorem Proving and Artificial
Intelligence, in [5], 49–70.

If you want to
make a career
out of solving
complex
mathematical
challenges,
join NSA as a
Mathematician.

At NSA you can
bring the power
of Mathematics
to bear on today’s
most distinctive
challenges and
problems. We
identify structure
within the chaotic,
and discover
patterns among
the arbitrary. You
will work with the
finest minds and
the most powerful
technology.

U.S. citizenship is required.
NSA is an Equal Opportunity
Employer and abides by
applicable employment
laws and regulations.
Rubik’s Cube® is used
by permission of Seven
Towns Ltd. www.rubiks.com

Visit our Web site for a complete list of
current career opportunities.

DISCIPLINES

Number Theory

Probability Theory

Group Theory

Mathematical Statistics

>

>

>

www.NSA .gov/Careers

>

Finite Field Theory

Combinatorics

Linear Algebra

And More

>

>

>

>

Make the move that
puts your math
intelligence to work.
Apply online to NSA.

A B
ES

T D
IVERSITY COMPANY

W H E R E I N T E L L I G E N C E
G O E S T O W O R K ®

n a t i o n a l s e c u r i t y a g e n c y NSA

1380 Notices of the AMS Volume 55, Number 11

http://www.cl.cam.ac.uk/~jrh13/hol-light/index.html
http://www.cl.cam.ac.uk/~jrh13/hol-light/index.html
http://isabelle.in.tum.de/
http://www.cs.unm.edu/~mccune/papers/robbins/
http://www.cs.unm.edu/~mccune/papers/robbins/
http://mizar.org/
http://prover.cs.ru.nl/login.php
http://www.cs.ru.nl/~freek/qed/qed.html
http://www.cs.ru.nl/~freek/qed/qed.html

