
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

CSCE420: Introduction to Artificial Intelligence
Prior Class Test Questions

The following questions are all questions from prior midterm examinations. They
represent more than what is is feasible in 70 minutes under test conditions, but
, for purposes of study and revision, providing more examples is preferable to
fewer.

Important: Your exam assumes that you will have prepared 3 pages of notes.
These can be US-letter, double-sided, typeset or written—to be brought with you
on October 27th. These practice questions can give you a sense of what it might
be useful to include in your notes.
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Question 1. (6 points)

In the context of intelligent agents there is a notion of a known environment. What
does this mean, and how would it relate to a web-bot (or web-crawler, web-spider)
whose search space is the World Wide Web? (2 pts.)
“Known” in the context of environments relates to the level of knowledge of the
designer, not the agent. (1) The search space being uncovered as new links are
followed reflects ignorance until the state is opened.(.5) The states are pages (or,
the page content) but they are unknown until actually downloaded, because two
different URLs can get you to the same page. (.5)

What is the relationship of quadratic programming to linear programming? Be as
precise as you can. (2 pts.)
Commonality: Both quadratic programming and linear programming are
optimization problems, wherein one seeks find a value that gives an extremal
value of an objective subject to constraints. We encountered these when
discussing local search (1).
Difference: Quadratic programming is a strict generalization of linear programs:
all instances of LP problems are also QP problems, but not vice versa (1).

When is the least-constraining-value heuristic useless in a CSP search? (2 pts.)
When all values are equivalently constrained. (1)
When we want to enumerate all possible solutions. (1)
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Question 2. (5 points)

Construct a map with 5 cities {A,B,C,D,E} and 5 roads each of unit length, so
that there are two routes from A to E. Give the values of an heuristic function so
that depth-first search takes fewer steps to find the optimal path from A to E than
A? search. (5 pts.)

Other heuristic values don’t matter, because A? picks the wrong initial guess.
However, they should be admissible, i.e., at least one.
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Question 3. (6 points)

Assume that alpha-beta pruning reduces the branching factor from b to
√
b. How

much deeper (in terms of plies) will an alpha–beta pruned search solve when
compared with the standard minimax algorithm, given that both run for the same
amount of time. Explain why mathematically. (3 pts.)
Alpha-beta pruning can solve a tree twice as deep as minimax in the same
amount of time (pg 169.) = (1 point)
2 points for: (

√
b)m1 = b(

m1
2

) = bm2 taking logs (base b) we get m1 = 2m2.

You are programming an agent to playing a complex game in which there is only
a limited, fixed amount of time to search between moves. Your solution is to run
minimax search with alpha–beta pruning until the time is nearly up, and then to
make the best move found far. Suppose your agent does this and is about to pick
the move. At that time the alpha and beta bounds for the current state have values
3 and 7 respectively. What can the difference between these two values be
interpreted? (3 pts.)
You can interpret the value as representing, in a sense, the degree of uncertainty
in the game outcome. Because we have not seen all possible states, there are
unknowns in the outcome of the game, depending on the “fog” induced in
requiring greater depth to solve. (1 point) We know, as a maximizing node, we
can’t do better than 7, although we will never do worst than 3.(2 points) When
the difference is small, (and 3 is good enough) we may actually never care to get
the full solution. (1 point, unless max of 3)

Question 4. (8 points)

Suppose you are given a screen-shot of a game of minesweeper in progress. You
get a description of cells marked with flags as mines, some numbered with a
count of neighboring mines (from zero to eight), and others yet to be opened.
You cleverly decide to cast this as a CSP. You use a variable with domain {0, 1}
for each cell. Cells marked with mines are set to have value 1, those with known
numbers are set of have value 0, and you introduce a summation constraint on the
8 neighboring cells. Suppose you use modify your favorite CSP algorithm to
count the number of satisfying solutions.
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If it tells you that there is only one solution, what do you conclude?

There is a risk free labeling with the information you have. (2)

It tells you that there are multiple satisfying solutions. What do you conclude?

You are unsure if there is a risk free solution. It is possible that a clever ordering
would uncover new information that would solve this with without any risk.
However, the CSP does not consider new information, nor the order of
evaluation. Both are factors here. (4)

Suppose it tells you that there are no satisfying solutions. What do you conclude?

One of the blocks labeled mine isn’t a mine. (2)
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Question 5: Heuristics (15 points)
Consider heuristics where h(n) = 0 for all n for which GOAL(n) = True, i.e.,
functions that have the value zero for states that are goals. Then the following
statements are either true or false

Statement 1: Every admissible heuristic is consistent.
Statement 2: Every consistent heuristic is admissible.

For each statement: (1) identify whether it is true or false. (2) If it is true prove
that it is so; otherwise, if it is false, provide a counterexample.

Reminder: Using the notation from the textbook, with n′ a successor of
state n and a an action, a consistent heuristic is required to have h(n) ≤
c(n, a, n′) + h(n′).

Statement 1 is false. Here is a counter-example. Assume a linear graph between
these cities, with the numbers appearing above as true costs
A

10−→ B
10−→ C

10−→ D
10−→ Goal.

Now consider the heuristic defined thusly:
h(D) = 9 < 10
h(C) = 19 < 20
h(B) = 2 < 30

Statement 2 is true. Here is a proof by contradiction (though, induction would
work as well):
Assume the contrary and consider node n, the one of least distance from goal
that violates admissibility. Thus,

true cost to goal(n) < h(n).

Now, n can’t be a goal itself, since h(n) = 0 is admissible. So n must be
connected, on its least cost path, to some other node en route the goal. Call that
node n′. Then, since step costs are positive, we see

true cost to goal(n′) < true cost to goal(n).

Also, h(n′) ≤ true cost to goal(n), and accordingly,

h(n) ≤ c(n, a, n′) + h(n′)

≤ c(n, a, n′) + true cost to goal(n′) = true cost to goal(n),

but that means h(n) < h(n), which is contradiction.
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Question 6: Analysis of Games (14 points)

Consider a two-person, zero-sum game of perfect information we call G. Think
of a game like checkers, or tic-tac-toe, but unlike those games, in G, more
extreme scores are awarded for demolishing the opponent. Thus, the outcomes
can be O = {−2,−1, 0, 1, 2}.
Suppose that agent A implements alpha-beta pruning correctly; it does a
complete search down all the tiers reaching the leaves (i.e., it runs without
cut-offs). Additionally, a fellow student has their own algorithm, S, they’ve built
using their own custom insights.
In the following, we report matches from playing G by pairs of players. When we
say that the outcome of X vs.Y was (ox, oy), we mean that agent X played the
first move as a maximizing player, that Y played second and was the minimizing
player, and, after the game finished, X got outcome ox ∈ O, and Y got oy ∈ O.
(Answer each of these questions anew, discarding any inferences drawn from
previous answers.)

6.1 Is it possible to find that A vs.S yielded the outcome (−1, 2), for the agents
respectively? Explain/Interpret. (2 pts)

No. The reason it is a zero-sum game.

6.2 Is it possible for A vs.S to yield (−1, 1), respectively, and for S vs.A to
yield (1,−1)?
Explain/Interpret. (2 pts)

No, since S is outperforming A, who is the optimal player.

6.3 Is it possible for A vs.S to yield (1,−1), respectively, and for S vs.A to
yield (−1, 1)?
Explain/Interpret. (2 pts)

Yes, here S’s play is clearly sub-optimal. Reason: The first game’s outcome
might be attributed to first-move advantage, but the second match shows that not
to be the deciding factor.

6.4 Is it possible for A vs.A to yield (0, 0)? Explain/Interpret. (2 pts)
Yes, and G is clearly a fair/balanced game.

6.5 Is it possible for A vs.A to yield (2,−2) when A vs.S gave (1,−1)? (2 pts)
No, that means A playing the first position did worst against S than the optimal
player (itself).
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Both agents now play a third player T .

6.6 Can A vs. T yield (1,−1), and T vs.A give (−1, 1), when S vs. T yielded
(2,−2), and also T vs.S resulted in (−2, 2)? Explain/Interpret. (4 pts)

Yes. Player S is sub-optimal, and so is T . Because A assumes a worst-case
opponent, it is conservative. Both S and T may be blind to certain plays at
particular times, so play in reckless ways. But A would have to protect against
the potential of those moves being played. In general, since S and T are
sub-optimal, we can’t really exclude any outcome for them.
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