```
            Sentence }->\mathrm{ AtomicSentence | ComplexSentence
    AtomicSentence }->\mathrm{ Predicate | Predicate(Term,...)| Term = Term
    ComplexSentence }->\mathrm{ (Sentence)| [ Sentence ]
        | \negSentence
        | Sentence ^ Sentence
        | Sentence V Sentence
        | Sentence => Sentence
        | Sentence }\Leftrightarrow\mathrm{ Sentence
        | Quantifier Variable,... Sentence
        Term }->\mathrm{ Function(Term,...)
        | Constant
        Variable
    Quantifier }->\quad\forall|
        Constant }->A|\mp@subsup{X}{1}{}|\mathrm{ John | ..
        Variable }->a|x|s|
        Predicate }->\mathrm{ True | False | After | Loves | Raining | ...
    Function }->\mathrm{ Mother | LeftLeg|...
Operator Precedence : }\neg,=,^,\vee,=>,
```

Figure 8.3 The syntax of first-order logic with equality, specified in Backus-Naur form (see page 1060 if you are not familiar with this notation). Operator precedences are specified, from highest to lowest. The precedence of quantifiers is such that a quantifier holds over everything to the right of it.

