

CSCE420: Introduction to Artificial Intelligence First Order Logic Inference via Resolution

	Start	with th	ne foll	owing	three	facts/	'axioms	in	vour	Kno	wledge	e Base:
--	-------	---------	---------	-------	-------	--------	---------	----	------	-----	--------	---------

- 1. $\forall x, y \ Programmer(x) \Rightarrow Cordial(x, y)$
- 2. $\forall x, y \ Unsociable(x) \lor Unsociable(y) \Rightarrow \neg Cordial(x, y)$
- 3. $\exists x \ Programmer(x) \land Witty(x)$

This question will have you prove that some things exist that are *witty* and are *sociable* by means of refutation.

- **Step 1:** Express what is to be proved in First-Order Logic.
- Step 2: Negate the preceding expression and simplify the result.
- **Step 3:** The next step involves converting all expressions (axioms + result from previous step) to clause form. The result should be well-formed formula consisting of a universal prefix and quantifier-free conjunction of terms, each using only negation, conjunction, and disjunction. The answer has been partially completed below. Fill in the remaining elements.

Universal prefix:			
Axiom 1:			
Axiom 2:			
Axiom 3:			
Step 2 Result:			

What is the process that produces Axiom 3? Why is it applicable?
Step 4: Resolve clauses, labelling the operations that occur, until an empty clause is produced which denotes contradiction.