
To appear: Proc. 1st Int. Conf. on Evolvable Systems (ICES96). Springer LNCS.An evolved circuit,intrinsic in silicon,entwined with physics.Adrian Thompson?COGS, University of Sussex, Brighton, BN1 9QH, UKAbstract. `Intrinsic' Hardware Evolution is the use of arti�cial evolu-tion | such as a Genetic Algorithm | to design an electronic circuitautomatically, where each �tness evaluation is the measurement of a cir-cuit's performance when physically instantiated in a real recon�gurableVLSI chip. This paper makes a detailed case-study of the �rst such appli-cation of evolution directly to the con�guration of a Field ProgrammableGate Array (FPGA). Evolution is allowed to explore beyond the scope ofconventional design methods, resulting in a highly e�cient circuit witha richer structure and dynamics and a greater respect for the naturalproperties of the implementation medium than is usual. The applicationis a simple, but not toy, problem: a tone-discrimination task. Practicaldetails are considered throughout.1 IntroductionThis paper describes a case-study in intrinsic hardware evolution: the use ofarti�cial evolution | such as a Genetic Algorithm | to design a circuit auto-matically, where each �tness evaluation is the measurement of a circuit's per-formance when physically instantiated in a real recon�gurable VLSI chip. Theterm `intrinsic' is used simply to indicate that the circuits are always tried out`for real' rather than in simulation [1]. However, my dictionary also gives the fol-lowing meanings to the word: genuine, inherent, belonging to the point at issue.I suggest that the point at issue with intrinsic hardware evolution is to allow thegenuine inherent physical behaviour of the silicon be used freely, rather than justusing hardware as a fast implementation of an idealised simulation or designer'smodel. I aim to show this through an example.The following sections consider the �rst ever [13] intrinsically evolved FPGAcon�guration in great detail | there are interesting issues at every turn. Theresults speak for themselves, so I will save until later the underlying theory whichmotivated the rather unconventional approach taken. Then, in an extended dis-cussion section, these ideas will be portrayed in the light of the experimentalresults that demonstrate their signi�cance.? Email: adrianth@cogs.susx.ac.ukWWW: http://www.cogs.susx.ac.uk/users/adrianth/



2 The Evolvable HardwareThe Xilinx XC6216 [15] Field Programmable Gate Array (FPGA) [11] is a re-con�gurable VLSI chip particularly suitable for evolutionary work. It will soonbe commercially available | the work reported here was carried out on a �-test version. A simpli�ed representation of the device is shown in Fig. 1. It has
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Fig. 1. A simpli�ed view of the XC6216 FPGA. Only those features used in the ex-periment are shown. Top: A 10 � 10 corner of the 64 � 64 array of cells; Below: theinternals of an individual cell, showing the function unit at its centre. The symbolrepresents a multiplexer | which of its four inputs is connected to the output (via aninversion) is controlled by the con�guration memory. Similar multiplexers are used toimplement the user-con�gurable function F.



an array of 64 � 64 recon�gurable cells, each of which is connected to its fourneighbours: North, East, West and South (NEWS) as shown. There is also ahierarchical arrangement of wires spanning 4, 16 and 64 cells, but these were notused in this experiment. Each cell contains a function unit that can be con�guredto perform any boolean function of two inputs, or multiplexer functions of threeinputs. Each of a function unit's three inputs (not all of which are necessarilyused) can be con�gured to be sourced by any of the four NEWS neighbours.The output of a cell in each of the NEWS directions can be con�gured to bedriven either by the output F of its function unit, or by the signal arriving atone of the other NEWS faces. This allows a cell to connect some of its NEWSneighbours directly together at the same time as performing a function; a cellcan `route across itself' in some directions while giving the output of function Fin others. The cells are con�gured independently (they do not all perform thesame function), so even using only the nearest-neighbour links a very large rangeof possible circuits can be implemented.Around the periphery of the array of cells are Input/Output Blocks (IOBs)and pads that interface the signals at the edge of the array to the pins of thechip. This is done in a more complex and exible way than shown in the �gure;all that is important here is that the chip was con�gured with a single input anda single output as shown. The choice of input and output positions was madebefore the experiment started, and then kept �xed. The unused IOBs simplyappeared as inputs of a constant value. Only a 10 � 10 corner of the chip wasused, and the unused cells were also con�gured just to produce a constant value.There are numerous other features of the device that were not used, and havenot been mentioned.At any time, the con�guration of the chip is determined by the bits heldin an on-chip memory, which can be written from software running on a hostcomputer. No con�guration of the cells can cause the device to be damaged | itis impossible to connect two outputs together, for instance, because all internalconnections are uni-directional. So an evolutionary algorithm can be allowedto manipulate the con�guration of the real chip without the need for legalityconstraints or checking. Here, we directly encode the con�guration bits for the10 � 10 corner | determining how the four outputs of each cell are derivedand what function is performed by each function unit | onto a linear bit-stringgenotype of length 1800 bits. This was done in a raster fashion, reading cell-by-cell from left to right along each row, and taking the rows from bottom totop.3 The ExperimentThe task was to evolve a circuit | a con�guration of the 10� 10 corner of theFPGA | to discriminate between square waves of 1kHz and 10kHz presented atthe input. Ideally, the output should go to +5V as soon as one of the frequenciesis present, and 0V for the other one. The task was intended as a �rst step intothe domains of pattern recognition and signal processing, rather than being an



application in itself. One could imagine, however, such a circuit being used todemodulate frequency-modulated binary data received over a telephone line.It might be thought that this task is trivially easy. So it would be, if thecircuit had access to a clock or external resources such as RC time-constants bywhich the period of the input could be timed or �ltered. It had not. Evolution wasrequired to produce a con�guration of the array of 100 logic cells to discriminatebetween input periods �ve orders of magnitude longer than the input) outputpropagation time of each cell (which is just a few nanoseconds). No clock, andno o�-chip components could be used: a continuous-time recurrent arrangementof the 100 cells had to be found which could perform the task entirely on-chip.Many people thought this would not be possible.The evolutionary algorithmwas basically a conventional generational GeneticAlgorithm (GA) [3]. The population of size 50 was initialised by generating �ftyrandom strings of 1800 bits each. After evaluation of each individual on the realFPGA, the next generation was formed by �rst copying over the single �ttestindividual unchanged (elitism); the remaining 49 members were derived fromparents chosen through linear rank-based selection, in which the �ttest individ-ual of the current generation had an expectation of twice as many o�spring asthe median-ranked individual. The probability of single-point crossover was 0.7,and the per-bit mutation probability was set such that the expected number ofmutations per genotype was 2.7. This mutation rate was arrived at in accordancewith the Species Adaptation Genetic Algorithm (SAGA) theory of Harvey [4],along with a little experimentation.The GA was run on a normal desktop PC interfaced to some simple in-house electronics2 as shown in Fig. 2. To evaluate the �tness of an individual,the hardware-reset signal of the FPGA was �rst momentarily asserted to makecertain that any internal conditions arising from previous evaluations were re-moved. Then the 1800 bits of the genotype were used to con�gure the 10� 10corner of the FPGA as described in the previous section, and the FPGA wasenabled. At this stage, there now exists on the chip a genetically speci�ed circuitbehaving in real-time according to semiconductor physics.2 Technical Electronics Notes: The FPGA and its interface to the PC, the tonegenerator, and the analogue integrator all reside comfortably on a single full-lengthcard plugging into the AT (ISA) Bus of the PC. The analogue integrator was ofthe basic op-amp/resistor/capacitor type, with a MOSFET to reset it to zero [7]. AMC68HC11A0 micro-controller operated this reset signal (and that of the FPGA),and performed 8-bit A/D conversion on the integrator output. A �nal accuracy of16 bits in the integrator reading was obtained by summing (in software) the result ofintegration over 256 sub-intervals, with an A/D conversion followed by a resetting ofthe analogue integrator performed after each sub-interval. The same micro-controllerwas responsible for the generation of the tone.Locations in the con�guration memory of the FPGA and in the dual-port RAMused by the the micro-controller could be read and written by the PC via someregisters mapped into the AT-Bus I/O space. The XC6216 requires some small butnon-trivial circuitry to allow this | schematics are available from the author.
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Fig. 2. The experimental arrangement.The �tness of this physically instantiated circuit was then automatically eval-uated as follows. The tone generator drove the circuit's input with �ve 500msbursts of the 1kHz square-wave, and �ve of the 10kHz wave. These ten test toneswere shu�ed into a random order, which was changed every time. There was nogap between the test tones. The analogue integrator was reset to zero at thebeginning of each test tone, and then it integrated the voltage of the circuit'soutput pin over the 500ms duration of the tone. Let the integrator reading at theend of test tone number t be denoted it (t=1,2,. . . 10). Let S1 be the set of �ve1kHz test tones, and S10 the set of �ve 10kHz test tones. Then the individual's�tness was calculated as:�tness = 110 ����� k1 Xt2S1 it!�  k2 Xt2S10 it!����� where�k1 = 1=30730:746k2 = 1=30527:973 (1)This �tness function demands the maximising of the di�erence between theaverage output voltage when a 1kHz input is present and the average outputvoltage when the 10kHz input is present. The calibration constants k1 and k2were empirically determined, such that circuits simply connecting their outputdirectly to the input would receive zero �tness. Otherwise, with k1 = k2 = 1:0,small frequency-sensitive e�ects in the integration of the square-waves were foundto make these useless circuits an inescapable local optimum.It is important that the evaluation method | here embodied in the analogueintegrator and the �tness function Eqn. 1 | facilitates an evolutionary pathwayof very small incremental improvements. Earlier experiments, where the evalu-ation method only paid attention to whether the output voltage was above orbelow the logic threshold, met with failure. It should be recognised that to evolvenon-trivial behaviours, the development of an appropriate evaluation techniquecan also be a non-trivial task.



4 ResultsThroughout the experiment, an oscilloscope was directly attached to the outputpin of the FPGA (see Fig. 2), so that the behaviour of the evolving circuitscould be visually inspected. Fig. 3 shows photographs of the oscilloscope screen,illustrating the improving behaviour of the best individual in the population atvarious times over the course of evolution.The individual in the initial random population of 50 that happened to getthe highest score produced a constant +5V output at all times, irrespective ofthe input. It received a �tness of slightly above zero just because of noise. Thus,there was no individual in the initial population that demonstrated any abilitywhatsoever to perform the task.After 220 generations, the best circuit was basically copying the input to theoutput. However, on what would have been the high part of the square wave, ahigh frequency component was also present, visible as a blurred thickening of theline in the photograph. This high-frequency component exceeds the maximumrate at which the FPGA can make logic transitions, so the output makes smalloscillations about a voltage slightly below the normal logic-high output voltagefor the high part of the square wave. After another 100 generations, the behaviourwas much the same, with the addition of occasional glitches to 0V when theoutput would otherwise have been high.Once 650 generations had elapsed, de�nite progress had been made. For the1kHz input, the output stayed high (with a small component of the input wavestill present) only occasionally pulsing to a low voltage. For the 10kHz input,the input was still basically being copied to the output. By generation 1100, thisbehaviour had been re�ned, so that the output stayed almost perfectly at +5Vonly when the 1kHz input was present.By generation 1400, the neat behaviour for the 1kHz input had been aban-doned, but now the output was mostly high for the 1kHz input, and mostlylow for the 10kHz input. . . with very strange looking waveforms. This behaviourwas then gradually improved. Notice the waveforms at generation 2550 | theywould seem utterly absurd to a digital designer. Even though this is a digitalFPGA, and we are evolving a recurrent network of logic gates, the gates arenot being used to `do' logic. Logic gates are in fact high-gain arrangements of afew transistors, so that the transistors are usually saturated | corresponding tologic 0 and 1. Evolution does not `know' that this was the intention of the de-signers of the FPGA, so just uses whatever behaviour these high-gain groups oftransistors happen to exhibit when connected in arbitrary ways (many of whicha digital designer must avoid in order to make digital logic a valid model of thesystem's behaviour). This is not a digital system, but a continuous-time, contin-uous valued dynamical system made from a recurrent arrangement of high-gaingroups of transistors | hence the unusual waveforms.
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Fig. 3. Photographs of the oscilloscope screen. Top: the 1kHz and 10kHz input wave-forms. Below: the corresponding output of the best individual in the population afterthe number of generations marked down the side.



By generation 2800, the only defect in the behaviour was rapid glitchingpresent on the output for the 10kHz input. Here, the output polarity has changedover: it is now low for the 1kHz input and high for 10kHz. This change would haveno impact on �tness because of the absolute value signs in the �tness function(Eqn. 1); in general it is a good idea to allow evolution to solve the problem inas many ways as possible | the more solutions there are, the easier they are to�nd.In the �nal photograph at generation 3500, we see the perfect desired be-haviour. In fact, there were infrequent unwanted spikes in the output (not visi-ble in the photo); these were �nally eliminated at around generation 4100. TheGA was run for a further 1000 generations without any observable change inthe behaviour of the best individual. The �nal circuit (which I will arbitrarilytake to be the best individual of generation 5000) appears to be perfect whenobserved by eye on the oscilloscope. If the input is changed from 1kHz to 10kHz(or vice-versa), then the output changes cleanly between a steady +5V and asteady 0V without any perceptible delay.Graphs of maximum and mean �tness, and of genetic convergence, are givenin Fig. 4. These graphs suggest that some interesting population dynamics tookplace, especially at around generation 2660. The experiment is analysed in depthfrom an evolution-theoretic perspective in a companion paper [5], so I will notdwell on it here. Crucial to any attempt to understand the evolutionary processwhich took place is the observation that the population had formed a geneticallyconverged `species' before �tness began to increase: this is contrary to conven-tional GA thinking, but at the heart of Harvey's Species Adaptation GeneticAlgorithm (SAGA) [4] conceptual framework.
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The entire experiment took 2{3 weeks. This time was dominated by the �veseconds taken to evaluate each individual, with a small contribution from theprocess of calculating and saving data to aid later analysis. The times taken forthe application of selection, the genetic operators, and to con�gure the FPGAwere all negligible in comparison. It is not known whether the experiment wouldhave succeeded if the individuals had been evaluated for shorter periods of time| �tness evaluations should be just accurate enough that the small incremen-tal improvements in performance that facilitate evolution are not swamped bynoise. An exciting aspect of hardware evolution is that very high-speed taskscan be tackled, for instance in the pattern recognition or signal processing do-mains, where �tness evaluation | and hence evolution | can be very rapid.The recognition of audio tones, as in this experiment, is a long duration task incomparison to many of these, because it is reasonable to expect that the individ-uals will need to be evaluated for many periods of the (slow) input waveforms,especially in the early stages of evolution. The author was engaged in a di�erentproject while the experiment was running, so it consumed no human time.5 AnalysisThe �nal circuit is shown in Fig. 5; observe the many feedback paths. The lackof modularity in the topology is unsurprising, because there was no bias in thegenetic encoding scheme in favour of this.Parts of the circuit that could not possibly a�ect the output can be prunedaway. This was done by tracing all possible paths through the circuit (by wayof wires and function units) that eventually connect to the output. In doing so,it was assumed that all of a function unit's inputs could a�ect the function unitoutput, even when the actual function performed meant that this should nottheoretically be the case. This assumption was made because it is not knownexactly how function units connected in continuous-time feedback loops actuallydo behave. In Fig. 6, cells and wires are only drawn if there is a connected pathby which they could possibly a�ect the output, which leaves only about half ofthem.To ascertain fully which parts were actually contributing to the behaviour,a search was conducted to �nd the largest set of cells that could have theirfunction unit outputs simultaneously clamped to constant values (0 or 1) withouta�ecting the behaviour. To clamp a cell, the con�guration was altered so thatthe function output of that cell was sourced by the ip-op inside its functionunit (a feature of the chip which has not been mentioned until now, and whichwas not used during evolution): the contents of these ip-ops can be writtenby the PC and can be protected against any further changes. A program waswritten to randomly select a cell, clamp it to a random value, perform a �tnessevaluation, and to return the cell to its un-clamped con�guration if performancewas degraded, otherwise to leave the clamp in place. This procedure was iterated,gradually building up a maximal set of cells that can be clamped without altering�tness.
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Fig. 5. The �nal evolved circuit. The 10 � 10 array of cells is shown, along with allconnections that eventually connect an output to an input. Connections driven by acell's function output are represented by arrows originating from the cell boundary.Connections into a cell which are selected as inputs to its function unit have a smallsquare drawn on them. The actual setting of each function unit is not indicated in thisdiagram.In the above automatic search procedure, the �tness evaluations were morerigorous (longer) than those carried out during evolution, so that very smalldeteriorations in �tness would be detected (remember there is always some noiseduring the evaluations). However, there was still a problem: clamping some ofthe cells in the extreme top-left corner produced such a tiny decrement in �tnessthat the evaluations did not detect it, but yet by the time all of these cellsof small inuence had been clamped, the e�ect on �tness was quite noticeable.In these cases manual intervention was used (informed by several runs of theautomatic method), with evaluations happening by watching the oscilloscopescreen for several minutes to check for any infrequent spikes that might havebeen caused by the newly introduced clamp.Fig. 7 shows the functional part of the circuit that remains when the largestpossible set of cells has been clamped without a�ecting the behaviour. The cellsshaded gray cannot be clamped without degrading performance, even thoughthere is no connected path by which they could inuence the output | they werenot present on the pruned diagram of Fig. 6. They must be inuencing the rest ofthe circuit by some means other than the normal cell-to-cell wires: this probablytakes the form of a very localised interaction with immediately neighbouring
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Fig. 6. The pruned circuit diagram: cells and wires are only drawn if there is a con-nected path through which they could possibly a�ect the output.
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Fig. 7. The functional part of the circuit. Cells not drawn here can be clamped toconstant values without a�ecting the circuit's behaviour | see main text.



components. Possible mechanisms include interaction through the power-supplywiring, or electromagnetic coupling. Clamping one of the gray cells in the top-left corner has only a small impact on behaviour, introducing either unwantedpulses into the output, or a small time delay before the output changes statewhen the input frequency is changed. However, clamping the function unit ofthe bottom-right gray cell, which also has two active connections routed throughit, degrades operation severely even though that function output is not selectedas an input to any of the NEWS neighbours: it doesn't go anywhere.This circuit is discriminating between inputs of period 1ms and 0.1ms usingonly 32 cells, each with a propagation delay of less than 5ns, and with no o�-chipcomponents whatsoever: a surprising feat. Evolution has been free to explorethe full repertoire of behaviours available from the silicon resources provided,even being able to exploit the subtle interactions between adjacent componentsthat are not directly connected. The input/output behaviour of the circuit is adigital one, because that is what maximising the �tness function required, butthe complex analogue waveforms seen at the output during the intermediatestages of evolution betray the rich continuous-time continuous-value dynamicsthat are likely to be internally present.In [12] it was shown that in GAs like the one used here, there can be atendency for circuits to evolve to be relatively una�ected by genetic mutations,on average. (This e�ect was �rst noticed in a di�erent context [2, 8], and onlyoccurs signi�cantly in engineering GAs under particular | but common| con-ditions.) Depending on the genetic encoding scheme, this can have a variety ofconsequences for the phenotype, including graceful degradation in the presenceof certain hardware faults. For our circuit evolved here, however, increasing theproportion of the possible mutations that do not reduce �tness may result indecreasing the number of cells implicated in generating the behaviour. So it maybe no accident that the functional core of cells seen in Fig. 7 is small.So far, we have only considered the response of the circuit to the two frequen-cies it was evolved to discriminate. How does it behave when other frequenciesof square wave are applied to the input? Fig. 8 shows the average output volt-age (measured using the analogue integrator over a period of 5 seconds) forinput frequencies from 31.25kHz to 0.625kHz. When the case temperature of theFPGA is 31:2�C (as it was, �5�C, during evolution), then for input frequencies� 4.5kHz the output stays at a steady +5V, and for frequencies � 1.6kHz ata steady 0V. Thus, the test frequencies (marked F1 and F2 in the �gure) arecorrectly discriminated with a considerable margin for error. As the frequency isreduced from 4.5kHz, the output begins to rapidly pulse low for a small fractionof the time; as the frequency is reduced further the output spends more time at0V and less time at +5V, until �nally resting at a steady 0V as the frequencyreaches 1.6kHz. These properties might be considered `generalisation.'Fig. 8 also shows the circuit's behaviour when hot or cold. The high tempera-ture was achieved by placing a 60W light-bulb near the chip, the low temperatureby opening all of the laboratory windows on a cool breezy evening. Varying thetemperature moves the frequency response curve to the left or right, so once
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1.41.21.00.80.60.40.20 1.6Fig. 8. The frequency response of the �nal circuit, measured at three di�erent tempera-tures. F1 and F2 are the two frequencies that the circuit was evolved to discriminate; infact, for ease of implementation, they happen to be of period 0.096ms (10.416kHz) and0.960ms (1.042kHz) respectively, rather than exactly 10kHz and 1kHz as mentioned inthe main text.the margin for error is exhausted the circuit no longer behaves perfectly to dis-criminate between F1 and F2. In the examples given here, at 43:0�C the outputis not steady at +5V for F1, but is pulsing to 0V for a small fraction of thetime. Conversely, at 23:5�C the output is not a steady 0V for F2, but is pulsingto +5V for a small fraction of the time. This is not surprising: the only timereference that the system has is the natural dynamical behaviour of the com-ponents, and properties such as resistance, capacitance and propagation delaysare temperature dependent. The circuit operates perfectly over the 10�C rangeof temperatures that the population was exposed to during evolution, and nomore could reasonably be expected of it. We'll return to the issue of evolvingtemperature stability in the discussion that follows.6 DiscussionThe idea of enabling sophisticated behaviour to arise from an unusually smallnumber of electronic components by allowing them to interact more freely thanis customary dates back at least as far as Grey Walter's electromechanical`tortoises' in 1949 (when the active components were thermionic valves andrelays)[6]. More recently, Mead's philosophy for analogue neural VLSI has beento exploit the behaviours that semiconductor structures naturally exhibit, ratherthan choosing a set of functions and then trying to implement them in hardware[9]. In `Pulse-stream' neural networks, the use of continuous-time dynamics hasbeen demonstrated to release new power from a digital substrate [10].



The core principle that these ideas approach is to look for an e�cient com-position of electronic components selected from a set of physical (not abstract)resources, such that their coupled natural behaviours collectively give rise to therequired overall system behaviour. In this paper, we have seen evolution do ex-actly that. A `primordial soup' of recon�gurable electronic components has beenmanipulated according to the overall behaviour it exhibits, and on no other crite-rion, with no constraints imposed upon the structure or its dynamical behaviourother than those inherent in the resources provided.For a human to design such a system on paper would require the set of cou-pled di�erential equations describing the detailed electronic and electromagneticinteractions of every piece of metal, oxide, doped silicon, etc., in the system to beconsidered at all stages of the design process. Because this is not practical, thestructure and dynamical behaviour of the system must be constrained to makedesign tractable. The basic strategy is to: (1) Break the system into smallerparts that can be understood individually. (2) Restrict the interactions betweenthese parts so that can be understood. (3) Apply 1 and 2 hierarchically, allowingdesign at increasing levels of abstraction.Thus, conventional design always requires constraints to be applied to thecircuit's spatial structure and/or dynamical behaviour. Evolution, working byjudging the e�ects of variations applied to the real physical hardware, does not.That is why the circuit was evolved without the enforcement of any spatialstructure, such as limitations upon recurrent connections, or the imposition ofmodularity, and without dynamical constraints such as a synchronising clock orhandshaking between modules.3 This sets free all of the detailed properties ofthe components to be used in developing the required overall behaviour. It isreasonable to claim that the evolved circuit consequently uses signi�cantly lesssilicon area than would be required by a human designer faced with the sameproblem, but such assertions are always open to attack from genius designers.The outstanding problem with allowing evolution a free hand to exploit theresources is that the evolving circuits can become tailored too speci�cally to theexact conditions prevailing during evolution. For instance, our example circuitwas shown to be using subtle interactions between adjacent components on thesilicon; surely if this evolved con�guration were used with another, nominallyidentical, FPGA chip then it would no longer work? Every chip has slightlydi�erent propagation delays, capacitances, etc., and the circuit could have comecrucially to rely on those of the particular chip on which it was evolved. Toinvestigate this question, the �nal population at generation 5000 was used tocon�gure a completely di�erent 10� 10 region of the same FPGA chip (Fig. 9).When used to con�gure this new region, the individual in the populationthat was �ttest at the old position deteriorated by � 7%. However, there wasanother individual in the population which, at the new position, was within 0.1%of perfect �tness. Evolution was allowed to continue at the new position, andafter only 100 generations had recovered perfect performance. When this new3 See [14, 13] for an expansion of this argument and earlier experiments speci�callydesigned to explore the feasibility of such unconstrained evolution.
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Fig. 9. Moving the circuit to a di�erent region of the FPGA.population was moved back to the original region of silicon, again the transferreduced the �tness of the individual that used to be �ttest, but there was anotherindividual in the population that behaved perfectly there.Recall that the circuit works perfectly over the 10�C range of temperaturesto which the population was exposed during evolution. This, together with theease with which evolution was observed to adapt the circuit to work on a newregion of silicon, suggests a uni�ed solution to the problem of evolving circuitswith engineering tolerances. The plan is to have �10 nominally identical FPGAchips, selected from separate batches (so as to be as di�erent from each-otheras possible), held at di�erent temperatures using Peltier-e�ect heat pumps, andwith a range of permissible power-supply voltages. To evaluate an individual's�tness, it will be tested on each of the FPGAs and given a score accordingto its ability to perform under all of these conditions. This will not slow downevolution because the FPGAs can operate in parallel. The hope is that evolutionwill produce a con�guration that works at any permissible temperature andpower-supply voltage and for any FPGA of that type. Success is not certain,because it will not be possible to expose the evolving circuits to every possiblecombination of conditions, but there is good reason to think that it can be madeeasier for evolution to generalise than to specialise. If the unconstrained e�cientevolutionary exploitation of resources can be made an engineering practicality,the pay-o�s will be great.7 ConclusionWhen an evolutionary �tness evaluation is the judging of the physical behaviourof a recon�gurable electronic device, evolution can be allowed to explore thewhole space of possible con�gurations. Much of this space is beyond the scope ofconventional design methods, so concepts of what electronic circuits can look likeneed to be broadened. The bene�t of such a step is that evolution can then utilise
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