CSCE 420: Artificial Intelligence

Dr. Dylan Shell

Tom Sawyer Abroad

From Mark Twain 1894 "Tom Sawyer Abroad" - Illustrated by Dan Beard ($1^{\text {st }}$ edition)

" HE SAID HE WOULD SAIL HIS BALLOON AROUND THE WORLD."
From Mark Twain 1894 "Tom Sawyer Abroad" - Illustrated by Dan Beard (1st edition)
"Well, then, it's just as I reckoned. The professor lied."
" Why ?"
" Because if we was going so fast we ought to be past Illinois, oughtn't we?"
" Certainly."
" Well, we ain't."
"What's the reason we ain't?"
"I know by the color. We're right over Illinois yet. And you can see for yourself that Indiana ain't in sight."
"I wonder what's the matter with you, Huck. You know by the color?"
"Yes, of course I do."
"What's the color got to do with it?"
" It's got everything to do with it. Illinois is green, Indiana is pink. You show me any pink down here, if you can. No, sir; it's green."
"The map is not the territory." - Alfred Korzybski

A Wisent of mise ashed me to dag to give hemin a reason fer a fret which I di j not know was a fact - and do not yet. We ray that. if a figure h alley how divide acid the compartments different soloned to that bequirs with ace firkin of common boning line ace different atoned - four colours may be wanted lat not mure - the follows.

October 23, 1852: Augustus De Morgan writes to Sir William Rowan Hamilton

A Rident of mine ached
me to jas to give him a reason fer afuct which I di j not know was a fact - and do not yet. We say that if a bigire b acey haw divide aud the compartments differently soloned to that bequirs with ace firkin of common bovary line are different y aroused

- four colours may be wanted lat not mure - the followris
"A student of mine asked me to day to give him a reason for a fact which I did not know was a fact-and do not yet. He says that if a figure be any how divided and the compartments differently coloured so that figures with any portion of common boundary line are differently coloured-four colours may be wanted, but not more-the following is his case in which four are wanted..."

A vincent of mire ashed The to day to give him a reason fer afuct which I dis not know was a fact - and do not yet. He rays that if a figire h acey how divided aud the compartments differouty colored to that fequies with ace firkin of comma boundary line are different allured - Four colones may be wanted lat not mure - the following is his case in which four are wanted
AB cate an namer of

"A student of mine asked me to day to give him a reason for a fact which I did not know was a fact-and do not yet. He says that if a figure be any how divided and the compartments differently coloured so that figures with any portion of common boundary line are differently coloured-four colours may be wanted, but not more-the following is his case in which four are wanted
$A B C D$ are names of colours

Query cannot a necessity for five or more be invented..."

Francis Guthrie

Tinting Maps.-In tinting maps, it is desirable for the sake of distinctness to use as few colours as possible, and at the same time no two conterminous divisions ought to be tinted the same. Now, I have found by experience that four colours are necessary and sufficient for this purpose,but I cannot prove that this is the case, unless the whole number of divisions does not exceed five. I should like to see (or know where I can find) a general proof of this apparently simple proposition, which I am surprised never to have met with in any mathematical work. F. G.

Figure 1: Letter in The Athenceum of June 10, 1854.

From Brendan D. McKay, 2012, "A note on the history of the four-colour conjecture"

Francis Guthrie

Tinting Maps.-In tinting maps, it is desirable for the sake of distinctness to use as few colours as possible, and at the same time no two conterminous divisions ought to be tinted the same. Now, I have found by experience that four colours are necessary and sufficient for this purpose,but I cannot prove that this is the case, unless the whole number of divisions does not exceed five. I should like to see (or know where I can find) a general proof of this apparently simple proposition, which I am surprised never to have met with in any mathematical work.

Figure 1: Letter in The Athencum of June 10, 1854.

Francis Galton

Most famous fallacious proof in the whole of mathematics.

Believed to be true for 11 years, and was the starting point for many subsequent proofs.

Percy John Heawood found a counterexample.

Alfred Bray Kempe

Heinrich Heesch's Box of Reducible Configurations

From Robin Wilson's "Four Colors Suffice"

Solution in 1976 by Kenneth Appel and Wolfgang Haken

The first major theorem to be proven with extensive computer assistance

Aroused considerable controversy

Hardness

It is NP-Complete to decide whether a graph admits a coloring with \mathbf{k} colors, except for $\mathbf{k}=1$ and $\mathrm{k}=2$.

Also: Zuckerman, D. (2007), "Linear degree extractors and the inapproximability of Max Clique and Chromatic Number", Theory of Computing 3: 103-128.

He showed that unless $\mathrm{P}=\mathrm{NP}$, no poly-time algorithm computes the chromatic number of a graph with n vertices up to a factor of $n^{1-\varepsilon}$ for any fixed $\varepsilon>0$.

- Allocating frequencies to mobile phone cells
- Laying out components on circuit board
- Fitting a protein structure to measurements
- Drawing up an examination timetable

Sources:

Tom Sawyer Images:
http://www.bellsbooks.com/wp-content/uploads/2011/10/Tom-Sawyer-Abr oad-Illustration-21.jpg
http://www.twainquotes.com/UniformEds/UniformEdsCh22.html
Francis Guthrie:
By Paul venter - http://en.wikipedia.org/wiki/Image:Francis guthrie.jpg
Alfred Bray Kempe
http://aprender-mat.info/history/photos/Kempe 3.jpeg
Kenneth Appel and Wolfgang Haken
http://ebulten.library.atilim.edu.tr/shares//images/M3.png

